
A Model of Information Retrieval based on a
Terminological Logic

Carlo Meghini, Fabrizio Sebastiani, Umberto Straccia and Costantino Thanos
Istituto di Elaborazione dell’Informazione

Consiglio Nazionale delle Ricerche
Via S. Maria, 46 - 56126 Pisa (Italy)

E-mail: 〈lastname〉@iei.pi.cnr.it

Abstract

According to the logical model of Information
Retrieval (IR), the task of IR can be described
as the extraction, from a given document base,
of those documents d that, given a query q,
make the formula d → q valid, where d and q
are formulae of the chosen logic and “→” de-
notes the brand of logical implication formal-
ized by the logic in question. In this paper,
although essentially subscribing to this view,
we propose that the logic to be chosen for this
endeavour be a Terminological Logic (TL): ac-
cordingly, the IR task becomes that of singling
out those documents d such that d ¹ q, where
d and q are terms of the chosen TL and “¹”
denotes subsumption between terms. We call
this the terminological model of IR.

TLs are particularly suitable for modelling
IR; in fact, they can be employed: 1) in rep-
resenting documents under a variety of aspects
(e.g. structural, layout, semantic content); 2) in
representing queries; 3) in representing lexical,
“thesaural” knowledge. The fact that a single
logical language can be used for all these rep-
resentational endeavours ensures that all these
sources of knowledge will participate in the re-
trieval process in a uniform and principled way.

In this paper we introduce Mirtl, a TL for
modelling IR according to the above guidelines;
its syntax, formal semantics and inferential al-
gorithm are described.

1 Introduction

According to the logical model of Information Retrieval
(IR) [21; 22], the task of IR can be described as the
extraction, from a given document base, of those docu-
ments d that, given a query q, make the formula d → q
valid, where d and q are formulae of the chosen logic and
“→” denotes the brand of logical implication formalized
by the logic in question.

This analysis, however, leaves open the problem of how
to represent documents and queries in a way that, while
being amenable to a formalization in the style of mathe-
matical logic, be at the same time adequate for account-
ing for the complexity of real documents and queries,
especially when multimedia documents are considered.

In fact, it has been argued (see e.g. [11]) that a radi-
cal improvement in the performance of IR systems may
only be accomplished by endowing these systems with
high level representations of the documents contained in
the document base. In order to be effective, these rep-
resentations should consider documents from multiple
viewpoints. For instance, the representations should not
be confined to describing the content of the document
by means of a simple set of keywords, as the connec-
tion of these to the real nature of the document is often
loose at best. Instead, the representation of a document
should also address its internal architecture (usually
known as structure), its physical appearance (layout),
and give a better account of what the document actually
deals with (semantic content). It is then evident that
the language needed for expressing such multifaceted
representations should be much more expressive and
richly structured than the language of simple statements
adopted by (either the classical or the non-classical vari-
ants of) propositional logic and considered in [16; 21;
22].

This latter language is also inadequate in another
important respect. The basic linguistic unit of proposi-
tional logic is the statement, an expression whose deno-
tation in a given interpretation is a truth value. Instead,
we feel that the description of a document should not
denote a truth value at all, but an object of the domain

of discourse: the document itself. In the same way, we
feel that a query should not denote a truth value, but a
set of objects of the domain of discourse: the set of doc-
uments of the document base that the user would like
the system to retrieve. In summary, we feel that, in or-
der for the representation to be adequate, the symbols d
and q should not be statements (i.e. expressions denot-
ing truth values), but terms (i.e. expressions denoting
objects or sets of objects); accordingly, d → q should
not stand for “statement d logically implies statement
q”, but for “term d is an instance of (or: is less general
than) term q”1. This implies that a logic which is ade-
quate for the IR modelling task should allow the formu-
lation of this latter kind of expressions, something that is
clearly outside the domain of (classical or non-classical)
propositional logic.

Besides, the fact that documents are complex and mul-
tifaceted objects (especially when multimediality is at
stake), adds the constraint that the terms of the logic
we are seeking should have a complex internal structure.
Chiaramella and Chevallet [5; page 233] are explicit on
this:

(. . .) we think that the more complex the
stored information is in its structure and con-
tent, various in its nature (text, images, etc.),
flexible in its interrelations (related texts, im-
ages), the more the underlying semantics of this
complexity and variety has to be made acces-
sible, or explicit, to the users in order to allow
them to retrieve properly and exploit this in-
formation.

In this paper, although “essentially” subscribing to the
“d → q view” put forth in [21; 22], we propose that the
logic for the description of both documents and queries
be a Terminological Logic (TL); as we will show, TLs
comply with all the desiderata listed above. We call the
resulting model the terminological model of IR.

Terminological Logics are formalisms developed
within artificial intelligence research, and specifically ori-
ented to the vast class of application domains that are de-
scribable by means of taxonomic organizations of classes
of structured objects. We will argue that their “term-
oriented” syntax, the existence of a wide corpus of the-
oretical results concerning them, and their mostly pos-
itive computational properties, make them interesting
tools for IR-related modelling tasks: in fact, we will show
that these logics not only can be employed for both doc-
ument and query representation, but they can be prof-
itably used for the representation of lexical, “thesaural”
knowledge, i.e. of knowledge supporting the process of in-
terpretation “in context” of both documents and queries.

