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Abstract—This paper introduces queuing network models for the performance analysis of SPMD applications executed on general-

purpose parallel architectures such as MIMD and clusters of workstations. The models are based on the pattern of computation,

communication, and I/O operations of typical parallel applications. Analysis of the models leads to the definition of speedup surfaces

which capture the relative influence of processors and I/O parallelism and show the effects of different hardware and software

components on the performance. Since the parameters of the models correspond to measurable program and hardware

characteristics, the models can be used to anticipate the performance behavior of a parallel application as a function of the target

architecture (i.e., number of processors, number of disks, I/O topology, etc).

Index Terms—Single program multiple data (SPMD), multiple instruction multiple data (MIMD), performance model, queuing network

model, fork-join queues, mean value analysis (MVA), parallel I/O, synchronization overhead, speedup surface.
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1 INTRODUCTION

THE objective of this paper is to study the performance of
general-purpose parallel architectures when executing

SPMD (Single Program Multiple Data) applications. A
family of queuing network models is introduced that
describes the behavior of SPMD applications under the
assumption that the applications have a “regular” cyclic
structure. The models require the knowledge of some
hardware characteristics of the target architecture, which
can be obtained by running simple benchmark programs
available in literature. Furthermore, the knowledge of a few
characteristics of the application being executed, like the
amount of data transferred during the communication, and
I/O phases, is needed. Nevertheless, the approach pro-
posed is capable of modeling a wide range of parallel
applications (from I/O bound to communication intensive
applications).1

The parallel systems under consideration have a generic

architecture (distributed or shared memory) with a finite

number of homogeneous processors and a finite number of

I/O devices (e.g., disks). The systems are assumed to be

monoprogrammed and executing one task per processor.

The performance analysis is limited to SPMD applications.

Communication can be achieved via explicit message

passing or by referring to shared variables, and can be

synchronous or asynchronous. I/O operations can be reads

and/or writes.

In a typical SPMD program, all the processes alternate
computation, communication, and I/O in a cyclic fashion.
Studies on the characterization of scientific applications [1],
[2], [3], [4] show that most data-parallel applications present
a behavior which is rather regular and cyclic along time.
The properties of many scientific parallel programs result in
an execution behavior that can be naturally partitioned into
disjoint intervals, each of which consists of one computation
burst followed by one I/O burst (see Fig. 1).

Examples of scientific parallel applications with regular
and cyclic behavior are: H3expresso, a parallel solver for the
full 3D Einstein equations used to construct dynamic black
hole spacetimes [5]; PRISM, a parallel implementation of a
3D numerical simulation of the NavierStokes equations [6];
ESCAT, a parallel implementation of the Schwinger Multi-
channel method for calculating low-energy electronmole-
cule collisions [6]. More examples can be found in [7], [8].

Extending the model presented in [9] and [10], we
consider a SPMD program to be composed of one or more
phases. Each phase is in turn composed of a number of
statistically identical CPU, communication and, eventually,
I/O bursts that are executed in a cyclic fashion. Different
phases correspond to different stages of a multistage
application (e.g., preprocessing, core computation, post-
processing). The cyclic structure of each phase usually
derives from the presence in the application of outer
iteration loops (e.g., the time evolution of some physical
model, or the convergence of some approximate algorithm).
The paper shows that, for each phase, it is possible to define
a queuing network model that describes the performance of
the coupled application/architecture system.

The paper is organized as follows: Section 2 describes
other works related to the performance modeling of parallel
applications. Section 3 formally defines the class of parallel
applications and systems to which our analysis can be
applied. The section also describes the computation,
communication, and I/O queuing network submodels.
Section 4 integrates the submodels into a family of coupled
application/architecture models. Section 5 discusses the
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validation of the models by comparing the predicted
performance results with those of real parallel applications.
The applications considered are BTIO and QCRD. Finally,
Section 6 summarizes the results and the plan for future
research.

2 RELATED WORKS

The first effort to model the performance of parallel programs
is due to Amdahl and the well-known homonymous law that
relates the number of processors to the bound of the speedup
which may be expected by parallel processing [11]. Several
extensions to Amdahl’s law have been proposed. Gustafson
in [12] and [13] and Gustafson et al. in [14] introduce the
concept of scaled speedup. Flat and Kennedy [15] investigate
the impact of synchronization and communication overhead
on the performance of parallel processors. Eager et al. [16]
studied speedup versus efficiency. Wu and Li [17] propose a
formal definition of scalability and discuss scalability of
cluster systems. Rosti et al. [9] extends Amdahl’s law to three-
dimensional space to include processors and disks. All the
above approaches have the advantage of expressing analy-
tically the speedup in a closed form. However, these models
are limited because they neglect the effects of important
architecture characteristics.

