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ABSTRACT
We address the general problem of finding suitable evalu-
ation measures for classification systems. To this end, we
adopt an axiomatic approach, i.e., we discuss a number of
properties (“axioms”) that an evaluation measure for clas-
sification should arguably satisfy. We start our analysis by
addressing binary classification. We show that F1, nowadays
considered a standard measure for the evaluation of binary
classification systems, does not comply with a number of
them, and should thus be considered unsatisfactory. We go
on to discuss an alternative, simple evaluation measure for
binary classification, that we call K, and show that it in-
stead satisfies all the previously proposed axioms. We thus
argue that researchers and practitioners should replace F1

with K in their everyday binary classification practice. We
carry on our analysis by showing that K can be smoothly
extended to deal with single-label multi-class classification,
cost-sensitive classification, and ordinal classification.

1. INTRODUCTION
Classification is an enabling technology of capital impor-
tance in nowadays’ data science, and plays a central role in
countless tasks of practical importance, including text clas-
sification, spam filtering, word sense disambiguation, Web
search, data mining and knowledge discovery, and others.
As in all data-related endeavours, experimental evaluation
plays a central role in classification, and the mathematical
measure that we adopt is the cornerstone of this evalua-
tion. In the last 20 years the F1 measure (the harmonic
mean of precision and recall – sometimes colloquially termed
the “F-score” or the “F-measure”) has progressively replaced
“accuracy” (the fraction of classification decisions that are
correct, which corresponds to the complement of “Hamming
distance”or“0-1 loss”) as the standard evaluation measure of
binary classification in information retrieval (IR), machine
learning, data mining, and NLP.
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In this paper we challenge F1 and its suitability for eval-
uating binary classification. To this end we adopt an ax-
iomatic approach, i.e., one based on arguing in favour of a
number of properties (“axioms”) that an evaluation measure
for classification should intuitively satisfy. The benefit of
this axiomatic approach (which has a rich history in IR –
see Section 7) is that it shifts the discussion from the evalu-
ation measures to the axioms, which is like shifting the dis-
cussion from a complex combination to its building blocks:
once the scientific community has agreed on a set of ax-
ioms (the building blocks), it then follows whether a given
measure (the combination) is satisfactory or not. After dis-
cussing these axioms, we study F1 and a few other existing
measures for binary classification, and find them to be un-
satisfactory, in the sense that they all fail to satisfy some of
the properties we have argued for. We carry on to propose
K, a new evaluation measure for binary classification, which
actually consists of a variant of measures (“balanced accu-
racy”, “Youden’s index”) which have surfaced in the past in
classification or related endeavours; we formally prove that
K satisfies all the properties we have previously argued for.

Since K can deal with binary classification it can also
deal with multi-label multi-class classification (MLMCC),
i.e., the case in which zero, one, or several from a set C
of available classes (with |C| > 1) can be attributed to a
given item. We then go on to show that K can smoothly
be extended to deal with single-label classification (SLC –
i.e., when exactly one class must be chosen from set C, with
|C| > 1), with cost-sensitive classification (CSC – i.e., when
different types of misclassification may have different costs),
and with ordinal classification (OC – i.e., when such costs
are constrained by a linear order defined on C). This shows
that K can be used as a unifying measure for all types of
classification (binary, MLMC, SL, cost-sensitive, ordinal).

Note that in this paper we only deal with the problem of
evaluating “hard” classification (i.e., the crisp assignment of
classes to items), and not with evaluating systems that rank
items according to their degree / probability of member-
ship in a class (“soft” classification)1. For the same reason
we disregard (a) measures (such as “precision as a function
of recall”) that do not depend on the choice of a classifica-
tion threshold, and (b) measures (such as “precision-recall
breakeven point” – see also Section 4) in which the threshold
is chosen not by the system but (cryptically enough) by the
evaluation software.

1Hard and soft classification are sometimes referred to as
“autonomous” and “interactive” classification, respectively;
see e.g., [15].



The rest of the paper is organised as follows. Section 2
discusses some known measures for evaluating binary classi-
fication. In Section 3 we argue in favour of a series of prop-
erties (“axioms”) that we claim binary classification mea-
sures should satisfy, while in Section 4 we show that F1 and
some existing measures for binary classification do not sat-
isfy some of them. Section 5 is devoted to discussing the
K measure, and to showing that it does satisfy all of the
axioms proposed in Section 3. Section 6 deals instead with
extending K to the SLC case, to the cost-sensitive case, and
to the ordinal case. Section 7 discusses related work, while
Section 8 concludes.

2. KNOWN MEASURES OF CLASSIFICA-
TION EFFECTIVENESS

2.1 Preliminaries
In Sections 2 to 5 we restrict our discussion to binary classi-
fication. Let D be a domain of items, let c be a class, and let
Yc : D → {−1,+1} be the target function for c, where −1
and +1 indicate non-membership and membership in c, re-
spectively. We denote by D ⊆ D a nonempty set of items on
which the effectiveness of classifiers needs to be evaluated.
A pair 〈D,Yc〉 will be called a test set for c. We denote by
hc : D → {−1,+1} a classifier (or hypothesis, or predictor)
for c. We will thus call Yc(d) and hc(d) the actual label and
the predicted label of d for c, respectively.

We will also denote

• by c the complement of class c;

• by Yc the complement of target function Yc, defined
as the target function for c such that Yc(d) = −Yc(d);

• by hc the complement of classifier hc, defined as the
classifier for c such that hc(d) = −hc(d).

Note that Yc and Yc are essentially the same function, al-
though the former is framed in terms of c and the latter is
framed in terms of c. For instance, if c stands for ProRe-
publican and c stands for ProDemocrat, the same items that
belong to ProRepublican according to Y also belong to ProRe-
publican according to Y, but according to Y they are posi-
tive examples (of ProRepublican, which is the“positive class”
for Y) while according to Y they are negative examples (of
ProDemocrat, which is the “positive class” for Y). The same
we have said of target functions Y and Y applies to classifiers
hc and hc too.

Some special classifiers that we will refer to are

• the trivial acceptor haccc (i.e., the classifier that at-
tributes class c to every item);

• the trivial rejector hrejc (i.e., the classifier that at-
tributes class c to every item);

• the perfect classifier hperfc (i.e., the classifier that at-
tributes the correct label to every item);

• the pervert classifier hpervc (i.e., the classifier that at-
tributes the wrong label to every item);

• the random classifier hrandc (i.e., the classifier which
only takes random classification decisions)2.