The fact that all three sources of knowledge (viz. rep-
resentation of the document, of the query and of the

1This point is argued in full detail in an extended version
of this paper [13].

thesaural knowledge) can be expressed in the same for-
malism ensures that they will participate in the retrieval
process in a uniform fashion and as an undistinguished
whole. The fact that this formalism is a logic (instead
of being e.g. a non-logically-specified representation lan-
guage) is a “certificate of guarantee”, ensuring that this
participation will also be principled , i.e. that the infer-
ences performed by the underlying implementation will
fully comply with the semantics of the representation
language.

The rest of this paper is organized as follows. In order
to make the paper self-contained, in Section 2 we give
a brief, informal overview of the fundamentals of TLs
and of how knowledge on taxonomically structured do-
mains may be conveyed in terms of them. In Section 3
we describe (still at a fairly informal level) the termino-
logical model of IR: starting from the observation that
a taxonomical structure can be discerned in document
bases, we describe how a TL might profitably be used in
an IR context, and to this purpose we give sample rep-
resentations of simple documents, queries and items of
lexical knowledge. In Section 4 we describe the termino-
logical model in full formal detail: in order to do this, we
introduce Mirtl, a terminological logic for information
retrieval2: we give the formal syntax and semantics of
Mirtl, and sketch how a sound and complete algorithm
for performing inferences on Mirtl may be built in a
modular, straightforward way. Section 5 takes a look at
possible further developments of this line of research.

2 An informal introduction to
Terminological Logics

Terminological Logics have their roots in artificial in-
telligence research and, in particular, in the subfield of
AI known as “knowledge representation”; TLs derive, in
fact, from a large class of early knowledge representa-
tion languages (of which KL-ONE [3] may be considered
the founding father) based on semantic networks and in-
spired by the notion of frame, originally introduced by
Minsky [14] in the context of cognitive science applica-
tions.

Quite apart from AI domains, these early languages
have also been applied in conceptual data modelling (see
e.g. [10; 18]) and conceptual document modelling [11].
Unfortunately these languages did not possess a formal
semantics; hence, the fact that the notion of inference
they enforced were the same as the user expected, re-
lied on an improbable like-mindedness among designer,
implementor and user. TLs may then be seen as the
result of a work of distillation and formalization that
was carried out on KL-ONE-like languages, a work that
resulted in the purge of linguistic primitives of dubious

2Mirtl stands for Multimedia Information Retrieval
Terminological Logic; the acronym reflects our strong be-
lief that the “philosophy” underlying this model of IR will
extend smoothly to the multimedia case.

semantic content and the recasting of the others in terms
of mathematical logic.

We have previously said that TLs have terms as their
primary syntactic expressions. In TLs a term is usually
an expression that denotes a monadic or dyadic relation
on the domain of discourse; terms representing monadic
relations are called concepts, while terms representing
dyadic relations are called roles. For example, in a TL
that includes the term-forming operators and, atleast
and atmost3, and whose alphabet contains the monadic
predicate symbol paper and the dyadic predicate symbol
author, the expression

(and paper (atmost 3 author)
(atleast 3 author))

is a concept that, under the obvious interpretation, de-
notes the set of all those papers that have exactly three
authors. In general, the languages of TLs allow for a
number of term-forming operators by means of which one
may build complex terms starting from a basic repertory
of simple terms (viz. predicate symbols).

Many TLs also allow the “definition” of a predicate
symbol by means of a term. For example, one such defi-
nition is the following, where one states that triangles are
precisely those polygons that have exactly three sides.

triangle
.= (and polygon (atleast 3 side)

(atmost 3 side))

This definition lists a set of necessary and sufficient con-
ditions that an individual should satisfy in order to be
recognized as a triangle. It is however useful (especially
when trying to give “incomplete” descriptions of classes)
to be able to specify lists of conditions that are only nec-
essary; in TLs this is expressed by what might be called
a “connotation”, as the following example shows:

dog <· (and animal (exactly 4 leg))

This expression states that dogs are four-legged animals,
but does not not state that all four-legged animals are
dogs (we assume here that exactly is an operator defined
in terms of atmost and atleast.).

Most TLs also allow for “instance assertions”, by
means of which one can assert that a given individual
constant is an instance of a given concept (or that a pair
of individual constants is an instance of a given role)4.
Supposing that the alphabet of individual constants in-
cludes the symbols Fido, John and paper2501, the fol-
lowing are examples of instance assertions:

(and animal (exactly 4 leg)) [Fido]

dog [Fido]

3For an informal explanation of the meaning of the term-
forming operators involved in the examples that follow, the
reader may peek ahead in Section 4.1.

4Some authors (see e.g. [7; 19]) call “terminological” only
those TLs that do not allow instance assertions; these authors
call “hybrid logics” those TLs that do allow such assertions.

author [John,paper2501]

We have remarked before that terms, the primary syn-
tactic expressions of TLs, are not truth-value carriers;
hence, unlike logics of statements such as propositional
logic, the metalinguistic relation of interest to TLs is
not validity: only formulae can be valid or invalid, terms
cannot. Usually, subsumption (i.e. “conceptual contain-
ment”) between terms is considered the most important
metalinguistic notion in TLs, as the decision problem for
most other relations of interest to TLs can be reduced
to subsumption checking. A theorem prover for a TL is
thus a program that, given two terms, decides whether
the former subsumes the latter, i.e. whether all individu-
als denoted by the latter are also denoted by the former.
For example, such a theorem prover will be able to an-
swer affirmatively to the question whether the term

(and polygon (atmost 4 sides))

(which denotes the set of all triangles and quadrangles)
subsumes

(and polygon (exactly 4 sides))

This is an example of what is often called implicit sub-
sumption: the former term subsumes the latter just be-
cause of the structure of the two terms and of the se-
mantics of the term-forming operators involved. When
definitions and/or connotations (also globally called ter-
minological axioms) are involved, one usually speaks of
explicit subsumption5. For example, given the above
definition of the term triangle, the term

(and triangle regular-polygon)

(denoting the set of regular triangles) will (explicitly) be
subsumed by the term

(and polygon (atmost 4 sides))

A “terminology” (i.e. a set of terminological axioms)
transforms the set of predicate symbols into a partially
ordered set (or poset), with the partial order coinciding
with the relation of (explicit) subsumption.