Other approaches use task graph models to represent the
intertask precedence relations within a program, the task
execution times, and the amount of data transferred among
tasks. In the case of program control structures that can be
represented by “series-parallel” task graphs, such as the
fork-join structure, methodologies have been derived to
predict the best speedup. When the task execution times are
deterministic, Coffman and Denning [18] use critical path
analysis to find the program completion time. If the task
execution times are stochastic and the number of processors
is infinite, the probability distribution of execution time can

be determined by a straightforward but in general very
costly computation [19], [20]. General acyclic random graph
models are presented in [21], [22], [23]. Gelenbe [24]
generalizes the task graph model to take into account the
effects of communications.

For more realistic cases, where the number of processors
is smaller than the number of tasks in a program, queuing
network techniques can be used, where processors are
modeled as service centers and parallel tasks are modeled
with requests circulating in the system. All the approaches
describe multiprogrammed and multitasked parallel sys-
tems executing a sequence of programs of similar task
structure. The models are based on fork-join, open queuing
networks, where a stream of serial-parallel applications
arrives in the system. Lui et al. [25] compute performance
bounds for fork-join parallel program. Bacelli and Lui [26]
propose a class of models for homogeneous parallel systems
executing application with a general task structure. Balsamo
et al. [27] describe some approximate models for the
analysis of heterogeneous parallel systems. Apon and
Dowdy [28] introduce a queuing network circulating
processor model that differs from previous models in that
the processors (the requests) circulate among the processes
(the resources). Qin and Baer [29] adopt a similar technique
to model the performance of cluster-based architectures
where each cluster is a shared-based multiprocessor. All the
above works focus mainly on finding analytical solutions to
queuing network models with resource contention and
synchronization barriers. However, the assumption behind
the models are better suited for multiprocessor systems
sharing a central memory than for distributed memory
systems and do not take into consideration communication,
and I/O contention. Moreover, only [29] addresses the
modeling of monoprogrammed systems.

Very little has been done to model the performance of
I/O operations in parallel applications. Most of the works
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focus on the analysis of RAID (Redundant Arrays of
Inexpensive Disks) systems [30] under different workload
situations. Catania et al. [31] apply simulation techniques
to study RAID architectures with dynamic declustering.
They also provide some analytical lower bounds. Kotz
[32] describes different implementations of collective
I/O operations in MIMD architectures (simple parallel
file system, two-phase I/O and disk-direct I/O). Simula-
tion is used to compare the performance of the different
implementations.

3 ARCHITECTURE AND APPLICATION MODELS

Throughout the discussion, we consider a monopro-
grammed and monotasked parallel system with a generic
structure as the one illustrated in Fig. 2. We assume the
parallel system to be composed of p homogeneous
computational processors and d homogeneous disks.
Processors and disks are connected to each other via a
generic communication network.

Improving the application model presented in [9], we
consider an SPMD program as a sequence of M phases. Each
phase m is composed of a sequence of NðmÞ statistically
identical cycles. Each cycle consists of a number of
computation bursts followed by one I/O burst. The
computation burst is, in turn, composed of one burst of
CPU activity followed by one burst of communication, as
show in Fig. 1. If the SPMD application is well designed
(i.e., load-balanced), the computation, communication, and
I/O loads have the same order of magnitude for all the
processors. Within each phase, we therefore assume that
CPU, communication, and I/O bursts are statistically
identical, i.e., that their duration are sampled from an
exponential distribution with average value SCPU, SCOM,
and SI , respectively. This assumption allows us to model
almost all the system by means of single class queuing
networks.

3.1 Communication Subsystem

Among different processor interconnection networks, two
extreme situations can be identified: a fully intercon-
nected system and a single bus system. In the former
case, no link contention arises in any communication.
Messages exchanged between pairs of processors experi-
ence a simple delay regardless of the network usage. In

the latter case, when two or more messages are ex-
changed simultaneously, there is contention for the use of
the shared bus. Other interconnection networks, e.g.,
meshes or trees, represent trade offs between the two
cases. The impact of contention on communications
depends also on the parallel application. For instance, a
pipeline implemented on a parallel machine with a mesh
network can be realized in such a way that communica-
tions do not suffer from contention.

