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Abstract

Images are a communication medium, hence
objects of a linguistic nature having a form and
a content. The form of an image is the image
appearance and is understood as depicting a
scene, the image content. The relationship be-
tween the form of an image and its content is
established through a process of interpretation,
capturing the meaning of the image form. Any
information need on images can, and indeed
has to, be seen as addressing either the image
form, or its content, or the relationship between
them. Consequently, any general, domain inde-
pendent image retrieval facility should be based
on a model supporting all these aspects of im-
ages. An image retrieval model, based on clas-
sical logic, is proposed which fulfills this basic
requirement.

1 Introduction

Information systems offering images serve nowadays an
increasingly wide community of users. In order to cope
with the requirements of their users, these systems must
provide a sophisticate retrieval capability, which, while
abstracting implementation details, must accommodate
the many forms of image retrieval independently stud-
ied in various areas of computer science, ranging from
pattern matching to semantic information processing.

Certain users of an image base (IB for short) would
like to retrieve images by posing images themselves as
queries and having the system performing a match, cap-
turing a similarity criterion. Other users would want to
query the IB at a more abstract level, by specifying con-
ceptual properties of the individuals that occur in them.
At an intermediate level, retrieval could be performed
on spatial relationships between individuals depicted in
images.

In order to incorporate in a clean and principled way
all these forms of retrieval, an image retrieval model must
support a universal representation of images. We claim
that this representation is to be based on a linguistic
understanding of images, providing the distinction be-
tween the form and the content of images and a relation
between these, reflecting the notion of semantics.

We propose a model for image retrieval which views
images as 3-level objects, comprised of the form, content,
and mapping level. The form level is a model of the im-
age seen as a combination of colored regions. The con-
tent level is a propositional representation of the scene
depicted by the image, couched in terms of a seman-
tic data model offering object-orientation and abstrac-
tion mechanisms. The mapping level is an association
between form and content which can be used in both
directions.

Queries are requests of the form “Retrieve all images
such that α”, where α is a condition on images which
can address any combination of the image components
and the spatial relationships between image objects. An
image is returned in response to a query if it logically
satisfies the query.

2 Relation to previous work

Research on image representation and retrieval has been
very fruitful in the last decade. The assumption that im-
ages can be viewed from a linguistic stance goes back to
at least 30 years ago, and has been the basis of research
investigating the automatic generation of images (for a
survey, see [Rosenfeld and Siromoney, 1993]). Chom-
sky’s generative grammars and related concepts have
been used in this field to capture the basic production
mechanisms of image languages. In artificial intelligence,
as well as in psychology and cognitive science, mental
imagery has been investigated in order to understand
and reproduce human problem solving methods which
are deemed to be based on image inspection and manip-
ulation. The models proposed in all these fields do not
directly relate to the problem of image retrieval, but, to
different extents, can be considered as a useful source of
inspiration.



The retrieval of images is central to iconic and pic-
torial databases. An iconic image is a two dimensional
array showing the objects of interest to the application in
symbolic (or iconic) form. As such, an image of this kind
is half-way between the form and the content level, since
it is about conceptual entities but at the same time it
preserves the spatial relationships among these entities,
as they appear in the image syntactic structure. Iconic
images support retrieval based on spatial relationships.
A typical query to an iconic database is “find all pictures
having a tree to the left of a house”, and is expressed by
means of an iconic image. As it will be shown, iconic
queries are a proper subsets of the queries expressible in
our model.

A pictorial database provides images and image com-
ponents as built-in data types, thus allowing the manip-
ulation and retrieval of image data objects. This reflects
a fundamental difference between a data model and an
information retrieval model: the former is the result of
an abstraction performed with the application require-
ments in mind; the latter supports generic content-based
retrieval on “raw” documents, images in our case. As a
result, a pictorial data model typically copes with the
efficient implementation of pictorial domains, of the ma-
nipulation functions defined for them, and of their rela-
tion operators. An information retrieval model has to
address more general issues, such as the distinction be-
tween form and content representation, the provision of
a powerful language for describing the various levels of
images, and that of a retrieval function capturing the
notion of relevance of a document to a query.

The interested reader can find a more detailed discus-
sion in [Meghini, 1994b]. To the best of our knowledge,
none of the image retrieval models proposed so far pos-
sesses the representation capabilities and the generality
of our model. There are models, notably [Faloutsos et
al., 1994], that allow the users to pose visual queries and
models that address the content representation of im-
ages. But not models offering both these functionalities.
Furthermore, models of the former category often fail to
state in semantical terms what is the relation between a
query and its answer set, and how this relation stands to
intuition. On the other hand, models providing semanti-
cal querying hardly go beyond text retrieval techniques
and are mostly bound to specific application fields.

3 Preliminaries

Before entering into the technical development, a brief
discussion of the model’s basic assumptions may help in
clarifying the following presentation.