Of course, the applicability of TLs to problems of re-
alistic size largely depends on the expressive power of
the TLs themselves, and on the possibility of specifying
theorem provers that, besides being correct and com-
plete with respect to the TL in question, are able to
decide subsumption efficiently . A thorough understand-
ing of TLs requires then a rigorous and systematic study
of the relationship between their expressive power and
their computational complexity.

From the point of view of expressive power, one may
see a TL as formed by three different modules:

5Throughout this paper we will assume that terminologi-
cal axioms are acyclic, i.e. that their left-hand side does not
occur, either directly or indirectly, in their right-hand side.
This is a standard simplifying assumption for TLs; see e.g.
[15] for a framework that does away with this limitation.

1. a terminological module (TM), consisting of the op-
erators for forming complex terms;

2. a definitional module (DM), consisting of the “ .=”
and “<·”operators for defining and connoting simple
terms (i.e. predicate symbols);

3. an assertional module (AM), consisting of the lin-
guistic primitives for expressing instance assertions.

The DM and AM are actually identical for all TLs (al-
though a given TL may lack one or both of them); the
TM usually varies among different TLs, and is what most
characterizes a given TL, to the extent that each TL is
usually named after its TM.

In order to define what the expressive power of TMs is,
let us consider a “reference” set Σ of all the term-forming
operators that we deem of significant applicative value,
and let us define a TM to be a subset of Σ6. The re-
lationship “has less expressive power than” may now be
defined as the “⊆” partial order defined on the powerset
of Σ7.

It is well known that there is a tradeoff between the ex-
pressive power of a logic and its computational tractabil-
ity; hence, in general, the relation “has less expressive
power than” coincides with the relation “is decidable at
least as efficiently as”. One of the fundamental problems
of the research on TMs is that of individuating the TMs
which are “optimal” from the standpoint of this trade-
off, that is, individuating those logics which are most
expressive among the ones for which a polynomial de-
cision algorithm can be given; these logics can then be
safely and profitably used in computationally demanding
applications.

A number of results relative to the computational com-
plexity of subsumption checking in TMs have recently
appeared in the literature (see e.g. [20]). For our pur-
poses, it will suffice to say that some of these results
are encouraging, in the sense that for some (reasonable)
choice of Σ, optimal logics have been found [6] that have
also a fair amount of expressive power8.

3 The Terminological Model of IR. An
informal introduction.

Up to now, we have given an informal account of what a
TL is and what are the main problems one encounters in
choosing the right TL for the application at hand. We
now go on to give an overview of how we plan to use a TL
in an IR modelling context, yielding the terminological
model of IR.

6For an attempt at giving a more general and rigorous
definition of “expressive power of a TM”, see the work by
Baader [2].

7For the sake of simplicity, we will assume that none
among the operators in Σ may be expressed by means of a
combination of other operators of Σ; this will allow us to say
that different subsets always have different expressive power.

8See [7] for a review of these complexity results.

The terminological model is composed of:

1. a model for documents: a document will be repre-
sented as an individual constant of the chosen TL;
this constant will be the subject of a number of in-
stance assertions; the concepts of which the constant
is asserted to be an instance will then altogether
constitute the description of the document;

2. a model for queries: a query will be represented as
a concept of the chosen TL; the intuitive meaning
of this choice is that all documents represented by
individual constants that are recognized to be in-
stances of this concept should be retrieved;

3. a model for lexical entries: lexical knowledge will
be represented by means of a set of terminological
axioms of the chosen TL.

The fourth key component of the model, the matching
function (describing the notion of system relevance) be-
tween document representations and query representa-
tions, will be described later.

Let us consider point 1 first. For instance, suppose
we want to give a representation, in TL terms, of this
paper. First of all, we might want to specify a number
of “contextual attributes” of this document (e.g. who the
authors are). We can do this by entering the following
instance assertion:

(and paper
(func appears-in (sing SIGIR93)))
(all author

(func affiliation (sing IEI-CNR)))
(c-some

author (sing Carlo-Meghini))
(c-some

author (sing Fabrizio-Sebastiani))
(c-some

author (sing Umberto-Straccia))
(c-some

author (sing Costantino-Thanos))
(exactly 4 author)) [paper666]

This asserts that paper666 (a unique code we give to
the document) is a paper that appears-in the proceed-
ings of SIGIR93, that has exactly four authors, that
these authors are Carlo-Meghini, Fabrizio-Sebastia-
ni, Umberto-Straccia and Costantino-Thanos, and
that they are affiliated with IEI-CNR.

Quite likely, we might want to go beyond this simple
specification. For instance, we might want to describe
also some of the layout characteristics of the paper; we
can do this by entering the following assertion:

(and (func typeset-with (sing LaTeX))
(func format (sing double-column))
(no figure)
(no running-header)
(no running-footer)) [paper666]

This asserts that paper666 has been typeset with LATEX,
that it has been formatted in double column and that it
has no figures, running headers and running footers.