Different types of interconnection networks lead to
different ways of modeling communications. A shared
bus can be modeled as a queuing server, since it is capable
of handling one message at a time, while a fully inter-
connected network can be modeled as a delay center since
messages never queue for a link. More realistic network
topologies (e.g., 2D meshes, hypercubes, toruses) are more
complex to model (they require the exact knowledge of the
network routing mechanism).

We define the communication contention level w, a real
number 0 � w � 1, that allows us to switch from the bus
interconnection network architecture (w ¼ 1) to the fully
connected one (w ¼ 0). Intermediate values represent
different network architectures such as meshes and trees.
The value of w depends on the communication hardware as
well as on the algorithm implemented. However, it is
difficult to predict the correct value of w, except for the
boundary cases w ¼ 0 and w ¼ 1. When the value of w is
unknown, it can be guessed by fitting model results with
experimental performance measurements, as shown is
Section 3. Alternatively, the two boundary values w ¼ 0
and w ¼ 1 can be used to obtain an optimistic and a
pessimistic model.

3.2 I/O Subsystem

Real parallel applications exploit I/O for different purposes
[33]: checkpoints to reduce the cost of system failures, saving
of simulation data for subsequent visualization or analysis,
out-of-core computation when program data structures are
larger than available memory, and data retrieval when the
application involves the analysis of large amounts of data.

I/O parallelism consists of using more disks and one or
more controllers and distributing data across the disks. In
RAID, systems files are interleaved across an array of disks
sharing a common bus and controlled by a single controller. A
more efficient and flexible parallel disk architecture is
constituted by a set of independent disks, each disk with a
separate controller and connected to a distinct processor of
the parallel machine. The individual devices in a parallel
independent disk system could themselves be arrays of disks.

Usually, processors with disks are not loaded with
computational tasks, but they are dedicated to the handling
of I/O activities. Such activities may include post-proces-
sing or visualization of output data. The I/O nodes often
provide the user with the abstraction of a single, shared, file
system. For example, the Panda parallel file system [34] is
designed for an environment where processors are full-time
compute nodes or full-time I/O nodes. Several commercial
machines exhibit this type of high level architecture,
including the Thinking Machines CM5, the Intel Paragon,
the IBM-SP2, and the Cray T3E [35], [36], [37].
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According to the architecture of the I/O subsystem, we

consider two family of models (Fig. 3):

. BUS models: A single disk or a pool of disks (e.g., a
RAID system) is connected via a single I/O node to
the system.

. CLU models: Computational processors are logically
or physically grouped (e.g., clusterized) and each
cluster contains one I/O node.

3.3 Synchronization Model

Synchronization happens during communication and I/O

activities. The performance cost of synchronization

operations (e.g., synchronous communications, barriers,

synchronous I/O, etc.) is a function of the number of

processors involved. Within each phase, we assume that the

number of processors participating to synchronization events

(communications or I/O) does not change.
In order to capture the effects of synchronization during

communications, we define the synchronization level c as the

number of processors (1 � c � p) involved in a synchronous

communication. According to the definition, processors can

be thought as grouped into p=c synchronization groups. For

instance, if p ¼ 8 and c ¼ 2, we have p=c ¼ 4 groups of

processors, each group composed of c ¼ 2 processors.

Processors belonging to the same group communicate with

each other by means of synchronous send/receive opera-

tions. When c ¼ 1, all the processors perform asynchronous

communications.
Studies on the characterization of parallel scientific file

accesses [38] show that most I/O activities are fully

synchronous or fully asynchronous. According to the type

of I/O, we therefore construct two family of models:

. Synchronous I/O models (SIO): Processors perform
I/O bursts synchronously (e.g., checkpoints and
simulation data).

. Asynchronous I/O Models (AIO): Processors perform
I/O bursts asynchronously (e.g., out-of-core com-
putations).

3.4 Speedup Models

Throughout the rest of the paper, we study the performance

of parallel programs composed of one phase (i.e., M ¼ 1).

The results can be extended to multiphase applications. We

also assume that the duration of the phase (i.e., the number

N of cycles) is long enough to allow the system to reach a
steady-state condition.

In this section, we develop a performance model for a
program executed on a system composed of one processor
and one disk. We use this model as a reference model. Let
pI=O be the probability of an I/O burst at the end of a
computation burst (nI=O ¼ 1=pI=O is the average number of
computation bursts between two successive I/O bursts). Let
SCPU and SI=O be the average service time of CPU burst and
I/O burst, respectively. Fig. 4 depicts the closed queuing
network corresponding to the reference model. A single job,
representing the program in execution, circulates in the
queuing network. The average response time of the
circulating job is

T1 ¼ SCPUnI=O þ SI=O: ð1Þ

Note that T1 is the average execution time of one cycle of the
program. Throughout the paper, we use T1 as a reference
time in order to evaluate the speedup of different parallel
programs and architectures.