2“The random classifier” is actually an abstraction, since
there is no unique such classifier; when speaking of hrandc
we will thus be interested in the “average behaviour” of all
possible classifiers, i.e., in the expected value of hrandc .

By TP , FP , FN , TN , we denote the numbers of true pos-
itives, false positives, false negatives, and true negatives
for class c, as determined by the triple 〈D,Yc, hc〉. By
AP = TP + FN and AN = TN + FP we denote the
number of actual positives and actual negatives, while by
PP = TP+FP and PN = TN+FN we denote the number
of predicted positives and predicted negatives, respectively.

We will denote by M(D,Yc, hc) a measure for evaluating
the effectiveness of a classifier hc as applied to a datasetD la-
belled according to target function Yc. Note thatM(D,Yc, hc)
is essentially a function of the two variables TP and TN ,
since AP and AN are constants for a given pair 〈D,Yc〉,
i.e., they are not under the control of the experimenter, and
since FP = (AN − TN) and FN = (AP − TP ). In this
paper we will take M to be a measure of accuracy, and not
of inaccuracy, so we will always assume that higher values
are better.

One assumption we will make in the rest of this work
is that, for each test set 〈D,Yc〉, a cost vector Λ(D, c) =
(λ1, . . . , λ|D|) is known in advance, where λi > 0 denotes
the cost of misclassifying item di for class c, and where∑|D|
i=1 λi = |D|. This assumption is not restrictive. For in-

stance, we might want to impose that λi = 1 for all di ∈ D,
which covers the most frequent case in which all items have
the same importance, an assumption which underlies com-
mon evaluation measures such as accuracy, F1, and many
others; but other choices are possible, in which different doc-
uments are deemed of different importance3. Note that, as
we have specified, λi must be strictly higher than zero for all
items di; this formalizes the intuition that, when it comes
to evaluation, “no item is worthless”. In the rest of this
paper we will only address measures of the first type, i.e.,
characterized by the “λi = 1 for all di ∈ D” assumption;
anything we say can be straightforwardly extended to the
case in which this assumption is relaxed.

2.2 Measures for evaluating classification
Table 1 lists a number of “simple” evaluation measures for
binary classification that have been proposed or talked about
over the years, while Table 2 lists a number of “combined”
such measures.

“Simple” measures (called “partial measures” in [3]) in-
volve only two (adjacent) cells of the contingency table and
only one between FP and FN . “Combined” measures in-
volve more than two cells of the contingency table and both
FP and FN , and often result from the combination of two
simple measures, one involving FP and the other involving
FN . All of them are expressed as ratios, where the denom-
inator is a certain population of items and the numerator is
the part of that population that bears some significance to
the behaviour of the system. Since any plausible evaluation
measure must come to terms with the ability of the system
to avoid both false positives and false negatives, simple mea-
sures are usually not employed on their own but only as
building blocks of combined measures. Note that the same
measure may have several alternative names, due to the fact
that it may have independently originated in several fields

3In order to implement cost-sensitive classification [10] we
might want to impose, e.g., that λi = kp for all di ∈ AP and
λi = kn for all di ∈ AN , where kp and kn are two different

constants (normalized in such a way that
∑|D|
i=1 λi = |D|).

However, in Section 6.2 we will see a different method of
dealing with CSC, which does not require setting different
values of λi for the items in AP and AN .



Symbol Name Formula Note

ρ Recall (aka “Sensitivity”, “True Positive Rate”, “Hit Rate”)
TP

TP + FN
(1-FNR)

FNR False Negative Rate (aka “Miss Rate”)
FN

TP + FN
(1-ρ)

π Precision (aka “Positive Predicted Value”)
TP

TP + FP
(1-FDR)

FDR False Discovery Rate (aka “False Alarm Rate”)
FP

TP + FP
(1-π)

φ Fallout (aka “False Positive Rate”)
FP

FP + TN
(1-σ)

σ Specificity (aka “True Negative Rate”, “Inverse Recall”)
TN

FP + TN
(1-Yc)

NPR Negative Predicted Value (aka “Inverse Precision”)
TN

FN + TN
(1− ε)

ε Elusion [20, p. 55]
FN

FN + TN
(1-NPR)

Table 1: “Simple” measures computed from a con-
tingency table (alternative names common in disci-
plines other than IR are also given).

far from each other (e.g., IR, signal detection, diagnostic
testing).

2.2.1 “Simple” measures
Among the simple measures listed in Table 1, precision (π),
recall (ρ), fallout (φ), and specificity (σ) are historically the
most important. Recall has been the universally adopted
way to measure the ability of the system to avoid false neg-
atives. Instead, the ability of the system to avoid false pos-
itives has been measured in various ways (precision, fallout,
specificity); in IR fallout was the measure of choice in the
’60s, but was gradually replaced by precision, while other
fields such as e.g., epidemiology, have instead always relied
on specificity, the complement of fallout. Note that, while
fallout and specificity are independent of recall (since they
use non-overlapping parts of the contingency table), preci-
sion is not.

2.2.2 “Complex” measures
Accuracy (Acc), the fraction of classification decisions that
are correct, has been for many years the measure of choice
in machine learning and statistics, mostly because of its
simplicity. Accuracy is little used in text classification and
other endeavours characterised by high imbalance (typically
meaning that AP � AN), since in this case the trivial re-
jector trivially obtains high values; F1 is usually the mea-
sure of choice in these cases. As a measure of binary clas-
sification performance in diagnostic testing, Glas et al. [13]
proposed diagnostic odds ratio (DOR), defined as DOR =
(TP · TN)/(FP · FN); the same measure is then used in
[7] for measuring spam filtering performance. Actually, one
binary classification measure popular in the spam filtering
community is the logistic average misclassification percent-
age (LAM% – see e.g., [8]); differently from other measures
discussed in this paper, LAM% is a measure of ineffective-
ness, and not one of effectiveness, i.e., low LAM% values
are better. Other measures that have been put forward in
the past are average set precision (ASP ; see [14]), originally
proposed in the context of the TREC filtering track; the
Matthews Correlation Coefficient (MCC; see [18]), which
originated within biochemistry; and, of course, F1.