Note that we have added this latter information to
the former in a piecemeal fashion, i.e. without the need
to search and modify the previously entered descrip-
tion of paper666; in fact, total incrementality is an
“added bonus” of adopting a logic as a representation
language, a possibility that is seldom offered by non-
logically-specified representation languages.

Also, the fact that the contextual attributes and lay-
out characteristics have been represented by means of
the same representation language, and using the same
set of operators, grants equal status to these two kinds of
knowledge. This obviously extends to the other kinds of
knowledge that we discuss below.

At his point, we might not be content with describing
just contextual attributes and layout characteristics, and
we might want to detail how the paper is structurally
organized:

(and (exactly 1 abstract)
(exactly 5 section)
(exactly 1 bibliography)) [paper666]

bibliography [paper666,bib666]

(and (func typeset-with (sing BibTeX))
(func style (sing plain))
(exactly 22 reference)) [bib666]

The first assertion states that paper666 has an ab-
stract, five sections and a bibliography; the second states
that bib666 is the bibliography of paper666; the third
states that bib666 has been typeset with BIBTEX using
the plain bibliographic style and has twentytwo biblio-
graphic references.

Note that we have represented the bibliography of
paper666 as an individual in its own right, in order to
be able to make assertions about it. It goes without say-
ing that all assertions involving bib666 contribute to the
meaning of the individual constant paper666, as the two
co-occur in an assertion according to which the former
is the bibliography of the latter.

After representing contextual attributes, layout char-
acteristics and structural characteristics of paper666, we
might want to represent information about its content:

(and (c-some dw (sing Mirtl))
(c-some dw (sing syn666))
(c-some dw (sing sem666))
(c-some dw (sing alg666))
(c-some dw (and terminological-logic

(c-some modelling-tool
(sing IR)))))

[paper666]

terminological-logic [Mirtl]

syntax [Mirtl,syn666]

semantics [Mirtl,sem666]

inferential-algorithm [Mirtl,alg666]

These assertions state that paper666 deals with (“dw”)
Mirtl, its syntax, semantics and inferential algorithm,
and in general with terminological logics as modelling
tools for information retrieval.

Up to now we have dealt with simple examples of how
to use a TL for representing a document. One advantage
of the terminological model of IR is that the same TL
may also be used for formulating queries: these queries
will be evaluated against the document representations
built according to the above guidelines. For instance,
suppose that the user wants to retrieve all papers au-
thored (or co-authored) by Costantino Thanos and deal-
ing with the semantics of TLs. The set of all such papers
may be represented as:

(and paper
(c-some author

(sing Costantino-Thanos))
(c-some dw

(c-some (inv semantics)
terminological-logic)))

Note that queries may express information pertaining to
different aspects of the document: in our example, au-
thorship by Costantino Thanos is a contextual attribute
of the documents we want to be retrieved, while the fact
that they deal with the semantics of TLs is a matter of
semantic content.

The system will then just need to retrieve all the doc-
uments represented by individual constants that are in-
stances of this concept. In Section 4 we will see that
this task corresponds essentially to subsumption check-
ing; subsumption is thus the matching function that
gives an adequate account of (system) relevance. When
evaluated, the above query will return paper666, among
others, because in a previous assertion we have stated
that paper666 is both a paper and a (c-some dw (sing
sem666)), and in a subsequent assertion we have stated
that sem666 is the semantics of Mirtl, which in a pre-
vious assertion had been stated to be a TL; the same
argument trivially applies for authorship by Costantino
Thanos.

However, suppose that the user now wants to retrieve
all papers dealing with the semantics of extensional log-
ics. The set of all such papers may be represented as:

(and paper
(c-some dw

(c-some (inv semantics)
extensional-logic)))

Terminological logics are indeed extensional logics, and
because of this the user would probably be interested

in paper666. Nonetheless, paper666 will not be re-
trieved; in fact, sem666 is not an instance of (c-some
(inv semantics) extensional-logic), as no assertion
has yet gone to the trouble of specifying that all TLs are
indeed extensional logics. In order to repair this situa-
tion, we may add the following terminological axioms,
from which it can be inferred that TLs are indeed exten-
sional logics:

terminological-logic
.=

(and logic
(func syntax

term-oriented-syntax)
(func semantics

extensional-semantics))

extensional-logic
.=

(and logic
(func semantics

extensional-semantics))

These axioms may be regarded as dictionary en-
tries, providing a definition of the concepts of
terminological-logic and extensional-logic in
terms of other concepts. After the addition of these
further pieces of information, paper666 will indeed be
retrieved as a result of the above query. Terminological
axioms allow thus the specification of lexical, “thesaural”
knowledge, i.e. they contribute to the specification of the
meaning of the predicate symbols used in both document
representation and query formulation. In the process of
subsumption checking this kind of knowledge is brought
to bear, and serves thus as “background knowledge” ac-
cording to which queries are to be interpreted; the net
effect is that axioms are in fact a recall-enhancing mech-
anism (a mechanism that has no negative side-effects in
terms of precision), because it is by virtue of them that
documents relevant to the query that would have other-
wise gone undetected are discovered to be such.