Consider now a program executed on a parallel system
with p processors and d disks. We can decompose the
average execution time T ðp; dÞ into three terms

T ðp; dÞ ¼ N TCPUðp; dÞ þ TCOMðp; dÞ þ T I=Oðp; dÞ
h i

; ð2Þ

where N is the number of cycles in the program (i.e., in the
phase), TCPUðp; dÞ, TCOMðp; dÞ, and T I=Oðp; dÞ represent the
average time of the CPU, communication, and I/O bursts,
respectively.

The speedup s can be expressed as

sðp; dÞ ¼ TCPUð1; 1Þ þ T I=Oð1; 1Þ
TCPUðp; dÞ þ TCOMðp; dÞ þ T I=Oðp; dÞ : ð3Þ

Fig. 5 shows the generic queuing networks used for
modeling the parallel program. The blocks represent “sub-
models” corresponding to computation and I/O bursts. In
AIO applications, the jobs representing the computation
burst perform I/O independently. In SIO applications, a pair
of fork/join stations are added to the computation burst
subsystem. When the jobs representing the computation
burst activities are collected by the join station, they are
replaced by a single job that corresponds to the I/O burst
activity.

3.5 CPU Submodel

The relationship between computation load and number of
processors is well approximated by Amdahl’s law. The
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Fig. 3. I/O configurations considered: (a) BUS (b) CLU.

Fig. 4. Queuing network model of a program executed on a single

processor and disk.



CPU load SCPU can be divided into a parallel and a serial
component, SCPU

par and SCPU
ser , respectively. According to

Amdahl’s law, the CPU load on p processors is SCPU
par =pþ

SCPU
ser (the parallel component scales perfectly with the

number of processors, while the serial component is not
affected).

Fig. 6 shows the queuing network that integrates CPU
and communication submodels into a computational burst
model. A job entering in the subnetwork represents a group
of c processors communicating among themselves by means
of synchronous communication operations. Each job pro-
ceeds to a set of delays that model the processor CPU time,
then to the two service centers representing the commu-
nication network (the communication submodel). On
average, a job performs nI=O cycles before leaving the

computation burst subnetwork. The maximum number of
jobs circulating in the computational submodel is p=c.

The upper part of Fig. 6 refers to the CPU submodel. The
processors are represented by p=c delays and as many pairs
of fork/join stations. A job arriving in the fork station is
split into c jobs, each of them representing a single
processor computation. Each job is collected by a delay
station (with service time SCPU

par =pþ SCPU
ser ) that represents

pure CPU calculation. Finally, the jobs are recollected by the
join station and, when all the jobs have been received, they
are replaced with a single job representing the group of
synchronized processors.

The time elapsed between the arrival of the job in the
fork station and the departure from the join station is a
random variable defined as X ¼ maxfX1; . . . ; Xcg, where
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X1; . . . ; Xc are random variables exponentially distributed
with the same mean SCPU

par =pþ SCPU
ser , representing the c

processor delays. X is then a hypoexponential distributed
random variable with mean given by [39]

E X½ � ¼
SCPU

par

p
þ SCPU

ser

 !Xc
i¼1

1

i
: ð4Þ

Therefore, the average response time of the fork/join pair,
can be written as

TCPU ¼ hðcÞ
SCPU

par

p
þ SCPU

ser

 !
; ð5Þ

where hðcÞ is the synchronization cost function

hðcÞ ¼
Xc
i¼1

1

i
: ð6Þ

The assumption of exponentially distributed times in the

fork-join model can lead to pessimistic results when the

variability in work per processor of the real application is

very low and the number of processors is small [40].

Different and less pessimistic distributions can be used, by

changing the synchronization cost function hðcÞ. An

example is the uniform distribution with average values

SCPU
par and SCPU

ser . In this case, the cost function becomes

hðcÞ ¼ 2c=ðcþ 1Þ. However, if the distribution is different

from exponential, the queuing network solution techniques

presented in Section 4 cannot be used.

3.6 Communication Submodel

We introduce a communication scale function gðpÞ, which

measures how the average amount of data transmitted by
each processor scales (during a communication burst). By

definition, gð1Þ ¼ 0. The choice of the scaling function gðpÞ
depends on the algorithm implemented but not on the

target architecture. Through the scaling function gðpÞ, we
are able to capture a broad class of parallel applications.