From a terminological point of view, there seem to
be two meanings of the word “image”: for some an im-
age is a recording, such as a photograph, whose content
is a bi-dimensional composition of colors. In this vein,
“content-based retrieval” is understood as a match of vi-
sual features such as shape and color. The other meaning

of the word views an image as a bi-dimensional composi-
tion of colors, which can be reproduced in various ways
(for instance via a photograph), and whose content is
the scene depicted by the image. Our model subscribes
to this latter meaning, importing it in its definitions.

The typical view of an image is pixel-based: an image
is a function associating a color (however represented) to
the points of a discrete, connected, bi-dimensional set.
The form level of our model will essentially conform to
this view, by postulating an ontology consisting of col-
ors and of connected, bi-dimensional sets, or regions, of a
discrete space. In order to convey the informal meaning
of a region, we suggest that it can be seen as a collec-
tion of “contiguous” points having the same color in the
image; but it should be clear that the notion of point
is introduced only at an informal level and for purely
rhetorical reasons: it plays no role in the model, as it
is not included in the model’s ontology. Colors are as-
sumed to be primitive entities, of which everything is
abstracted. These choices are dictated by the desire of
defining a model which is closer to the user than to the
machine. Specific implementations of the model will se-
lect the appropriate physical representation of regions
and colors.

The representation of image contents is more contro-
versial. As already pointed out, the content of an image
is for us a scene of the real world, hence any symbolic
construction which can be understood as describing a
slice of reality can legitimately be considered as a con-
tent representation. The sentences of a logical language
are the most natural candidates to play the role of image
content representations. We will instead adopt a model-
theoretic stance, viewing both the form and the content
of an image as “analogs” of their corresponding realities.
The initiated will recognize in this only an apparent de-
parture from the sentential approach.

Unlike images, queries must be expressions of a for-
mal language, by which users describe their information
needs. The choice of a representation for images induces
that for queries, as queries “talk” about images.

Finally, an image retrieval model must provide a cor-
respondence function, that is a function specifying, for
each query, what images are to be returned in response.
This problem is often posed in terms of aboutness: what
documents are about a given query q? Following a
common interpretation of aboutness from the theory of
meaning1 we will let it be truth, hence a document d is
about a query q just in case q is true in d, in symbols:
d |= q.

4 Image forms

The notion of image form realizes the form level of the
image retrieval model being presented.

In order to obtain a representation valid for all images,

1see for instance [Davidson, 1985], pages 129-137.



regardless of their position in space and contour shape,
we fix a 2-dimensional discrete Cartesian space and, for a
given image, align the bottom left corner of the smallest
rectangle of the fixed space including that image with
the origin of the space. In this way, any image can be
represented as a triple (A, π, F ), where:

• A, the region of the image, is a set of pairs of natural
numbers having the property of being connected,
that is it has no isolated sub-regions;

• π = {S1, S2, . . . , Sn}, the spots of the image, is a
partition of A consisting of connected sets;

• F is a total function from π to a given set of colors
L, such that for all i, F (Si) is the color of spot Si;
and

• no other triple (A, π′, F ′) exists such that for all
X ∈ π there exists X ′ ∈ π′ such that X ⊆ X ′ and
F (X) = F (X ′).

(A, π, F ) is said to be an image form.
An image form does not impose any commitment on

the way images are stored in a computer, but only pro-
vides an abstract, implementation independent way of
looking at images. It will serve as a basis for the evalu-
ation of visual queries.

5 Modelling image contents

The content of an image is understood by humans
through a process of interpretation, which produces a
mental reconstruction of the scene depicted by the im-
age. This reconstruction, which will be called content
reconstruction, may vary from interpreter to interpreter,
and depends on the context in which the interpretation
is carried out, including its use. We will confine our-
selves to single reconstructions, although the extension
to multiple reconstructions does not present conceptual
difficulties.

As already argued, an image model must provide a
tool for representing content reconstructions allowing to
naturally represent slices of reality, while at the same
time let these representations be efficiently queried. This
is not the case with current image retrieval systems,
which employ, if any, one of two techniques to represent
the content of an image:

• the caption method, by which an image is associated
with a piece of text describing the scene depicted by
the image. Content-based retrieval is then carried
out by applying text retrieval techniques to the im-
age description.

• The keyword method, by which an image is asso-
ciated with a set of terms drawn from a prefixed
language.

Both these content representation schemes do not al-
low to capture in a satisfactory way the content of im-
ages. As a result, the performance of image retrieval
allowed by them is poor.

We argue that a semantic data model is a suitable tool
for the representation of image contents (for a survey on
semantic data models, see [Hull and King, 1987]), as it
can be seen as a close relative of predicate calculus em-
phasizing organization and computational amenity. The
semantic data model that we employ for content recon-
structions is inspired to Taxis [Mylopoulos et al., 1980;
Mylopoulos and Borgida, 1980]; it views reality as con-
sisting of interrelated entities, and provides objects and
properties to represent these entities and their interre-
lationships in a one-to-one fashion. For instance, let us
consider an image whose contents can be described in
natural language as follows:

Francesco is hugging his sister Giulia at their
uncle’s house in the summer 1993.