4 The Terminological Model of IR. A
formal specification.

In the previous section we have informally described the
terminological model of IR by showing how a model of
documents, a model of queries and a model of thesaural
knowledge can all be accommodated within a TL, and
how subsumption is a matching function that gives an
adequate account of (system) relevance. We now go on
to formally specify the terminological model by specify-
ing one particular TL, the Mirtl logic, that we deem
particularly suitable for our task, as it embodies a set of
linguistic primitives that prove of considerable interest
in the IR context; Mirtl will thus serve as an example of
the potentialities of the terminological model, although
the model itself is independent of the choice of a particu-
lar TL. We will first deal with the syntactic and semantic
aspects of Mirtl, and then switch to a brief description

of how a deductive algorithm can be designed for it.

4.1 Syntax and semantics of Mirtl

In order to introduce the syntax of Mirtl we will need
three disjoint alphabets: an alphabet I of individual con-
stants (with metavariables i, i1, i2, . . .), an alphabet Pm

of monadic predicate symbols (with metavariables M ,
M1, M2, . . .) and an alphabet Pd of dyadic predicate
symbols (with metavariables D, D1, D2, . . .).

Let us first discuss the terminological module. The
syntax of this module is specified by the following set of
BNF clauses.

〈concept〉 ::= 〈monadic predicate symbol〉
| (top)
| (bottom)
| (a-not 〈monadic predicate symbol〉)
| (sing 〈individual constant〉)
| (and 〈concept〉+)
| (all 〈role〉 〈concept〉)
| (c-some 〈role〉 〈concept〉)
| (atleast 〈natural number〉 〈role〉)
| (atmost 〈natural number〉 〈role〉)

〈role〉 ::= 〈dyadic predicate symbol〉
| (inv 〈role〉)

We will use metavariables C, C1, C2, . . . ranging on con-
cepts and metavariables R, R1, R2, . . . ranging on roles.
The informal meaning of the above primitives is the fol-
lowing:

• (top) and (bottom) denote the set of all individ-
uals of the domain of discourse and the empty set,
respectively;

• (a-not M) denotes the set of all individuals of the
domain that are not denoted by M ;

• (sing i) denotes the set containing only the indi-
vidual denoted by i; this construct is included in
order to be able to have individual constants as sub-
components of concepts;

• (and C1 C2 . . . Cn) denotes the set of those individ-
uals that are denoted by C1 and, at the same time,
by C2 and . . . Cn;

• (all R C) denotes the set of those individuals whose
R’s are all C’s; for instance, (all author italian)
denotes the set of individuals whose authors are all
italians;

• (c-some R C) denotes the set of those individu-
als having at least one R that is a C; for instance,
(c-some author italian) denotes the set of indi-
viduals that have at least one author who is an
italian;

• (atleast n R) (resp. (atmost n R)) denotes the set
of those individuals having at least (resp. at most)
n R’s;

• (inv R) denotes the set containing the inverses of
those pairs that are denoted by R; for instance, (inv
husband) will be, under the obvious interpretation,
equal to the role wife.

We will also use the following shorthands:

• (exactly n R) will be used in place of (and (atleast
n R) (atmost n R));

• (func R C) will be used in place of (and (all R C)
(exactly 1 R));

• (no R) will be used in place of (atmost 0 R).

The meaning of the term constructors and of other lin-
guistic primitives of Mirtl may be more formally de-
scribed by means of the following definitions, given in
the style of denotational semantics.

For the logically uninitiated, we should say that de-
notational semantics (also known as model-theoretic or
Tarskian semantics) is the standard way of formally
specifying the meaning of logical languages. Such a spec-
ification is accomplished by postulating the existence of
a number of “ways the world could be” (interpretations),
and of systematically specifying in which of these inter-
pretations the expressions of the language are true. In-
ference is then defined as the derivation of only those
formulae that are true in all the interpretations in which
the premises are also true. The specification that follows
fully conforms to this systematic pattern.

Definition 1 An interpretation I over a nonempty set
of individuals D (the domain of discourse) is a function
that maps individual constants into elements of D such
that I(i1) 6= I(i2) whenever i1 6= i2, concepts into sub-
sets of D and roles into subsets of D ×D in such a way
that:

I(top) = D
I(bottom) = ∅
I(a-not M) = D \ I(M)
I(sing i) = {x ∈ D | x = I(i)}
I(and C1 C2 . . .Cn) =

I(C1) ∩ I(C2) ∩ . . . ∩ I(Cn)
I(all R C) =

{x ∈ D | ∀y : 〈x, y〉 ∈ I(R) ⇒ y ∈ I(C)}
I(c-some R C) =

{x ∈ D | ∃y : 〈x, y〉 ∈ I(R) ∧ y ∈ I(C)}
I(at-least n R) =

{x ∈ D | ‖ {y ∈ D| 〈x, y〉 ∈ I(R)} ‖ ≥ n}
I(at-most n R) =

{x ∈ D | ‖ {y ∈ D| 〈x, y〉 ∈ I(R)} ‖ ≤ n}
I(inv R) =

{〈x, y〉 ∈ D ×D | 〈y, x〉 ∈ I(R)}
In our formalism, interpretations are then all and only
those mappings of linguistic items onto the domain of
discourse, that comply with our intended meaning of the

term-forming operators. Interpretations will be, in fact,
the only mappings we will be interested in.

Definition 1 completes the specification of the termi-
nological module of Mirtl; let us now switch to the
definitional module. The next definition introduces ter-
minological axioms and specifies their syntax and seman-
tics.