SPMD applications typically work with r-dimensional

arrays that are distributed in a block fashion among
processors. The amount of interprocessor communication

depends on the hyperperimeter of the distributed data

structure, while the computational load depends on the
hypervolume. For instance, in low-level image processing,

the working data structure is a two-dimensional matrix of
pixels, partitioned into square windows among the proces-

sors. The size of the messages exchanged between pair of
processors is proportional to the length of the internal

border between adjacent windows (1=
ffiffiffi
p
p

), while the size of
the overall communications is proportional to

ffiffiffi
p
p

. We can

generalize the idea for a generic number r of dimensions in
the application data space, obtaining

gðpÞ ¼ 1

p
rÿ1
r

: ð7Þ

If the communication network has no contention, the
communication service time TCOM can be well approxi-

mated by a linear relation

TCOM ¼ SCOM
0 þ gðpÞSCOM

R ; ð8Þ

where SCOM
0 is the communication startup time and SCOM

R is

the reciprocal of the communication transfer rate.

The lower part of Fig. 6 shows the communication

submodel, containing one delay station and one queuing

station. The service time of the queuing station SCOM
queue takes

into account the fraction of the transfer time affected by the

network contention

SCOM
queue ¼ wgðpÞSCOM

R : ð9Þ

The service time SCOM
delay of the delay station is the sum of two

components

SCOM
delay ¼ SCOM

0 þ ð1ÿ wÞgðpÞSCOM
R : ð10Þ

The first component is the startup time. The second

component is the fraction of the transfer time that is not

affected by the network contention.

3.7 I/O Submodel

It is difficult to provide a general discussion of parallel I/O

because different parallel computers have radically different

I/O architectures and hence parallel I/O mechanisms.
In SIO models, the I/O load depends on the number of

disks but not on the number of processors. Amdahl’s law

can be applied to I/O parallel file systems as a function of

the number d of disks

T I=O ¼ SI=O
0 þ S

I=O
R

d
; ð11Þ

where S
I=O
0 and S

I=O
R are the serial and parallel part of the I/O

service time with respect to the number d of disks.
In AIO models, I/O operations are divided into

p=c chunks. In BUS-AIO models, each chunk of I/O data is

striped among the d disks. The I/O service time of one chunk

of I/O is given by

T I=O ¼ SI=O
0 þ S

I=O
R =d

p=c
: ð12Þ

In CLU-AIO models, processors are logically grouped into

clusters and each cluster shares one I/O node. I/O clustering

occurs mainly because of application design issues but can be

also motivated by the parallel architecture configuration.

Clustering occurs among the p=c synchronization groups.

Therefore, p=cmust be an integer multiple of d (i.e., p=c ¼ kd,

where k is the number of synchronization groups sharing one

disk). The I/O service time for one chunk of I/O is given by

T I=O ¼ SI=O
0 þ S

I=O
R

p=c
: ð13Þ

We can summarize the I/O service time for different I/O

architectures

T I=O ¼

S
I=O
0 þ SI=O

R =d SIO

S
I=O
0 þ S

I=O
R
=d

p=c BUSÿAIO

S
I=O
0 þ S

I=O
R

p=c CLUÿAIO:

8>>><>>>: ð14Þ
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4 MODEL ANALYSIS

In this section, we describe how to integrate the submodels

described in the previous sections and we develop and

illustrate the algorithms required to evaluate the perfor-

mance results.

4.1 SIO Model

The SIO model describes parallel algorithms performing

synchronous I/O operations (see Fig. 7). In order to

estimate the speedup of the SIO model, we first evaluate

the time TCPU þ TCOM spent by the program during the

computation burst by computing the response time of the

computation burst subnetwork.
Let z be the sum of all the delays belonging to the

computation subnetwork

z ¼ hðcÞ
SCPU

par

p
þ SCPU

seq

 !
þ SCOM

0 þ ð1ÿ wÞgðpÞSCOM
R : ð15Þ

The approximate response time for the computation fork-

join subnetwork is

TCPU þ TCOM ¼ nI=O
Xp=c
i¼1

zþR1ði; z; SCOM
queueÞ

i
; ð16Þ

where R1ði; z; xÞ is the response time of a closed queuing

network with population i composed of a delay z and a

queuing station with service time x. The response time

R1ði; z; xÞ is given by

R1ði; z; xÞ ¼ x
P
ðe1;e2Þ2L2

iÿ1

e1þ1
e2! x

e1ze2P
ðe1;e2Þ2L2

iÿ1

1
e2!x

e1ze2
; ð17Þ

where L2
i is the set of pairs ðe1; e2Þ of nonnegative integers

such that e1 þ e2 ¼ i. A proof of (16) and (17) can be found

in [41] and [42], respectively.
The response time for the I/O burst is given by (14)