In order to express this sentence, the model would
use two objects, let them be named francesco and
giulia, to represent, respectively, the entities Francesco
and Giulia, and two properties, namely Sister and
Brother, to represent the relation between them.
This can be stated in the following way: (francesco
Sister giulia) and (giulia Brother francesco),
where each triple is a factual property, and in particular
a multivalued one, given the nature of the represented
relations. By carrying this process on to all the entities
and relationships of the world to be represented, a nexus
of objects and links is generated, which is organized by
means of three abstraction mechanisms.

First, classes are introduced as collections of simi-
lar objects, thus defining the classification mechanism.
Each object belongs, or is an instance of, at least
one class. In our example, two classes are intro-
duced: BOY and GIRL, whose instances include, respec-
tively, francesco and giulia, in symbols (francesco
→ BOY) and (giulia → GIRL). Each pair is called an
InstanceOf link.

Second, a class defines a set of properties, which
can be single- or multi-valued, for each of which
the class members can specify an appropriate num-
ber of values. This gives the aggregation mechanism.
In our example, we can make Brother and Sister
multi-valued properties of the classes just introduced,
ranging on the proper classes: (BOY Brother BOY),
(BOY Sister GIRL), (GIRL Brother BOY), and (GIRL
Sister GIRL). In words, boys and girls have boys as
brothers and girls as sisters. Each of the above triples is
called a multi-valued definitional property; the first ele-
ment of the triple gives the class defining the property,
the second gives the property name, and the third gives
the property range, that is the class whose instances can
be specified as values of the property. Factual and def-



initional properties are of course related, as it will be
shown below.

Third, classes are taxonomically organized by means
of the IsA relationship. This gives the specialization
mechanism, which in our example can be used by hav-
ing the class PERSON as a more general class (or super-
class) of BOY and GIRL. IsA links will be denoted: (BOY
⇒ PERSON) (GIRL ⇒ PERSON). The IsA relationship
is a partial order which captures the notion of concept
inclusion: if a class IsA another class, then an object
instance of the former is also an instance of the latter.
This mechanism is usually called instance inheritance,
and is illustrated in our example by the membership of
francesco and giulia in the class PERSON: (francesco
→ PERSON) and (giulia → PERSON), coming as a
consequence of their membership in the classes BOY and
GIRL and of the IsA link from these classes to PERSON.
More generally, each property defined by a class applies
to the instances of its less general classes (or specializa-
tions), and this introduces in the model the so called
structural inheritance. For instance, the name of a per-
son can be defined as a single-valued definitional prop-
erty of the corresponding class, ranging on the class of
character strings (a built-in class of the model): (PERSON
Name STRING). As already explained, this definition al-
lows all persons to specify one value for Name, hence all
boys and girls, which are special persons. We thus obtain
by structural inheritance the ability of giving a name
to francesco and giulia, which is done through the
following single-valued factual properties: (francesco
Name "Francesco") and (giulia Name "Giulia").

Formally, a content reconstruction (CR for short) is
an 8-tuple (O, C, SDP, MDP , SFP, MFP , →, ⇒)
where, letting ID be a set of identifiers:

• O is a set of objects;

• C is a set of classes;

• SDP ⊆ (C × ID × C) are the single-valued defini-
tional properties;

• MDP ⊆ (C × ID × C) are the multi-valued defi-
nitional properties;

• SFP ⊆ (O × ID × O) are the single-factual prop-
erties;

• MFP ⊆ (O × ID × O) are the multi-factual prop-
erties;

• → ⊆ (O × C) is the InstanceOf relation, relating
an object to the classes where it belongs;

• ⇒ ⊆ (C × C) is the IsA relation, relating a class to
its superclasses.

A CR is consistent if it satisfies a number of con-
straints, aiming at capturing the intuitive meaning and
role of its components. These constraints are:

1. Each object is an instance of at least one class, that
is: for every o in O there exists a ci in C such that
(o → ci).

2. SDP and MDP must be consistent, that is a prop-
erty of a class cannot be single- and multi-valued at
the same time: π1,2(SDP )∩π1,2(MDP ) = ∅, where,
seeing R as a table, π1,2(R) denotes its projection
on its first two columns.

3. SDP, MDP and SFP are functional, that is:
(c i d1), (c i d2) ∈ (SDP ∪MDP ) implies d1 = d2,
and (o i o1), (o i o2) ∈ SFP implies o1 = o2.

4. Each factual property must be induced by a defi-
nitional property, that is: (o1 i o2) ∈ SFP (resp.
MFP ) implies (c1 i c2) ∈ SDP (resp. MDP ) and
(oi → ci) for i = 1, 2. For instance, (francesco
Sister giulia) is allowed in MFP by the fact
that (BOY Sister GIRL) is in MDP and that
francesco and giulia are instances of BOY and
GIRL, respectively. Moreover, each factual prop-
erty must be consistent with all definitional prop-
erties that concern it (there may be many due to
structural inheritance), that is: (o1 i o2) ∈ SFP
(resp. MFP ), (o1 → c1) and (c1 i c2) ∈ SDP
(resp. MDP ) imply (o2 → c2).