Symbol Formula

Acc
TP + TN

|D|

DOR
TP TN

FN FP

LAM%

1

log

1
2

log
FP FN

TP TN

1− 1
2

log
FP FN

TP TN

ASP TP 2

AP PP

MCC
(TP TN)− (FP FN)

(AP AN (TP + TN) (FP + FN))
1
2

F1
2TP

2TP + FP + FN

Table 2: Common “combined” measures computed
from a contingency table.

3. AXIOMS FOR CLASSIFICATION
We approach the issue of how to evaluate binary classifica-
tion in an axiomatic way, i.e., by (a) arguing for a number
of properties that an evaluation measure for binary classifi-
cation should satisfy, (b) studying existing evaluation mea-
sures in terms of whether they satisfy these properties or
not, and possibly (c) synthesizing new measures that do sat-
isfy them. An advantage of this method is that research on
evaluation measures may proceed, rather than by challeng-
ing previously proposed measures, by challenging previously
proposed axioms, and by possibly arguing in favour of new
ones. Once the scientific community has converged on a
given set of axioms thanks to this process, the suitability of
existing measures is immediate to ascertain, and the synthe-
sis of measures that satisfy this set is made easier.

3.1 The axioms
We argue that a function M(D,Yc, hc) that measures the
effectiveness of binary classifiers hc should obey the fol-
lowing axioms. We will often write M(Yc, hc) instead of
M(D,Yc, hc) when the first argument is clear from the con-
text.

Axiom 1. Strict Monotonicity (MON). For any test
set 〈D,Yc〉, and for all classifiers hc and h′c such that h′c dif-
fers from hc only for the label attributed to a single item d ∈
D, wrong for hc and correct for h′c, it holds that M(Yc, hc) <
M(Yc, h′c).

MON enforces the notion that in no case the evaluation
measure can be indifferent to the fact that a given classifica-
tion decision is correct or wrong; that is, the monotonicity
of M should be strict. MON is a direct consequence of the
assumption (see Section 2.1) that for no item di the cost of
misclassifying di can be zero.

Note that what MON says in practice is that, given D
and Yc, the measure should be sensitive to both the number
FP of false positives and the number FN of false negatives.
It does not state that it should be sensitive to the values



of precision and recall; these latter are derived notions (i.e.,
functions of the contingency table), while FP and FN are
primitive elements of the same table.

In [3] MON is called the “growing quality constraint”. A
consequence of MON is that M can achieve its maximum
value only when the predicted label equals the actual label
for all di ∈ D (i.e., when hc is the “perfect classifier”). [3]
calls this the “best system constraint”; we do not list this as
a separate axiom since it is a direct consequence of MON,
and since we deem MON mandatory anyway. Analogously,
a consequence of MON is that M can achieve its minimum
value only when the predicted label is different from the
actual label for all items in the set (i.e., when hc is the
“pervert classifier”).

Axiom 2. Continuous differentiability (CON). For any
test set 〈D,Yc〉, M is a continuously differentiable function
of TP and TN .

We have argued in Section 2.1 that M is essentially a func-
tion of TP and TN ; CON states that it should be a member
of the class C1 of continuously differentiable functions. That
is, both M and its first derivative should be continuous in
both TP and TN . To see the rationale of this, imagine
that TP and TN were “masses” instead of “counts”; this re-
quirement has the goal of ensuring that M should behave
“reasonably”, i.e., respond minimally (i.e., smoothly) to min-
imal variations of TP and TN , throughout the domain on
which it is defined. The intuition behind this axiom is that
we want small variations in the contingency table to bring
about variations in the value of M that are small themselves.

Axiom 3. Strong Definiteness (SDE). M is defined
for any test set 〈D,Yc〉 and for any classifier hc.

The rationale of SDE is fairly obvious, i.e., we want our
evaluation measure to always return an answer insofar as
the situation being evaluated (the test set, the classifier) is
a legitimate one.

Axiom 4. Weak Definiteness (WDE). For any test set
〈D,Yc〉, and for any classifiers hc and h′c, M is defined for
hc iff it is defined for h′c.

This is a weaker definiteness requirement than SDE, which
acknowledges the fact that sometimes M might not be de-
fined (e.g., because the measure is defined as a ratio and
the denominator is zero). The rationale of WDE is that,
when and if the evaluation function is not defined, it must
be such because of the problem itself, and not because of
the classifier we want to evaluate. That is, if the function is
defined for one classifier, it must be defined for all classifiers,
since we cannot afford to comparatively evaluate classifiers
defined on the same class c and find out that they are incom-
parable. This is well explained by Robertson in the context
of binary retrieval [22]:

(...) Such difficulties are almost bound to occur
if ratios are used, and there is no hope of com-
paring results if ratios are not used. (...) But I
would like to distinguish between the two cases.
The case [in which there are no actual positives]
refers to a particular type of question, and does
not depend on the test results. If such questions
are used to test systems, they can be treated sep-
arately from the rest. But the case [in which

there are no predicted positives] might occur in
answer to any question; to leave such cases out
of the averages would be to distort the results.

Axiom 5. Fixed Range (FIX). The set of values [α, β]
on which M ranges is fixed, and independent of the test set
〈D,Yc〉.

The rationale of FIX is that, in order to be able to intu-
itively judge whether a given value of M means high ac-
curacy or low accuracy, we need to known what values M
ranges on, and these values must be independent of the prob-
lem setting. That this range is constant regardless of item
set D and class c is a necessary condition for us to be able
to immediately interpret the meaning of a given value of M .
(it is not a sufficient condition, though; more on this in the
next paragraphs)

Axiom 6. Robustness to Chance (CHA). It holds that
E[M(Yc, hrandc )] = γ, where E[·] indicates “expected value”
and γ is a constant independent of the test set 〈D,Yc〉.

CHA says that the expected value of M for the random
classifier should always be the same, irrespective of class
frequency and other factors. Its rationale is allowing the
experimenter to fully appreciate a result by correctly placing
it into the context of what the random classifier is expected
to return. In other words, once that for a given classifier hc
we are told that M(Yc, hc) = a, we should be in a position to
know how much of a is due to the chance agreement between
test set and prediction, and how much is instead due to the
true insight of hc. CHA says that a good measure should
allow to easily factor out, or discount, the chance effect from
one’s results.