T I=O ¼ SI=O
0 þ SI=O

R =d: ð18Þ

Upon substituting (16) and (18) into (3), we can evaluate

the speedup sðp; dÞ.
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4.2 BUS-AIO Mode

The BUS-AIO model represents centralized I/O architec-

tures and parallel applications characterized by asynchro-

nous I/O. Since in this case we do not have any I/O

synchronization, we remove from the model the fork/join

pair (Fig. 8). The BUS-AIO queuing network can be solved

by means of exact MVA algorithm. The queuing network is

composed of a delay station and two queuing stations. The

service time z of the delay station is given by (15). The

service time SCOM
queue of the first queuing station is given by

(9). The the second queuing station represents the I/O burst

and its service time is given by (14)

T I=O ¼ SI=O
0 þ S

I=O
R =d

p=c
: ð19Þ

By using MVA, we have

TCPU þ TCOM ¼ znI=O þR2 p; znI=O; SCOM
queuen

I=O; T I=O
� �

ð20Þ

and

T I=O ¼ R2 p; znI=O; T I=O; SCOM
queuen

I=O
� �

; ð21Þ

where R2ði; z; x; yÞ is the response time of a closed queuing

network with population i composed of a delay z and two

queuing station with service time x and y

R2ði; z; x; yÞ ¼ x

P
ðe1;e2;e3Þ2L3

p=cÿ1

e1þ1
e3! x

e1ye2ze3P
ðe1;e2;e3Þ2L3

p=cÿ1

1
e3!x

e1ye2ze3
ð22Þ

and L3
p is the set of triples ðe1; e2; e3Þ of nonnegative integers

such that e1 þ e2 þ e3 ¼ p. From (20) and (21), we can

evaluate the speedup of the BUS-AIO model.

4.3 CLU-AIO Model

The model for the CLU-AIO is a multiclass closed queuing

network. The queuing network contains d classes, each class

representing the portion of a parallel application executed

on one of the d clusters of processors that shares a common

disk (see Fig. 9). As mentioned, we consider only the case

p=c ¼ kd. Because of the load-balance hypothesis stated in

Section 3, the d components of the population vector n! are

identical

n!¼ p

cd
;
p

cd
; . . . ;

p

cd

� �
:
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Fig. 8. BUS-AIO queuing network model.



The I/O subsystem is composed of d queuing stations

operating in parallel, each station representing a disk. The

service time of each disk station is given by (14)

T I=O ¼ SI=O
0 þ S

I=O
R

p=c
:

The service times of the queuing network are repre-

sented by a ðdþ 2Þ � d matrix G

G ¼

T I=O 0 . . . 0
0 T I=O . . . 0

. . . . . . . . . . . .
0 0 . . . T I=O

SCOM
queuen

I=O SCOM
queuen

I=O . . . SCOM
queuen

I=O

znI=O znI=O . . . znI=O

0BBBBBB@

1CCCCCCA;

where SCOM
queue and z are defined in (9) and in (15),

respectively. In order to solve the CLU-AIO queuing

network, the MVA algorithm can be used.

5 ANALYSIS OF REAL APPLICATIONS

We now apply our model to analyze the behavior of real

parallel applications, demonstrating that the methodology

is a powerful abstraction to evaluate application scalability

as a function of its resource requirements.
In Section 5.1, we apply the model to the performance

analysis of BTIO, a parallel I/O intensive application from

the NAS Parallel Benchmark suite (NPB). The target

architecture is the IBM SP-2. We investigate the structure

of the algorithm and the architecture of the parallel machine

in order to obtain the model parameters. A comparison

between the results of the analytic model and the measures

obtained from the execution of the benchmark is presented.
In Section 5.2, we infer the inner characteristics of a

parallel applications by fitting the analytic model to

observed speedup surfaces. The application considered

(QCRD) is selected among those of the Scalable I/O

Initiative.
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5.1 The BTIO Application

In order to evaluate usefulness and accuracy of the model,
we compare the model results with the performance
measures of BTIO, a kernel benchmark from the NPB suite,
as reported by Fineberg et al. in [43]. The NPB suite [44]
consists of a set of seven kernels (BT, LU, FT, IS, EP, MG,
and SP) extracted from typical computational fluid dy-
namics codes. Working together, IBM T.J. Watson Research
Center and the Parallel Systems Group at the NAS facility
(NASA Ames Research Center) have drafted MPI-IO, a
proposal to address the portable parallel I/O problem [45].
BTIO is the NAS kernel benchmark for MPI-IO. The BTIO
kernel extends the original BT kernel by using MPI-IO to
write data to a file at regular time intervals [46].