Definition 2 A terminological axiom (or axiom, for
short) is an expression of the form M<·C or D<·R (in
this case the axiom is called a connotation) or of the
form M

.= C or D
.= R (in this case it is called a defi-

nition), where M is an element of Pm, D is an element
of Pd, C is a concept and R is a role. An interpre-
tation I over a nonempty domain D satisfies a conno-
tation M<·C (resp. D<·R) iff I(M) ⊆ I(C) (resp. iff
I(D) ⊆ I(R)), and satisfies a definition M

.= C (resp.
D

.= R) iff I(M) = I(C) (resp. iff I(D) = I(R)).

A terminological axiom such as

triangle
.= (and polygon (atleast 3 side)

(atmost 3 side))

has thus the effect of restricting the set of interpreta-
tions to those in which the term triangle and the term
(and polygon (atleast 3 side) (atmost 3 side)) are
mapped to the same subset of the domain of discourse.
Our use of axioms to encode thesaural knowledge will
then have the desired effect, i.e. that of enforcing the de-
sired relations of synonimity or “conceptual inclusion”.

We will use metavariables δ, δ1, δ2, . . . ranging on ax-
ioms and metavariables ∆,∆1, ∆2, . . . ranging on sets of
axioms.

Definition 2 completely handles the definitional mod-
ule of Mirtl. The syntax and semantics of the asser-
tional module are specified in Definition 3.

Definition 3 An assertion is an expression of the form
C[i] or of the form R[i1, i2], where C is a concept, R is a
role and i, i1, i2 are individual constants. An interpreta-
tion I over a nonempty domain D satisfies an assertion
C[i] iff I(i) ∈ I(C), and satisfies an assertion R[i1, i2]
iff 〈I(i1), I(i2)〉 ∈ I(R). An assertion is valid iff it is
satisfied by all interpretations.

An assertion such as

(and paper
(func appears-in (sing SIGIR93)))

[paper666]

has thus the effect of restricting the set of interpreta-
tions to those in which the set onto which the term (and
paper (func appears-in (sing SIGIR93))) is mapped
includes the individual onto which the individual con-
stant paper666 is mapped.

We will use metavariables γ, γ1, γ2, . . . ranging on as-
sertions and metavariables Γ, Γ1, Γ2, . . . ranging on sets
of assertions.

This completes the definition of the syntax and seman-
tics of the three Mirtl modules. We may now take a
look at what a Mirtl knowledge base is.

Definition 4 A Mirtl knowledge base is a pair Ω =
〈∆,Γ〉, where ∆ is a set of terminological axioms and
Γ is a set of assertions. An interpretation I satisfies a
knowledge base Ω = 〈∆,Γ〉 iff it satisfies all axioms in
∆ and all assertions in Γ; in this case, we say that I is
a model of Ω. A knowledge base Ω is satisfiable iff it has
a model.

We will use metavariables Ω,Ω1, Ω2, . . . ranging on
knowledge bases.

For IR purposes, a Mirtl knowledge base will be
a representation of the document base, where asser-
tions will represent documents and their appartenance
to given document classes, and axioms will represent lex-
ical, “thesaural” knowledge.

What we need to do now is to specify how we want
to represent the service that is to be provided by
the IR system. Let us remind that we declared our
substantial adhesion to the picture expoused in [21;
22], according to which, in response to a query q, the
service to be provided is the retrieval of all and only
those documents d that make the conditional d → q
valid. In the terminological model, this means retriev-
ing those documents represented by individual constants
i such that (sing i) is subsumed by the concept C rep-
resenting the query. However, in checking subsumption
between (sing i) and C, the contents of the knowledge
base must be brought to bear : in fact, we want the as-
sertions concerning i and the axioms involving (directly
or indirectly) the predicate symbols accurring in C to
participate in the inferential process. We need then a
notion of “subsumption modulo the contents of Ω”9.

Definition 5 Let Ω be a satisfiable knowledge base, and
let C1, C2 be two concepts. We say that C1 is subsumed
by C2 in Ω (written C1 ¹Ω C2) iff for every model I of
Ω it is true that I(C1) ⊆ I(C2).

The terminological model then sees IR as the task of re-
trieving, as a response to a query C, all and only those
documents i such that (sing i) ¹Ω C, where Ω is a TL
representation of the document base. In other words, IR
is the task of retrieving all those documents whose mem-
bership in the class denoted by C is a direct consequence
of the truth of all the assertions and axioms of Ω.

It may be interesting to note that both the vector
model and the boolean model of IR are special cases of
our terminological model: the vector model is obtained
by letting the definitional module be empty and the ter-
minological module consist of the and operator only,

9Subsumption modulo the contents of Ω is what, in Section
2, we have called “explicit subsumption”; “implicit subsump-
tion” is then explicit subsumption in an empty knowledge
base.

while the boolean model is obtained by also consider-
ing the or and not operators, that can be defined in the
obvious way.

.
Before closing this section, we note that our model

does not suffer from the “false document problem” (see
e.g. [5; page 240]). In our model, a “false document” i
obviously is one for which no assertion of type C[i] has
been entered: it turns out that no query will cause the
retrieval of i, as i is not subsumed by any non-trivial
concept10.

4.2 Reasoning on Mirtl

We now turn to briefly sketching how an algorithm that
performs deductions on Mirtl knowledge bases can be
specified, and how such algorithm should be used for
best results in an IR context.