Axiom 7. Robustness to Imbalance (IMB). It holds
that M(Yc, haccc ) = k1 and M(Yc, hrejc ) = k2 for any test set
〈D,Yc〉 such that AP > 0 and AN > 0, where k1 and k2 are
two constants independent of 〈D,Yc〉.

The rationale of IMB is similar to that of CHA: trivial
classifiers should obtain the same fixed values k1 and k2
for all test sets, so that the effectiveness M(Yc, hc) of a
given classifier is actually determined by where it falls in
the [max(k1, k2), β] interval, rather than in the [α, β] in-
terval discussed for FIX. If k1 and k2 are the same for all
grounds truths, the results returned by M are immediately
interpretable, and the experimenter may more easily appre-
ciate the real effectiveness of a classifier.

That k1 and k2 are the same for all grounds truths means
in particular that they are the same for every level of imbal-
ance. Therefore, a measure that satisfies IMB can be mean-
ingfully used for balanced and imbalanced datasets alike, and
the experimenter can use it without worrying what the level
of imbalance in the test set is. This is a striking contrast
to the current situation, in which accuracy tends to be con-
sidered the measure for balanced sets, while F1 tends to
be considered the measure for imbalanced sets, a dichotomy
that seems unscientific, since it dodges the question as where
the threshold between balance and imbalance lies.

The case in which AN = 0 is obviously excluded from
consideration in this axiom, since in this case the trivial
acceptor haccc is indeed the perfect classifier hperfc , and thus
needs (see the discussion for the MON axiom) to be given
the highest possible score. By the same token, when AN = 0



the trivial rejector hrejc is the pervert classifier hpervc , and
thus needs to be given the lowest possible score. Analogous
arguments apply to the AP = 0 case.

Axiom 8. Symmetry (SYM). For any test set 〈D,Yc〉
and for any classifier hc, M(Yc, hc) = M(Yc, hc) holds.

SYM enforces the notion that the evaluation measure should
be invariant with respect to switching the roles of the class
c and its complement c. This is desirable because it is not
always the case that binary classification is naturally under-
stood as the choice between a class and “its complement”
(e.g., webpages about nuclear waste disposal vs. webpages
not about it), where members of the first are naturally in-
terpreted as “the positives”. Sometimes the natural inter-
pretation is a choice between two classes of equal standing
(e.g., Shakespeare vs. Marlowe; Endorsements vs. Rebuttals;
ProDemocrat vs. ProRepublican; FakeReviews vs. Authenti-
cReviews; Spam vs. Legitimate; etc.). In this case, it would
be undesirable for the measure to return different results de-
pending on which of the two is taken to be “the class” and
which is taken to be “the complement of the class”.

3.2 Discussion
SDE, WDE and CON deserve some comment, as they are
mutually dependent. In a sense, all measures can be made to
satisfy SDE and WDE by stipulating, for the cases in which
they are (strongly or weakly) undefined, specific values that
they should take up. For instance, the equation that defines
F1 (see Table 2) is such that F1 is undefined when all of
TP , FP , FN are 0, which means that F1 would satisfy
neither SDE nor WDE; in this case we may simply stipulate
that, say, when TP = FP = FN = 0 then F1 = 1, so
that SDE and WDE are satisfied. The problems with this
approach are that (a) when researchers propose or use an
evaluation measure, they often omit to say what its output
values are meant to be for the input values that make the
function undefined, and (b) even when these output values
are specified, they may generate points of discontinuity, i.e.,
make CON unsatisfied (see the discussion on F1 and CON
in Section 4). For the reasons above, in the next sections
we will mostly concentrate on axioms other than SDE and
WDE, since those other axioms do not have easy “fixes” as
SDE and WDE.

One might think that the emphasis on axioms such as
SDE, WDE, CON is excessive, since failure to satisfy them
usually derives from the behaviour of the function in limit-
ing cases, e.g., when TP = FP = FN = 0 and TN = |D|.
We think that this emphasis is not excessive, since these lim-
iting cases occur quite frequently in practice. For instance,
in the well-known MLMCC Reuters-21578 collection4, out
of the 115 classes normally used for experimentation by re-
searchers, no less than 25 are such that AP = 0. When
results are macroaveraged (i.e., expressed as an unweighted
average across the classes), Reuters-21578 results are deter-
mined for ≈ 21.7% (since 25/115 ≈ 21.7) by classes such
that AP = 0. In this, Reuters-21578 is not an exception,
since large classification schemes usually exhibit a power-
law behaviour, i.e., they typically consists of a few high-
frequency classes and very many low- or very-low-frequency
classes.

Another aspect that deserves mentioning is that not all
axioms are equally desirable, since the motivations that lie

4http://bit.ly/1F8AFcO

behind these axioms are not all equally compelling. For in-
stance, Axiom 8 (SYM) is desirable but probably not of
fundamental importance, while Axiom 1 (MON) is of so
fundamental importance as to invalidate, in our opinion, a
measure that does not satisfy it. However, we will not at-
tempt any classification of these axioms as “important vs.
unimportant”, since this is arguably a matter of degree.

4. PROPERTIES OF THE F1 MEASURE
The F1 measure is the most widely adopted evaluation met-
ric for binary classification. In binary text classification
F1 has been the dominant measure ever since the recall-
precision breakeven measure was deprecated in the late ’90s 5.
The use of F1 in text classification was first proposed in [16]
(see also [15] for more on F1 in text classification).
F1 is based on the Eα measure, introduced by van Rijs-

bergen [27] and defined as

Eα = 1− 1

α
1

π
+ (1− α)

1

ρ

0 ≤ α ≤ 1 (1)

where α is a parameter whose role is to specify the rela-
tive importance of precision and recall; a value α = 1/2 at-
tributes them equal importance. Note that Eα is a measure
of error, not of accuracy, so lower values of Eα are better.
F1 is defined as

F1 = 1− E 1
2

=
2πρ

π + ρ
=

2TP

2TP + FP + FN

=
2TP

AP +AN + TP − TN

(2)

where the last passage makes explicit the dependence of F1

on the two variables (TP and TN) and two constants (AP
and AN) of our problem.

We will now discuss how F1 copes with respect to some of
the axioms of Section 3.

Property 4.1. F1 does not satisfy Axiom 1 (MON).