The BTIO (Block Tridiagonal) pseudoapplication simu-
lates high-speed compressible airflow by solving a system
of partial differential equations using the ADI method.
BTIO simulates airflow in time steps: Air is modeled in a
3D grid of (velocity, temperature, pressure) values. For each
time step, airflow is approximated by traversing the grid in
the X, Y, then Z dimension. For each traversal, all lines can
be done in parallel. The parallel implementation adopts a
multipartition scheme that requires the number of proces-
sors p to be a perfect square. The kernel executes 200 time
steps and writes the solution matrix every five time steps.

The BTIO kernel comes in three possible sizes (class A, B,
and C), each class with a different grid size. The analysis
described in the following subsection refers to a problem
size of class A (64� 64� 64 grid points).

5.1.1 Parameters Estimation

In order to calculate the parameters of the model (listed in
listed in Table 1), we need to measure some performance
features that characterize the IBM SP-2. We use three simple

low-level kernel applications POLY1, COMMS1, and

COMMS3 from the Parkbench benchmark suite [47].

The POLY1 kernel executes a polynomial evaluation and

can be used to calculate the CPU floating point instructions

rate. The CPU rate measured for the IBM SP-2 is rCPU ¼ 120

MFlop/s. The analysis of the BTIO algorithm shows that

each time step requires approximatively 840 MFlop for a

class A problem size (830 MFlop in the parallel fraction,

10 MFlop in the serial fraction). The SCPU parameters can be

computed as the ratio between the number of MFlop

required by a CPU burst and the CPU performance rate

rCPU. It follows that the serial and parallel CPU time are

SCPU
ser ¼ 0:08 s and SCPU

par ¼ 6:9 s, respectively.

The communication kernel COMMS1 measures the basic

communication properties of a parallel computer by ping-

ponging a message of given length between two processors.

The values obtained by COMMS1 are the startup time t0
required to send a message and the communication transfer

rate r1 without contention. The measured values for the

IBM SP-2 are t0 ¼ 150�s and r1 ¼ 27 MByte/s [48]. The

SCOM
R parameter is the reciprocal of the communication

transfer rate SCOM
R ¼ 1=r1 ¼ 0; 037s/MByte. The SCOM

0

parameter can be calculated as the product between the

startup time t0 and the average number of messages sent by

one processor during a communication burst. The analysis

of the BTIO algorithm shows that the number of messages

transmitted at each communication burst by one processor

is proportional to p1=2, while the average message size is

proportional to pÿ2=3. The scale function gðpÞ is equal to

pÿ1=6. The number of messages transmitted by each

processor and their average message size are reported in
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TABLE 1
Models Parameters Summary

TABLE 2
BTIO Characteristics—The Values Refer to One Processor



Table 2. Since the BTIO algorithm uses asynchronous

communications, we choose c ¼ 1.
The communication contention level w is the most

difficult parameter to estimate, because its value depends

on both the interconnection network and the communica-

tions pattern. However, it is possible to compute an upper

bound for w by means of the COMMS3 kernel. In the

COMMS3 kernel, each processor sends a message to all the

other processors, then waits to receive all the messages

directed at it. The value obtained by COMMS3 is the total

saturation bandwidth rsat and corresponds to the maximum

throughput of the communication submodel 1=ðwSCOM
R Þ

[49]. The saturation bandwidth measured for the IBM SP-2

is rsat ¼ 120 MByte/s [48], yielding to w ’ r1=rsat ¼ 0:23.
The BTIO implementation described in [43] was run on an

IBM SP-2 with d ¼ 3 I/O nodes, each node capable of

10 MByte/s throughput during writing operations. The

amount of data written by the kernel every five time steps

(pI=O ¼ 1=5) is 10 MByte, yielding to S
I=O
R ¼ 1 s. During I/O

bursts, BTIO uses a small number of large write operations,

therefore we neglect the I/O startup time S
I=O
0 ¼ 0. Since the

MPI-IO implementation described in [43] used synchronized

I/O, we choose to adopt the SIO model.
The results of the model are presented in Table 3. The

Table shows a comparison between the experimental

execution time and the execution time obtained from the

SIO model. Note that the model yields to an overestimation

of the execution time with 9 processors. This happens

because the assumption of exponentially distributed CPU

time leads to pessimistic results.