Schmidt-Schauß and Smolka [19] have recently pro-
posed constraint propagation as a technique for speci-
fying inferential algorithms for TLs. This proposal has
gained widespread acceptance, and constraint propaga-
tion has virtually become the standard technique in the
field; in fact, it allows to easily specify inferential al-
gorithms for TLs in a way that is both modular and
informative as to what the computational complexity of
the resulting algorithm is.

In order to introduce our algorithm, we will need an
alphabet V of individual variables (with metavariables x,
x1, x2, . . ., y, y1, y2, . . .). Individual variables and indi-
vidual constants will collectively be called objects (with
metavariables w, w1, w2, . . .). We define constraints
(with metavariables θ, θ1, θ2, . . .) to be expressions of
the form C[w] or of the form R[w1, w2], where C is a con-
cept, R is a role and w, w1, w2 are objects. Assertions
are thus a particular brand of constraints. Constraint
sets (CSs - with metavariables Θ, Θ1, Θ2, . . .) will be
finite sets of constraints. A CS is said to contain a clash
iff it contains one of the following:

• a constraint of type M [w] and another constraint of
type (a-not M)[w];

• a constraint of type (bottom)[w];

• a constraint of type (sing i1)[i2], with i1 6= i2;

• a constraint of type (atleast n R)[w] and another
constraint of type (atmost m R)[w], with n > m.

Constraint propagation works by transforming a CS Θ
into a CS Θ′ by adding to it one or more constraints;
each transition between CSs is the result of the ap-
plication of a completion rule. For instance, one such
rule (the “→all” rule) stipulates that, if the constraints

10Here “non-trivial” means “not mentioning i itself”: quite
obviously, if the query is the concept (sing i) (corresponding
to an explicit user request to retrieve document i), i is of
course retrieved as a result of it.

(all R C)[w1] and R[w1, w2] both belong to Θ, the con-
straint C[w2] should also be added to Θ. Constraint
propagation algorithms for TLs basically consist of a set
of completion rules, one for each (major) term-forming
operator belonging to the terminological module of the
logic in question.

Most such algorithms work by reducing the problem of
checking subsumption to the problem of checking knowl-
edge base unsatisfiability. To check whether a knowledge
base Ω = 〈∆,Γ〉 is unsatisfiable, Ω is first transformed
into an equivalent set of constraints Θ by expanding all
assertions in Γ by means of the axioms in ∆. The com-
pletion rules are then applied to Θ until the resulting
constraint set Θ′ is complete, i.e. until no more rule is
applicable; the way the completion rules are specified
guarantees the finiteness of the process. If Θ′ is clash-
free (this is easily checked), then the subsumption re-
lationship in question does indeed obtain; otherwise, it
does not. The set of completion rules for Mirtl is given
in an extended version of this paper [13].

Given these premises, it might be argued that the pro-
cess we have described looks intolerably slow for IR pur-
poses: if for every query C and for every document i
contained in the document base represented by Ω, the
system can decide whether to retrieve i as a response to
C only by checking that (sing i) ¹Ω C by means of the
above process, then it looks like answering to a single
query might take years!

In general, however, it will not be the case that, given
a query C, this algorithm is applied anew for each doc-
ument i in the document base; and it will neither be the
case that this algorithm is applied anew for each new
query C! In fact, unlike most other logics, TLs encour-
age inference to be performed at KB construction time
rather than at query time. This means that the most rel-
evant part of the inferential workload is performed while
knowledge (i.e. axioms and assertions) is entered.

Accordingly, the standard way of operating in an IR
setting will be to constantly keep the KB representing
the document base in the form of a complete constraint
set while it is incrementally being built. Given a KB in
the form of a complete constraint set, the addition of an
assertion (resp. an axiom) to the KB will involve the ap-
plication of the completion rules to the assertion (resp. to
the constraints affected by the axiom) only, hence caus-
ing a minor update to the constraint set itself. In this
way, the constraint set is built incrementally, and it is
already in complete (hence computationally convenient)
form when queries are formulated to the system11. When
a query is formulated, (a modified form of) it is added to
the constraint set and the completion rules are applied;
at this point, for every individual constant i occurring in

11Incidentally, we should note that by keeping the knowl-
edge base in the form of a complete constraint set, we get
consistency checking of the knowledge base “for free”.

the set, the (sing i) ¹Ω C condition is checked by simple
table lookup techniques. In the end, this means that one
single processing of the knowledge base serves multiple
queries, and one single processing of a query serves mul-
tiple documents, thus reducing the query-time theorem
proving operation to table lookup.

5 Further research

In this paper we have argued that a terminological logic
may be profitably used for IR modelling tasks, yielding
a terminological model of IR. Actually, we think that the
material presented here just scratches the surface of the
problem, and that a lot of issues still need to be tackled
in order to arrive at a satisfactory account of the IR
endeavour.

Among the issues that, in our opinion, are the most
urgent and/or promising are those related to the ex-
pressive power of the TL. The Mirtl logic we have de-
scribed in the previous sections may be considered as a
first attempt at IR modelling, and as a demonstrative of
what the potential of TLs is for such a task. Of course,
Mirtl is still susceptible of modifications under several
respects.

First of all, the set of term-forming operators that
make up its terminological module is far from being fi-
nal. The choice of primitives has been made with an
eye towards maintaining the logic small enough to be
computationally viable, while at the same time having
enough expressive power for accounting for the repre-
sentation of documents of real-life complexity. However,
other operators might be deemed particularly useful, or
even necessary.