Proof. Let us examine the case in which TP = 0 and
FN > 0. In this case F1 = 0 regardless of the values of
FP ; e.g., TN = AN and FP = 0 (all the actual negatives
have been classified correctly) and TN = 0 and FP = AN
(all the actual negatives have been misclassified) return the
same result, i.e., F1 = 0. This shows that F1 fails to comply
with Axiom 1.

Property 4.2. F1 does not satisfy Axiom 2 (CON).

Proof. As from its definition, F1 = 1 when TP = FN =
FP = 0. However, when TP = FN = 0, it holds that

lim
FP→0

2TP

2TP + FP + FN
= 0

which shows that F1 is discontinuous at TP = FN = FP =
0, which proves our proposition. That TP = FN = FP = 0
is a problematic case for F1 is also shown by the fact that

∂F1

∂TP
=

2(AP +AN − TN)

(AP +AN + TP − TN)2

∂F1

∂TN
=

2(AP +AN + TP )

(AP +AN + TP − TN)2

(3)

5See Footnote 19 of [23] for a discussion of this point.



are both undefined when (AP +AN + TP − TN) = 0, i.e.,
when TP = AP = 0 and TN = AN = |D|, which proves
our proposition again.

This problem is reflected in the fact that what should
F1 be taken to return when TP = FP = FN = 0 and
TN = |D| is controversial. Some researchers (see e.g., [11])
maintain that in this case F1 should evaluate to 1, since
the classifier has classified all items correctly; incidentally,
unless this is the case, F1 does not satisfy MON. Other
researchers have F1 evaluate to 0 (e.g., [17]), likely on the
grounds that, when ρ = 0, F1 returns 0 for all other values of
TN ; note that this latter is a “continuity argument”, applied
to a situation in which (as we have seen) F1 is not contin-
uous. Yet other researchers (e.g., [15]) maintain that more
than one value could be legitimate. To make matters worse,
most other researchers do not actually specify, when using
F1, how they handle this case, which makes the results they
report (especially those framed in terms of “macroaveraged
F1” in MLMCC) difficult to interpret and to compare with
other results on the same datasets.

Property 4.3. F1 does not satisfy Axiom 6 (CHA).

Proof. It is easy to check that different ground truths
generally give rise to different values of E[F1(Yc, hrandc )].
For instance, assume that 〈D,Yc〉 is such that AN = 0; if
|D| = 1 then E[F1(Yc, hrandc )] = 0.500, while if |D| = 100
then E[F1(Yc, hrandc )] ≈ 0.612.

Property 4.4. F1 does not satisfy Axiom 7 (IMB).

Proof. Assume AP > 0 and AN > 0. For the trivial
acceptor haccc it holds that TP = AP , FP = AN , FN = 0,
which means that F1(Yc, haccc ) = 2AP/(2AP + AN); this
is not constant across all test sets, since it depends on the
relative cardinalities of AP and AN6.

The fact that F1 does not satisfy IMB has undesirable
consequences in terms of the interpretability of its results.
For instance, is an F1 value of 0.70 “good”? Most prac-
titioners would answer “Yes”, and this is indeed a good
result if the relative frequency of class c is, say, 0.01 (in
this case, F1(Yc, haccc ) = 2AP/(2AP + AN) ≈ 0.01), but
cannot be considered a good result when the prevalence
(i.e., relative frequency) of c is, say, 0.60, since in this case
F1(Yc, haccc )=2AP/(2AP + AN) = 0.75; i.e., in the latter
case F1 = 0.70 is well below the value obtained by a trivial
classifier on the same data! Note that cases in which the
prevalence of the class is 0.60 are not uncommon (as in all
the cases mentioned at the end of Section 3.1), and that a
perfectly balanced problem (i.e., when the relative frequency
of c is 0.5) gives rise to F1(Yc, haccc ) ≈ 0.666.

The fact that F1 does not satisfy IMB is extremely sur-
prising, since F1 is usually considered robust to imbalance,
and is indeed the measure of choice for imbalanced binary
classification. The reason of this apparent contradiction is
that F1 is considered robust to imbalance simply because,
in the presence of imbalanced data, haccc and hrejc return
“low” values. However, (i) this occurs only when c is the
minority class (see below about F1 not satisfying Axiom 8),
(ii) the values returned by haccc and hrejc are not constant,
and strongly depend on the prevalence of c, and (iii) these

6F1(Yc, hrejc ) is instead a constant independent of 〈D,Yc〉,
since it is always 0 whenever AP > 0; in fact, when TP =
FP = 0 and FN = AP then F1 = 0

AP
= 0.

values increase steeply as the prevalence of c increases. In
imposing IMB we are stating that, for a measure to be ro-
bust to imbalance, it is not enough that haccc and hrejc return
low values when the prevalence of c is low: the most impor-
tant fact is that these values must always be the same, and
independent of the prevalence of c.

Property 4.5. F1 does not satisfy Axiom 8 (SYM).

Proof. In switching from hc to hc and from Yc to Yc, TP
and TN switch their roles, as do FP and FN . That F1 does
not satisfy SYM is thus shown by simply observing that

2TP

2TP + FP + FN
6= 2TN

2TN + FN + FP

4.1 Other measures for classification
Like F1, all of the measures listed in Table 2 fail to satisfy
some fundamental axiom. Some examples are listed below.

Property 4.6. ASP , DOR, LAM% do not satisfy Ax-
iom 1 (MON).

Proof. Similarly to F1, if TP = 0 and FN > 0 then
ASP , DOR, LAM% take up values that are independent of
how the actual negatives distribute across the false positives
and the true negatives. While this suffices to prove our
statement, note that for DOR and LAM% the same also
holds when TN = 0; LAM% is also such that, when either
FP or FN are 0, its value is the same irrespective of the
value of the other among FP and FN .

Property 4.7. ASP , MCC and LAM% do not satisfy
Axiom 2 (CON).

Proof. The partial derivatives of ASP with respect to
variables TP and TN are

∂ASP

∂TP
=
TP (2AP + 2AN − 2TN + TP )

(AP +AN + TP − TN)2

∂ASP

∂TN
=

TP 2

(AP +AN + TP − TN)2

(4)

These two derivatives are both undefined when (AP +AN+
TP − TN) = 0, i.e., when TP = AP = 0 and TN = AN =
|D|, which shows that ASP is not in C1.