5. ⇒ is a partial order with a minimum ⊥ and a max-
imum >. This implies that ⊥ and > be in C.

6. Property definitions are inherited by specializations,
that is: (c1 i d1) ∈ SDP (resp. MDP ) and
(c2 ⇒ c1) imply (c2 i d2) ∈ SDP (resp. MDP ) and
(d2 ⇒ d1). As already seen, (BOY Name STRING)
and (GIRL Name STRING) must be in SDP as a con-
sequence of the facts that (PERSON Name STRING)
is in SDP and that (BOY ⇒ PERSON) and (GIRL
⇒ PERSON).

7. Instances are inherited by superclasses, that is:
(o → c1) and (c1 ⇒ c2) imply (o → c2).

From now on, we will tacitly assume only consistent
CR’s. When no ambiguity will arise, we will collect def-
initional and factual properties into the sets:

DP = SDP ∪ MDP
FP = SFP ∪ MFP.

6 Images

One of the basic steps of image interpretation by humans
is the recognition of the entities that occur in an image,
that is the association of the pictorial representation of
these entities with the entities themselves, or rather with
some mental representation of them. This association is
expressed in our model by the image mapping, a partial
function from disjoint sets of spots in an image form to
objects in the CR of that image.



An image is a triple (M, D, M), where M = (A, π, F )
is an image form, D = (O,C, DP, FP,→,⇒) is a CR,
and M is a partial function:

M : 2π → O

such that for all Πi, Πj ∈ dom(M), M(Πi) = M(Πj)
implies Πi = Πj , i.e. M is an injection. We will call M
the image mapping.

The injectivity of the image mapping captures a max-
imality criterion, aiming at ruling out mappings which
associate the same content object to several sets of spots.
No other constraint is set on M to gain generality. In
particular, a spot in an image can be assigned to more
than one object in the image’s content reconstruction
(this allows to represent object decomposition), and the
domain of the image mapping is not required to cover π,
as not necessarily any spot of color in an image depicts
an entity or a part of it.

7 An image query language

The query facility for the model so far introduced is a
many-sorted first-order logic, whose language LI is built
on the following sorts:

1. σr, the sort of regions; the symbols from this sorts
are: countably many constant symbols, denoted by
capital letters drawn from the beginning of the al-
phabet, such as A, B, (metasymbols r1, r2, . . .);
countably many variables, small letters from the end
of the alphabet with a distinguishing subscript r,
such as xr, yr; the existential quantifier ∃r.

2. σc, the sort of colors; the symbols from this sorts
are: countably many constant symbols, denoted
by their English names (metasymbols c1, c2, . . .);
countably many variables: xc, yc, and so on; the
existential quantifier ∃c.

3. σo, the sort of objects; the constant symbols from
this sort will be denoted by lower case names, such
as: francesco; object variables will be small letters
from the end of the alphabet with the usual dis-
tinguishing subscript, such as xo, yo; as existential
quantifier for objects, ∃o will be used.

4. σp, the sort of classes; the constant symbols from
this sort will be denoted by upper case names, such
as PERSON, with the exception of the two symbols
> and ⊥; class variables and existential quantifier
will be the usual symbols with the distinguishing
subscript p.

5. σi, the sort of identifiers; the constant symbols from
this sort will be denoted by names starting with a
capital letter, such as Brother; identifier variables
and existential quantifier will be the usual symbols
with the distinguishing subscript i.

In order to specify a semantics for the sentences of LI ,
we define the notion of denotation function, as a one-to-
one mapping associating:

• the constant symbols of sort σr and the finite sub-
sets of pairs of natural numbers (notice that the
latter are countably many, so that the mapping can
be effectively established);

• the constant symbols of sort σc and the set of colors
L;

• the constant symbols of sort σo, σp, and σi onto the
sets O, C, and ID, respectively. For simplicity, this
mapping is assumed to be the identity function.

Out of the denotation functions we factor one function,
d, and call it the image denotation function. An image
structure is a pair (I,d), where I is an image. Notice
that the function d does not change from structure to
structure.
LI provides four kinds of predicate symbols, intro-

duced in the following sections.

7.1 Visual predicate symbol

A visual query is an image itself stated against the
form component of an image, and is typically expressed
through an appropriate visual tool. From the modelling
point of view, a visual query is an expression of the query
language built out of the dyadic symbol I of sort (σr, σc),
which names the association between regions and col-
ors necessary to describe image spots. For instance, the
atomic ground sentence I(A,blue) means that region A
is blue.

An image structure is said to satisfy the atomic ground
sentence I(r1, c1),

(I,d) |= I(r1, c1) if and only if F (d(r1)) = d(c1).

In words, an image structure satisfies a ground atomic
instance of I if, in the image form of the structure, the
region designated by r1 (i.e. d(r1)) is of the color de-
signed by c1 (d(c1)).

This defines an exact visual match. It is well known
that non-exact queries are also very useful in image
retrieval, as they allow to retrieve images that match
queries only to a certain extent.