5.2 Speedup Surfaces of Applications with
Intensive I/O

In this section, we illustrate how the modeling technique
can be used to study the inner characteristics of real parallel
applications. The main goal of the section is not to predict
the performance of a parallel application, but rather to
analyze its scalability in order to find its major bottlenecks.

The application considered is selected among those of
the Scalable I/O Initiative and is described in [9]. The
Scalable I/O Initiative [6] is an effort to collect a suite of
I/O intensive challenge scientific applications in order to
design and evaluate policies for the management of
parallel file systems. The experimental platform used is
the 512-processor Intel Paragon XP/S with 64 4GB
Seagate disks attached to an I/O processor, at the Caltech
Center of Advanced Computing Research. Performance
measures are collected using Pablo [50], a performance
analysis environment that provides trace data for the I/O
and CPU requests of the parallel applications.

The application considered is QCRD (Quantum Chemi-
cal Reaction Dynamics) that solves the Schroedinger
equation for the differential and integral cross section of
the scattering of an atom by a diatomic molecule. QCRD
implements the method of symmetrical hyperspherical
coordinates and local hyperspherical surface functions with
a typical SPMD structure. All processors execute the same
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TABLE 3
BTIO Execution Time, Five Time Steps

TABLE 4
QCRD Stage 2: Model Parameters

Fig. 10. QCRD stage 2—Experimental speedup surface (dashed line) versus analytical (solid line).



code on different portions of the data set each of equal size
so as to keep the load balanced. The execution is divided
into five consecutive stages that proceed in a pipeline
fashion. The analysis focus on stage 2 because it achieves

reasonable speedups. During stage 2, each processor
independently computes a subset of the integrals that are
needed to evaluate the two-dimensional quadratures invol-
ving the primitive basis functions. Both read and write
operations are performed by all processors.

Since in the QCRD stage 2 the processors uses

asynchronous communications and perform I/O operations
independently, we use the BUS-AIO model with c ¼ 1. The
analysis of the data partition scheme adopted in the QCRD
stage 2 yields to define the communication scale function as
gðpÞ ¼ 1=p.

Given a set of 42 observed speedup �ssðp; dÞ, we estimate the
values of the remaining seven model parameters by means of
a least square fitting (the number of observations required
must be greater or at least equal to the number of unknown
parameters). The parameters are shown in Table 4. All the

parameters but w are normalized with respect to the
application execution time on one processor and one disk T1.

The analysis of Table 4 shows that the application shall not
be considered I/O intensive but rather CPU intensive because
S

I=O
R and S

I=O
0 are negligible with respect to SCPUnI=O.

Moreover, the main performance bottleneck lays in the

communication phase. In fact SCOM
R nI=O and w are relevant

and their overhead effects increase with the number of
processors.

Fig. 10 shows the speedup measured (dashed line)
versus the speedup obtained from the model (solid line).

We define the average error as

1

NP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
p;d

sðp; dÞ ÿ �ssðp; dÞ½ �2

�ssðp; dÞ2

vuut ;

where NP is the number of experimental points in the

speedup surface. We observe that the fitted model is a good
match for the observed data (the average error being
0.2 percent).

6 CONCLUSION

In this paper, we have described a family of queuing
network models for the performance analysis of parallel

programs when executed on different type of systems. The
purpose of the models is to estimate the speedup of a
parallel application through some high level parameters
characterizing the application and the target architecture.

The underlying idea is that the performance of a parallel
application strictly depends on the coupling between the

application and the architecture characteristics.
From these models we obtain the qualitative and

quantitative behavior of programs that alternate computa-
tions and I/O in a cyclic fashion. The models allow to study
the impact of both communication and I/O contention,

showing the dependence among speedup, number of
processors and number of disks in the parallel machine.
Various aspects of the communication and I/O have been

analyzed and different hardware architectures have been

taken into consideration.
Moreover, we have shown that we can infer the

programming characteristics of an application by fitting

the model to observed speedup. This can help programmers

to analyze the scaling properties of an application with

respect to: number of processors, number of disks, CPU

performance, disk performance and problem size. The

fitting of experimental speedup surfaces produced very

small errors; thus it would be appropriate to use these

estimated parameters for allocation and scheduling.
Future works are planned to extend the computation

subsystem model in order to take into account the effects of

deep load unbalance (by using multiclass queuing net-

works) and the effects of processor multiprogramming (by

substituting the CPU delay centers with queue centers).
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