Concerning LAM%, both derivatives ∂LAM%/∂TP and
∂LAM%/∂TN (not reported here since they are too com-
plex) are undefined for both TP = 0 and TN = 0, which
shows that LAM% is not in C1

Concerning MCC, both ∂MCC/∂TP and ∂MCC/∂TN
(also not reported here since they are too complex) are un-
defined for TP + TN = |D|, which shows that MCC is not
in C1.

Property 4.8. ASP and MCC do not satisfy Axiom 3
(SDE).

Proof. ASP is undefined for TP = AP = 0, since in this
case it evaluates to 0

0
. MCC is undefined for either AP = 0

or AN = 0, since in this case it evaluates to 0
0
.

Property 4.9. DOR and LAM% do not satisfy Axiom
4 (WDE).

Proof. Assume we deal with a certain 〈D,Yc〉 such that
AP > 0 and AN > 0. In this case (a) DOR is defined



for any classifier hc such that FP > 0 and FN > 0, but
is not defined for all classifiers h′c such that FP = 0 or
FN = 0; and (b) LAM% is defined for most cases in which
both TP > 0 and TN > 0 but is undefined for all cases in
which either TP = 0 and TN = 0.

Property 4.10. Accuracy and ASP do not satisfy Ax-
iom 7 (IMB).

Proof. For the trivial acceptor haccc , since AP = TP and
TN = 0, then Acc = TP+TN

|D| = AP
|D| , and since it is also

true that PP = |D|, then ASP = TP2

AP PP
= AP
|D| . So, in

this case both accuracy and ASP coincide with the relative
class frequency AP

|D| of the class; therefore, in general they

are different for different test sets.
Note that, concerning DOR and LAM%, we cannot even

say whether they satisfy IMB or not, since for haccc and hrejc
they are not even defined.

5. PROPERTIES OF THE K MEASURE
In the previous sections we have seen that all of the measures
listed in Table 2, including F1, are unsatisfactory, since they
all fail to satisfy one or more fundamental axioms among
the ones we have argued for. As a measure of effectiveness
for binary classification we then discuss K, which we define
as

K =

{
ρ+ σ − 1 if AP > 0 and AN > 0
2σ − 1 if AP = 0
2ρ− 1 if AN = 0

(5)

where ρ = TP/AP denotes recall and σ = TN/AN denotes
specificity. That is, when recall and specificity are both de-
fined, K is a rescaled sum of recall and specificity; when one
of them is not defined, K coincides with a rescaled version
of the other. K is not entirely new, since it is a variant of

• Youden’s index [29], or informedness [21], defined as
(ρ+ σ − 1);

• balanced accuracy [4, 12, 24], defined as (ρ+ σ)/2.

The main difference between K and these measures is that
the proposers of the latter do not discuss exactly how to
extend them to the cases in which either ρ or σ are unde-
fined; how these extensions are accomplished impacts on the
axioms that the measure does or does not satisfy.

Let us analyse the behaviour of K in the three cases listed
in Equation (5). When AP > 0 and AN > 0 we have

K = ρ+ σ − 1 =
TP AN + TN AP

AP AN
− 1 (6)

When there are no positives (AP = 0) recall is undefined; in
this case we let K default to specificity, since when there are
no positives the system’s ability to avoid false negatives is a
non-problem, and the best the system can do is to correctly
recognize all the negative examples as such, i.e., maximize
specificity. Similarly, when there are no negatives (AN = 0)
specificity is undefined, and we let K default to recall.

An evaluation measure for binary classification must re-
ward the ability of the system to avoid false positives and
the ability of the system to avoid false negatives. Similarly
to F1, K measures the ability of the system to avoid false
negatives by means of recall; differently from F1, K mea-
sures the ability of the system to avoid false positives by
means of specificity (F1 measures it by means of precision).

Let us now check how K behaves with respect to the ax-
ioms laid out in Section 3.1.

Property 5.1. K satisfies Axiom 1 (MON).

Proof. Assume that h′c differs from hc only for the label
attributed to a single item d ∈ D, wrong for hc and correct
for h′c. If d is a false negative for hc then it is a true positive
for h′c, which means that ρ(hc) < ρ(h′c) and σ(hc) = σ(h′c);
if d is a false positive for hc then it is a true negative for
h′c, which means that ρ(hc) = ρ(h′c) and σ(hc) < σ(h′c). In
both cases it derives that K(Yc, hc) < K(Yc, h′c).

Property 5.2. K satisfies Axiom 2 (CON).

Proof. If AP = 0 (resp., AN = 0), then K = (2σ− 1) and
∂K/∂TN = 2/AN (resp., K = (2ρ − 1) and ∂K/∂TP =
2/AP ), which is a constant. If AP > 0 and AN > 0, then
∂K/∂TP = 1/AP and ∂K/∂TN = 1/AN , both also con-
stants. This proves that K is in C1.

Property 5.3. K satisfies Axiom 3 (SDE).

Proof. Trivial.

Property 5.4. K satisfies Axiom 4 (WDE).

Proof. Follows from SDE, since SDE strictly implies
WDE.

Property 5.5. K satisfies Axiom 5 (FIX).

Proof. If AP = 0 (resp., AN = 0), then K = (2σ − 1)
(resp., K = (2ρ − 1)) ranges on the [-1,+1] interval. If
AP > 0 and AN > 0, then K = ρ+ σ − 1 ranges on [-1,+1]
since both ρ and σ range on [0,1] and are independent. In
particular, the perfect classifier has a value of K = 1, since
ρ = 1 and σ = 1, and the pervert classifier has a value of
K = −1, since ρ = 0 and σ = 0. So, K always ranges on
[-1,+1] irrespectively of the test set 〈D,Yc〉.

Property 5.6. K satisfies Axiom 6 (CHA).

Proof. For every test set 〈D,Yc〉, for every classifier hc
there is a unique classifier h′c such that hc(d) = −h′c(d); this
latter is such that K(Yc, hc) = −K(Yc, h′c), so the mean
of the K scores of hc and h′c is 0. Since hc and h′c are
equiprobable, it derives that E[K(Yc, hrandc )] = 0 for each
test set 〈D,Yc〉.

Property 5.7. K satisfies Axiom 7 (IMB).