The non-exact image matching problem is a special
case of the registration problem, which consists in finding
a mapping between two given images, possibly with an
associated degree of precision according to a specified
similarity metric (for a survey on image registration, see
[Brown, 1992]). This problem arises in a number of areas
in computer vision, pattern recognition, medical image
analysis and others.

There is a large variety of techniques which have been
proposed to solve the registration problem, yet none of
these stands out as the image matching function able to
satisfy any user. Indeed, given the complexity of image



semantics and the variety of applications requiring some
form of image matching, the search for a universal image
matching function seems to be much of an ill-defined
problem.

The solution we propose to endow our model with a
non-exact query facility is to let the user select the im-
age registration techniques that best capture the appli-
cation’s requirements, and import these techniques in
the model. Formally, let Φ1, . . . , Φn, n ≥ 0, be n image
predicates, that is total functions each receiving in input
an image form, a region, and a color and returning an
element of the set {0, 1}. On the basis of image predi-
cates, (n+1) partial satisfaction relations on the ground
atomic instances of I can be defined as follows:

(I,d) |=0 I(r1, c1) iff F (d(r1)) = d(c1)
(I,d) |=i I(r1, c1) iff Φi(M,d(r1), d(c1)) = 1,

for all 1 ≤ i ≤ n. The relation |=0 captures the exact
query mechanism, the other relations |=i capture an un-
certain match, as established by the image predicates. It
should be noted that an image predicate need not be as
concise and elegant as a sentence of a formal language.
It may be a complex system of equations or a computer
programme, as long as it specifies a total computable
function which decides whether or not a given image
form matches a given spot.

A satisfaction relation for ground atomic visual queries
capturing also non-exact matchings can now be stated as
follows:

1. (I,d) |= I(r, l) iff for some 0 ≤ i ≤ n, (I,d) |=i

I(r, l).

7.2 Spatial predicate symbols

Spatial reasoning plays a primary role in many image re-
trieval applications. Typically, users may want to talk in
their queries about objects being “left to”, or “north-east
to” or “surrounded by” other objects. In order to express
these queries, we introduce spatial predicate symbols in
LI .

Considering images as rectangles, the complete set
of spatial relationships involved in image retrieval can
be obtained as a binary combination of the complete
set of spatial relationships for one-dimensional intervals.
This set has been derived in [Allen, 1983] upon inves-
tigating a form of reasoning about time; it consists of
13 relationships, representable with 7 different symbols,
named: before, equal, meets, overlaps, during,
starts and finishes. Figure 1 illustrates pictorially
the meaning of each symbol.

As we have to deal with two dimensions, we introduce
in LI two predicate symbols for each one shown in Fig-
ure 1, using a prefix to indicate the dimension of the
predicate. Each symbol is of sort (σr, σr). For instance,
X before(r1, r2) means that the projection on the x axis
of region r1 is before that of region r2, in the sense illus-
trated pictorially in Figure 1.

Symbol Meaning

X before Y XXX YYY

X equal Y
XXX
YYY

X meets Y XXXYYY

X overlaps Y
XXX
YYY

X during Y
XXX

YYYYYY

X starts Y
XXX
YYYYYY

X finishes Y
XXX

YYYYYY

Figure 1: Interval Relationships.

More formally, the semantics of ground atomic in-
stances of the 14 spatial predicate symbols is given in
terms of image structures with four additional functions:
two projection functions, Πx and Πy, which return, re-
spectively, the x and y projection of a given region; and
two relations on intervals: precedence (<) and inclusion
(v). Notice that the projection of an image region is
always an interval, as an image region is defined to be a
connected subset of ω2. Given two region symbols r1 and
r2, the satisfaction relation on ground atomic instances
of spatial predicates is defined as follows (for brevity,
only some predicate symbols on the horizontal dimen-
sion are considered):

2. (I,d) |=X before(r1, r2) iff Πx(d(r1)) < Πx(d(r2)).

3. (I,d) |=X during(r1, r2) iff Πx(d(r1)) v Πx(d(r2)).

4. (I,d) |=X equal(r1, r2) iff Πx(d(r1)) v Πx(d(r2))
and Πx(d(r2)) v Πx(d(r1)).

5. (I,d) |=X overlaps(r1, r2) iff for some interval h,
h v Πx(d(r1)) and h v Πx(d(r2)).

6. (I,d) |=X meets(r1, r2) iff Πx(d(r1)) < Πx(d(r2))
and for no interval h, Πx(d(r1)) < h < Πx(d(r2)).

We have thus endowed our query language with the
machinery to reason about certain spatial relationships
between regions. We will see in section 8.6 how this
expressive power can be used to reason about spatial
relationships between objects.

7.3 Content predicate symbols

The predicate symbols for content queries are:



• MDP and SDP, of sort (σp, σi, σp);

• MFP and SFP, of sort (σo, σi, σo);

• InstanceOf, of sort (σo, σp);

• IsA, of sort (σp, σp).