Proof. If AP > 0 and AN > 0, then K(Yc, haccc ) = 0, since
ρ(haccc ) = 1 and σ(haccc ) = 0, while K(Yc, hrejc ) = 0, since
ρ(hrejc ) = 0 and σ(hrejc ) = 1.

Property 5.8. K satisfies Axiom 8 (SYM).

Proof. This is shown by noting that σ(hc) = ρ(hc) and
ρ(hc) = σ(hc), and by noting that K is symmetric with
respect to ρ and σ.

5.1 Discussion
We have seen that, while F1 fails to comply with a number
of axioms (MON, CON, CHA, IMB, SYM), K satisfies
all the eight axioms we have argued for in Section 3. While
this shows the superiority of K over F1, there are additional
reasons why the former should be preferred to the latter:

1. K is based on two independent quantities (recall and
specificity), while F1 is based on two dependent quan-
tities, precision and recall (one cannot increase recall



without also increasing precision7), which is odd. That
recall and specificity are independent can be seen by
the fact that they are computed on two non-overlapping
halves of the contingency table (TP and FN for recall,
TN and FP for specificity), while recall and precision
are computed on two overlapping halves (TP and FN
for recall, TP and FP for precision).

2. K takes all the elements of the contingency table into
account, while this is not true for F1, which seems
especially unsuitable when c and c are two classes of
equal standing (e.g., ProDemocrat vs. ProRepublican).
For instance, given two contingency tables t1 = 〈TP,
FP, FN, TN〉 and t2 = 〈TP, FP, FN, 1000000 ∗ TN〉,
F1 is the same for both t1 and t2 (which is odd), while
this is not true for K.

3. It is linear. It is thus easy (much easier than, say, F1

or LAM%) to use as a loss function that gets explicitly
minimized within supervised learning algorithms.

4. It is extremely simple. This means it can be easily
understood even by people with little mathematical
background (e.g., company managers), for whom even
the very notion of “harmonic mean” present in the def-
inition of F1 is esoteric.

6. EXTENDING K TO SLC, CSC, AND OC
We now turn our attention to classification problems other
than binary classification. Classification problems may be
ordered according to a “specialization hierarchy”, where

• Binary classification (BC) is a special case of single-
label classification (SLC). SLC is defined as the task
of assigning to each item exactly one class from a set
C = {c1, ..., c|C|}, where |C| > 1. BC corresponds to

the |C| = 2 case8, while single-label multi-class classi-
fication (SLMCC) corresponds to the |C| > 2 case.

• Both SLC and ordinal classification (OC) are special
cases of cost-sensitive classification (CSC), defined as
the task of assigning to each item exactly one class
from a set of classes C = {c1, ..., c|C|}, where |C| > 1
and where a set of pairwise distances (or costs) ∆(ci, cj)
≥ 0 between classes is defined such that

– ∆(ci, ci) = 0 for all ci ∈ C
– ∆(ci, cj) quantifies the cost of misclassifying into
ci an item which actually belongs to cj .

The set of ∆(ci, cj) values is usually referred to as the
cost matrix. Accordingly,

– SLC is the case in which ∆(ci, cj) = 1 for all
ci, cj ∈ C, i 6= j;

7Assume a classifier h′c identical to hc except it has one less
false negative and one more true positive; in moving from hc
to h′c, recall has increased, but precision has also increased,
since TP has increased and FP is unmodified.
8Multi-label multi-class classification (MLMCC) is defined
as the task of assigning to each item zero, one, or several
classes from a set of classes C = {c1, ..., c|C|}, where |C| > 1.
As such, MLMCC is equivalent to BC (at least from the
standpoint of evaluation), since it corresponds to performing
BC independently for each of the classes in C. We will thus
not consider it a separate task.

– OC is the case in which |C| > 2 and, for all ci, cj ∈
C such that i < j, it holds that

∆(ci, cj) = ∆(cj , ci)

∆(ci, cj) =

j−1∑
k=i

∆(ck, ck+1)
(7)

A problem with current evaluation measures for classifica-
tion is that they do not reflect the specialization hierarchy of
classification problems. For instance, while F1 is a standard
measure used for evaluating binary classification, there is no
known equivalent of F1 for CSC or OC. In the following we
define such equivalent for K, i.e., extend K to cover the gen-
eral CSC case (hence the SLMCC and OC cases too); this
means that K can be used as a unifying evaluation measure
for all types of classification.

6.1 The SLC case
We start by addressing SLC. In order to discuss this case,
let’s fix some notation. By TPj , FPj , FNj , and TNj we will
indicate the numbers of true positives, false positives, false
negatives, and true negatives, for class cj ; for instance, FNj
will indicate the number of items that belong to class cj and
were instead predicted to belong to some class different from
cj . APj and ANj are defined accordingly.

Let us define the indicator variable

ξj =
{

1 if APj > 0
0 if APj = 0 (8)

and let us define recall for cj (indicated as ρj) as

ρj =

{
TPj
APj

if APj > 0

undefined if APj = 0
(9)

Note that, in the binary case, σ(hc) is equivalent to ρ(hc),
hence K may be viewed as (a rescaled version of) the sum
of the recall values for the two binary classes c and c. This
suggests a natural extension of K to the SLC case, as

K =
|C|
|C| − 1

∑
cj∈C,ξj=1 ρj∑
cj∈C ξj

− 1

|C| − 1
(10)

which is a rescaled variant of macroaveraged recall. It is
easy to observe that, when |C| = 2, Equation (10) defaults
to Equation (5). It is also easy to check that all the axioms
discussed in Section 3, that we proved to hold for the “bi-
nary” version of K, also hold for this “multiclass” version.

6.2 The CSC case and the OC case
We may extend K to the general cost-sensitive classification
case (and hence to the ordinal classification case). CSC (see
e.g., [9, 10]) is important in many real-life applications (e.g.,
spam filtering, medical diagnosis) in which some classifica-
tion errors have more serious consequences than others. OC
(also known as ordinal regression – see e.g., [6, 26]) is also
important due to its key role in the social sciences, where
ordinal (i.e., discrete) scales are often used to elicit human
judgments and evaluations from respondents or interviewees.