An image structure satisfies a ground instance of the
above predicate symbols:

7. (I,d) |= MDP (c1, i, c2) iff (c1, i, c2) ∈ MDP

8. (I,d) |= SDP (c1, i, c2) iff (c1, i, c2) ∈ SDP

9. (I,d) |= MFP (o1, i, o2) iff (o1, i, o2) ∈ MFP

10. (I,d) |= SFP (o1, i, o2) iff (o1, i, o2) ∈ SFP

11. (I,d) |= InstanceOf(o, c) iff (o, c) ∈→
12. (I,d) |= IsA(c1, c2) iff (c1, c2) ∈⇒
This semantics is simply an extension to our semantic
data model of the model theoretic view of databases. We
are assuming that a CR is a strict analog of the reality
being modelled, thus a closed world in which a sentence
holds true (i.e. the CR satisfies the sentence) or false.

7.4 Mapping predicate symbol

In order to query the mapping component of an image,
LI provides the dyadic predicate symbol Map, of sort
(σr, σo), which can be used to associate image regions
with content objects. For instance, Map(r, o) means
that the region r is mapped by the mapping component
M of the image being considered onto the content object
o. Formally, given an image I,

13. (I,d) |= Map(r, o) iff for some set of regions X,
d(r) ⊆ ⋃

X and M(X) = o.

8 Querying an image base

Having introduced the alphabet of LI and its semantics,
a query facility for our model can now be completely
specified. This is done in the next section, in two steps.
First, the syntax of LI is completed, allowing us to define
what formulas of the language count as image queries.
Then, the semantics of the full language is given, allow-
ing us to define the image answer function. In the fol-
lowing sections, the expressive power of the introduced
query facility is examined.

8.1 A query facility

As LI has no function symbol, its terms are just constant
symbols or variables, whose sorts give the sorts of the
corresponding terms. The atomic formulas of LI are the
atomic ground instances of the predicate symbols intro-
duced in the previous section. The well-formed formulas
of LI are the smallest set containing the atomic formulas
and the formulas: ¬α, (α ∨ β), (∃rx)α, (∃cx)α, (∃ox)α,

(∃px)α, and (∃ix)α, where α and β are well-formed for-
mulas. Notice the usage of one existential quantifier for
each sort of the language, ranging on the correspond-
ing sort. As customary, the well-formed formulas made
up from all the interesting connectives and one universal
quantifier for each sort can be assumed in the language
as abbreviations of primitive expressions. A sentence is
a well-formed formula with no free variables. An image
query is any sentence of LI .

For simplicity, we will provide a semantics only for the
sentences of LI , which model image queries. The seman-
tics of the atomic sentences has been already given in the
previous section. The following rules extend that seman-
tics to all the sentences of the language. In them, (I,d)
is an image structure, α and β well-formed formulas, γ
a well-formed formula in which the variable x occurs in
instances of I or of spatial predicate symbols, and δ a
well-formed formula in which the variable x occurs only
in instances of Map. Finally, αx

c is the same formula as
α except that all the occurrences of the variable x are
replaced by occurrences of the constant symbol c.

14. (I,d) |= ¬α iff (I,d) 6|= α

15. (I,d) |= (α ∨ β) iff either (I,d) |= α or (I,d) |= β

16. (I,d) |= (∃rx)γ iff for some constant symbol c of
sort σr, d(c) ∈ π and (I,d) |= γx

c

17. (I,d) |= (∃rx)δ iff for some constant symbol c of sort
σr, (I,d) |= δx

c

18. (I,d) |= (∃cx)α iff for some constant symbol c of
sort σc, (I,d) |= αx

c

19. (I,d) |= (∃ox)α iff for some constant symbol c of
sort σo, (I,d) |= αx

c

20. (I,d) |= (∃px)α iff for some constant symbol c of
sort σp, (I,d) |= αx

c

21. (I,d) |= (∃ix)α iff for some constant symbol c of
sort σi, (I,d) |= αx

c

These rules extend the notion of satisfaction to the non
atomic sentences of LI , taking into account the sorted
nature of the language. Notice that in 16 the member-
ship of d(c) in π is required to ensure that when the
variable x denotes a region of an image form, the quan-
tifier ∃r ranges on the spots of that image form rather
than on the finite sets of pairs of natural numbers. In
this way, the sentence (∀rx)I(x, green) is satisfied by
all images which are entirely green, as desired, whereas
the sentence (∃rx)X before(x, r) is satisfied by all images
having a region at the left of r. Without this provision,
the former sentence would be satisfied by no image, as
images forms are finite objects, whereas the latter would
be satisfied by no images if r is a leftmost region, and
by all images otherwise, regardless of their shape. The



same restriction does not apply to Map instances, be-
cause the image mapping function takes as argument sets
of regions. Thus the sentence Map(r, o) may be satisfied
by an image even though r is not a region of its image
form; the semantics requires only that r be included in
the regions mapped by M onto o.

Given a collection of images IB and an image query
q, the answer of q in IB, a(q, IB), is given by:

a(q, IB) = { I ∈ IB | (I, d) |= q }.
This query facility subscribes to the logical view of

information retrieval recommended in [van Rijsbergen,
1986], as it models retrieval as logical inference. At the
same time, it conforms to the model-theoretic approach
to databases, as it views an image as a strict analog of
the reality being modelled, thus a closed world in which
every sentence of LI holds true (i.e. the image satisfies
the sentence) or false. We thus have an image model
which is based on solid philosophical and mathematical
grounds, and offers agreeable computational properties.
Firstly, answers are decidable. Secondly, the decision
algorithm is conceptually simple. Thirdly, the cost of
that algorithm can be reduced at will by limiting the
expressive power of the query language, in a way that is
well-known.

The expressive power of our image query facility can
be investigated by considering that a query can span over
four information dimensions: the visual, spatial, content,
and mapping dimensions, which partition the predicate
symbols of the query language. From this point of view,
the language offers 15 types of queries, one for each non-
null assignment to four binary variables corresponding to
these dimensions. Preserving the above ordering, queries
of type 1 are those having only the mapping dimension
(assignment 0001), while queries of type 6 (0110) have
both the spatial and content dimensions. In the following
sections we will review the types of queries on images
offered by the model, focusing on the most important of
them.

8.2 Visual queries

A visual query is a query in which only the predicate
symbol I occurs and, as already observed, is expected
to be expressed through an appropriate visual tool. As-
suming that such a tool provides the machinery to deal
with first-order syntax, logical connectives and quanti-
fiers can be used to articulate complex visual queries,
such as (I(A, blue) → I(B, green)) returning the images
whose A region is not blue or whose B region is green,
or:

(∃rx)I(x, blue) ∨ (∃cx)(∀ry)I(y, x)
returning the images which either have a blue spot or
whose regions are all of the same color.

In general, an image satisfies the queries that are “less
specified” or “more vague” than its image form. For
instance, let us consider an image form M having 3 re-
gions, named for simplicity A, B, and C, whose colors

are, respectively, white, blue, and green. A query less
specified than M is one describing only a subset of the
image’s spots, such as (I(A,white)∧ I(C, green)) or de-
noting also other images, such as (I(B, blue) ∨ δ) where
δ is any visual query. It is not difficult to see that both
these sentences are satisfied by M. In the former case
the satisfaction can even be visualized, since the sen-
tence has a straightforward pictorial representation. It
is important to realize that M satisfies the above two
sentences regardless of the nature of the involved ob-
jects. The reason is that these inferences are valid in the
first-order predicate calculus, and, by interpreting in a
certain way the sentences that occur in them, we have
simply rephrased the classical notion of satisfaction in
terms of images. The interested reader may find more
about the logic underlying visual queries in [Meghini,
1994a].

8.3 Spatial queries

This kind of queries contain only instances of spatial
predicate symbols and can be used to retrieve images
on the bases of spatial relationships between the images’
spots.

Ground spatial queries state properties of specified
regions, and therefore are not particularly interesting.
They either return no image, in case the stated property
does not hold, or otherwise they return all the images in
the image base. For instance, the sentence:

X before(r1, r2) ∧ ¬Y before(r1, r2) ∧ ¬Y before(r2, r1)

asserts that region r1 precedes region r2 on the x axis
and they share one interval on the y axis, and is clearly
either true or false regardless of any particular image. By
quantifying on either region, a more interesting query re-
sults, whose answer depends on the images stored in the
image base. For instance, using an existentially quanti-
fied region variable in place of r1, we have a query which
retrieves the images in whose image forms there is a re-
gion standing to r2 in the above mentioned relationship.

In order to query spatial relationships between ob-
jects, the spatial predicate symbols are to be used in
conjunction with the mapping symbol. Queries of this
kind are said to be strongly mixed, as they involve more
than one dimension of the image representation, and will
be discussed in section 8.6.

8.4 Content queries

A content query includes only instances of the content
predicate symbols, allowing to specify conditions which
the retrieved images are to be about. The expressiveness
of the content query language allows to state conditions
on objects, classes, properties, and IsA and InstanceOf
links in a simple and uniform way.

For instance, the images that are about someone
named “Francesco” can be retrieved by the query:

(∃ox)(∃iy)SFP (x, y,“Francesco”)



which returns the images in whose content part some
object x has value ‘‘Francesco’’ for some property y,
which is presumably a naming property. Similarly, the
images which are about a musician, brother of Giulia can
be requested via the following query:

(∃ox)(InstanceOf(x,MUSICIAN)∧
MFP (x,Brother, giulia)).

In order to retrieve the images with a non-empty content
component, the following query can be used:

(∃ox)(∃py)InstanceOf(x, y).

8.5 Mapping queries

A mapping query contains only instances of the Map
predicate symbol and can be used to retrieve images
whose regions are associated to content objects. When
both regions and content objects are denoted by con-
stant symbols, the query returns, as established by the
semantics of Map, the images whose mapping compo-
nent associates the mentioned regions (or supersets of
them) with the mentioned objects. By quantifying on
the regions, a query asks images which have map infor-
mation on the specified content objects; for instance the
query (∃rx)Map(x, o) returns the images whose map-
ping function has o in its range, which means that o is
shown in the image form and that the mapping function
“points it out”.