We extend K to deal with cost-sensitive classification by
defining a notion of recall that is sensitive to the error E(di)
made in misclassifying an item di into a class hc(di) that
has a certain distance ∆(hc(di),Yc(di)) from its true class
Yc(di). E(di) may be one of the metrics popular in ordinal



classification, such as absolute error

AE = ∆(hc(di),Yc(di))

or squared error

SE = ∆(hc(di),Yc(di))2

Let us define recall on class cj as

ρj =


APj∑
i=1

(1− E(di)

max(Ej)
)

APj
if APj > 0

undefined if APj = 0

(11)

Here, max(Ej) is the maximum possible error that could be
made in misclassifying an item whose true class is cj (i.e.,
the error that we make in picking the class most distant from
true class cj). It can be easily checked that ρj is 1 if and only
if all items belonging to cj are correctly classified into cj , and
is 0 if and only if all items belonging to cj are misclassified
with the maximum possible error, i.e., into the class most
distant from cj . As such, ρj is a natural extension of the
notion of recall as we know it from binary classification.

Example 6.1. Assume that absolute error AE is our mea-
sure of error E, that C = {c1, ..., c5}, that ∆(ci, ci+1) = 1
for all i ∈ {1, 2, 3, 4}, that items d1, d2, d3 all have true class
c3, that d1 is correctly classified into c3, that d2 is misclas-
sified into c2, and that d3 is misclassified into c1. Assume
that item d4 has true class c4 and is misclassified into c3.

The contribution of d1 to ρ3 is (1 − 0) = 1, while the
contribution of d2 is (1− 1

2
) = 1

2
and the contribution of d3

is (1− 2
2
) = 0; the contribution of d4 to ρ4 is (1− 1

3
) = 2

3
.

While both d2 and d4 are misclassified into a class with
distance 1 from their true class, the error made for d2 is
considered more severe than that made for d4, since error is
evaluated relative to the maximum possible error, which is
different for different classes cj.

For CSC we stick to the definition of K, unchanged, as given
in Equation (10); the difference with the SLC case is thus in
the notion of recall adopted (Equation (11) instead of Equa-
tion (9)), and not in the way of summing the class-specific
values of recall, which remains the same as in standard SLC.

It is immediate to check that if distances have all the same
magnitude, i.e., ∆(ci, cj) = 1 for all ci, cj ∈ C, i 6= j, as in
standard SLC, Equation (11) defaults to Equation (9). It is
also easy to check that all the axioms that we have shown to
hold for the binary and SLC versions of K, also hold for the
CSC version (and, as a consequence, for the OC version).

7. RELATED WORK
This axiomatic approach to evaluating evaluation measures
is not new in IR. For instance, [2] studies measures for eval-
uating clustering systems axiomatically, while [19] does the
same for measures for evaluating ad hoc search. Sokolova
and Lapalme [25] discuss properties of classification mea-
sures, but focus on properties of invariance across test sets
characterised by different sets D, which is hardly of interest
to the present context.

More recently, in discussing where the “Frontiers, Chal-
lenges, and Opportunities for Information Retrieval” lie, the
SWIRL 2012 participants [1, p. 20] called for the develop-
ment of axiometrics for IR (see also [5]), i.e., axiomatically
defined evaluation metrics. It is exactly axiometrics for clas-
sification that we are looking at here. The effort closest in

spirit to the present one is [3], which proposes axiomatic
studies of evaluation measures for filtering systems (espe-
cially focusing on cost-sensitive measures); since filtering is
an instance of classification, [3] is relevant to the present
work. In [3] the authors claim that the main difference be-
tween metrics is how haccc , hrejc , hrandc are evaluated, and
only identify two axioms that they argue should be satisfied
by any evaluation measure; these axioms are MON plus
another weaker axiom, strictly entailed by MON, which
says that only the perfect classifier can obtain the highest
M score. One further difference between [3] and the present
work is that [3] has a descriptive intent, i.e., describes a num-
ber of axioms but does not necessarily argue that a measure
should satisfy them; our work has a normative character in-
stead, i.e., we describe a number of axioms and argue that
a worthwhile measure should satisfy them.

We should recall that an early mention of the axiomatic
approach to evaluating binary retrieval is to be found in
van Rijsbergen’s work [27, 28], where the author discusses a
number of formal properties (that collectively characterize
“additive conjoint structures”) that, as he argues, combina-
tions of precision and recall should satisfy. The author goes
on to propose one such combination (the Eα measure of
Equation 1) but does not prove that it indeed satisfies the
said formal properties. Binary retrieval and binary classifi-
cation are strongly related, so van Rijsbergen’s work is in-
deed relevant to our quest. However, our approach is more
general than his, since he focuses on properties that a com-
bination of two simple measures (precision and recall, in his
case) should satisfy, while the properties we study view the
evaluation measure as a direct function of the contingency
table, without postulating (actually: without lending impor-
tance to) the presence of intermediate simple measures.

8. CONCLUSIONS
We have proposedK (a variant of“Youden’s index”and“bal-
anced accuracy”) as an evaluation measure for binary clas-
sification. K has a number of interesting properties. The
perfect classifier obtains K = 1, the pervert classifier ob-
tains K = −1, the trivial acceptor and the trivial rejector
both obtain K = 0, and the expected value of the random
classifier is always K = 0; all of these hold irrespectively of
class prevalence, which makes classification results expressed
in terms of K easily interpretable. K is defined on all the
cells of the contingency table, which makes it suitable for
addressing both balanced and imbalanced test sets; in par-
ticular, this avoids the problem of defining what counts as a
“balanced” test set. One advantage of K is that it smoothly
extends to multi-label multi-class classification, single-label
multi-class classification, cost-sensitive classification, and or-
dinal classification. K has the additional virtues of simplic-
ity, which makes it easily interpretable by non-initiates, and
linearity, which makes it easy to directly optimize by super-
vised learning algorithms.

We have obtained K via an “axiomatic” study of the prop-
erties that a measure for classification should have. This
study has also shown that F1, the currently standard eval-
uation measure for binary classification, is flawed, since it
does not satisfy several properties that should intuitively
hold for any satisfactory measure; of particular importance
is the fact that F1 is not monotonic and is not continuously
differentiable. This hints at the power of the axiomatic ap-
proach, which we argue should be used more and more for
scrutinizing the accepted wisdom in effectiveness evaluation.
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[2] E. Amigó, J. Gonzalo, J. Artiles, and F. Verdejo. A
comparison of extrinsic clustering evaluation metrics
based on formal constraints. Information Retrieval,
12(4):461–486, 2009.
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