A form of shape-based retrieval can be performed via
mapping queries which quantify on objects. For instance
the query:

(∃ox)(Map(r1, x) ∨Map(r2, x))

retrieves the images in which either r1 or r2 (or a super-
set of them) are mapped into some unspecified object.
Clearly, there is some noise due to the superset match-
ing; in addition, the position of the shape is fixed, since
a region is a fixed portion of the assumed 2-dimensional
space. The latter problem can be solved by introducing
in the query language suitable operators for scaling, ro-
tating and translating regions, while the former is not
expected to be significantly serious.

8.6 Mixed queries

Mixed queries exhibit instances of predicate symbols of
at least two kinds. They can be subdivided into two
categories:

• weakly mixed queries, in which no term is shared
by instances of predicate symbols of different kinds;
and

• strongly mixed queries, where there is at least one
common variable or constant symbol between in-
stances of predicate symbols of different kinds.

Queries belonging to the former category exploit the
power of the image representation only to a limited ex-
tent, as they are Boolean combinations of unrelated

mono-dimensional queries. As a consequence, weakly
mixed queries cannot address spatial relationships be-
tween objects, because these cannot be asserted of ob-
jects but simply of regions. Assuming that δ is a visual
query, an example of a weakly mixed query is:

δ ∧ (∃px)InstanceOf(francesco, x)

which returns the images whose image form matches
δ and whose content component includes the object
francesco. No connection between the two conditions
is expressed by the query. As Boolean combinations of
types of queries already examined, weakly mixed queries
will not be discussed in more detail. Notice that queries
of type 6, having spatial and content predicate symbols,
and queries of type 10 (visual and content) can only
be weakly mixed, as the predicate symbols occurring in
them have no sort in common.

Strongly mixed queries permit the expression of con-
ditions which address more than one level of the image
representation. A systematic discussion of these queries
can be found in [Meghini, 1994b]. In the rest of this sec-
tion, examples of various types of strongly mixed queries
will be presented to give an idea of the power of the query
language.

A query of type 3 (content + mapping):

(∃ox)(Map(r, x) ∧ InstanceOf(x, TREE))

returning the images in which a group of regions, which
include r, is mapped onto an instance of the class TREE
by the mapping component. More succinctly, this query
can be phrased as “A tree of shape (the contour of) r”.
By quantifying on the region, the query is obtained:

(∃ox)(∃ry)(Map(y, x) ∧ InstanceOf(x, TREE))

requesting images in which some region, regardless of its
shape, is mapped onto a tree (i.e. “A tree”). There is
an important difference to be noted between this query
and the query:

(∃ox)InstanceOf(x, TREE).

The former returns the images showing a tree, while the
latter those which are about a tree, which means that
the image content reconstruction includes a tree, but not
necessarily the image form.

Queries of type 11 are queries of type 3 with an addi-
tional visual component. As an example, the query:

(∃rx)(∃oy)(I(x, yellow) ∧Map(x, y)∧
InstanceOf(y, TREE))

returns the images in which a region of color yellow is
mapped onto a tree (i.e. “A yellow tree”).

Queries of type 5 (spatial and mapping) can be used
to state spatial conditions between content objects or
regions and other content objects. The following query
retrieves the images in which giulia is left to francesco:

(∀rx)(Map(x, giulia) →
((∀ry)Map(y, francesco) → X before(x, y))∧
((∃ry)Map(y, francesco) ∧ Y includes(x, y)))



where Y includes(a, b) is an abbreviation for:

Y starts(a, b) ∨ Y during(a, b)∨
Y finishes(a, b) ∨ Y equal(a, b).

The query requires all giulia’s regions to be (a) left of
all francesco’s regions on the x axis and (b) entirely con-
tained in at least one of francesco’s regions on the y axis.

Queries of type 7 permit to perform “iconic” image
retrieval, consisting in requesting images on the basis of
the spatial relationships between their content objects.
A typical iconic query is [Chang et al., 1987] “find all
pictures having a tree to the left of a house”, expressible
in our query language as:

(∃oxy)(InstanceOf(x,TREE)∧ InstanceOf(y,HOUSE)∧
(∀ru)(Map(u, x) →

((∀rv)Map(v, y) → X before(u, v))∧
((∃rw)Map(w, y) ∧ Y includes(u,w)))).

Finally, queries of type 15 include all four components,
permitting to express requests such as: “Giulia is wear-
ing a pink sweater and there is a person at her right”,
“A yellow tree on a grass”, and “A house with green
windows left to a tree”.

9 Conclusions

We have presented a model for image bases offering a 3-
level representation of images and a query facility for ex-
ploiting the content of an image base in a complete way.
Our work must be considered as having a foundational
spirit, as both the proposed representation schemes and
their query languages need extension in order to arrive at
a rich model, able to cope with the applications complex-
ity. Besides its applicability to image bases, the model
provides a basic philosophy to deal with the representa-
tion and retrieval of objects with a content. As such, the
model makes a step towards a general model for multi-
media information systems, providing a paradigm and
representational and querying primitives.
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