An inadequacy of the model as it stands is that it
only addresses what has been called “correspondence”
(or“system relevance”) of a document to a query; it is
clear that a further effort is needed to have it address
“user relevance” too. Another inadequacy of the model
as it stands is that, even confining the discussion to “sys-
tem relevance”, only “total” (or “perfect”) relevance is
modelled; again, a further effort is needed to have the
model address “partial relevance” too. Luckily enough,
current research in TLs seems to indicate that both these
shortcomings can be addressed by remaining within the
paradigm of TLs. To this respect, we are currently con-
sidering the idea of introducing probabilistic reasoning
in our model along the approach described in [8].

The computational complexity of the reasoning algo-
rithm is also a major problem that has to be tackled12.
From this point of view, we are already treading on dan-
gerous ground, as Mirtl is a proper superset of the

12Actually, when speaking of the complexity of a problem,
one always refers to “worst case complexity”; although in an
IR context this might not be an interesting parameter, in the
absence of statistical characterizations of the “average case”
we will use it as a first approximation of the computational
feasibility of the logics in question.

ALEN logic13, which is known to be NP-hard [7].
In order to solve this problem we are currently working

[12] on a variant of Mirtl based, rather than on classical
logic, on relevance logic [1]; early results in the field sug-
gest that “relevance” TLs are in general computationally
easier to handle than their classical equivalents [17].

An alternative solution to the complexity problem
that we are considering is the investigation of proba-
bilistic algorithms for subsumption checking. The an-
swer that these algorithms would give to the question if
concept C1 subsumes concept C2 would be accurate only
with probability P < 1; while, given the seemingly inher-
ent impossibility of achieving perfect performance in IR
systems, this would not be a great loss, the advantage to
be gained might be considerable, as in many cases prob-
abilistic algorithms have much better complexity char-
acteristics than their non-probabilistic counterparts.

Acknowledgements

This work has been partially funded by the ESPRIT
BRA Working Group MIRO. Thanks to the members
of MIRO and to three anonymous referees for providing
stimulating comments.

References

[1] Alan R. Anderson and Nuel D. Belnap. Entailment
- the logic of relevance and necessity. Princeton Uni-
versity Press, Princeton, NJ, 1975.

[2] Franz Baader. A formal definition for the expressive
power of knowledge representation languages. In
Proceedings of ECAI-90, 9th European Conference
on Artificial Intelligence, pages 53–58, Stockholm,
Sweden, 1990.

[3] Ronald J. Brachman. A structural paradigm for rep-
resenting knowledge. Technical Report 3605, Bolt
Beranek and Newman, Cambridge, MA, 1978.

[4] Ronald J. Brachman and Hector J. Levesque, edi-
tors. Readings in knowledge representation. Morgan
Kaufmann, San Mateo, CA, 1985.

[5] Yves Chiaramella and Jean Pierre Chevallet. About
retrieval models and logic. The Computer Journal,
35:233–242, 1992.

[6] Francesco M. Donini, Maurizio Lenzerini, Daniele
Nardi, and Werner Nutt. The complexity of concept
languages. In Proceedings of KR-91, 2nd Interna-
tional Conference on Principles of Knowledge Rep-
resentation and Reasoning, pages 151–162, Cam-
bridge, MA, 1991.

13The terminological module of Mirtl is equal to ALEN
plus the sing and inv operators.

[7] Francesco M. Donini, Maurizio Lenzerini, Daniele
Nardi, and Andrea Schaerf. From subsumption to
instance checking. Technical Report 15.92, Dipar-
timento di Informatica e Sistemistica, Università di
Roma “La Sapienza”, Roma, Italy, 1992.

[8] Joseph Y. Halpern. An analysis of first-order logics
of probability. Artificial Intelligence, 46:311–350,
1990.

[9] John Haugeland, editor. Mind design. The MIT
Press, Cambridge, MA, 1981.

[10] Richard Hull and Roger King. Semantic database
modelling: survey, applications and research issues.
ACM Computing Surveys, 19:201–260, 1987.

[11] Carlo Meghini, Fausto Rabitti, and Costantino
Thanos. Conceptual modeling of multimedia docu-
ments. IEEE Computer, 24(10):23–30, 1991.

[12] Carlo Meghini and Fabrizio Sebastiani. Towards
a relevance logic of information retrieval. Unpub-
lished manuscript, 1992.

[13] Carlo Meghini, Fabrizio Sebastiani, Umberto Strac-
cia, and Costantino Thanos. A model of informa-
tion retrieval based on a terminological logic (ex-
tended version). Technical report, Istituto di Elabo-
razione dell’Informazione, Consiglio Nazionale delle
Ricerche, Pisa, Italy, 1993. Forthcoming.

[14] Marvin Minsky. A framework for representing
knowledge. In Patrick J. Winston, editor, The
psychology of computer vision, pages 211–277.
McGraw-Hill, New York, NY, 1975. [a] An extended
version appears also in [4], pp. 245–262, and in [9],
pp. 95–128.

[15] Bernhard Nebel. Terminological cycles: semantics
and computational properties. In John Sowa, editor,
Principles of semantic networks: explorations in the
representation of knowledge, pages 331–361. Morgan
Kaufmann, Los Altos, CA, 1991.

[16] Jianyun Nie. An information retrieval model based
on modal logic. Information processing and man-
agement, 25:477–491, 1989.

[17] Peter F. Patel-Schneider. A four-valued semantics
for frame-based description languages. In Proceed-
ings of AAAI-86, 5th Conference of the American
Association for Artificial Intelligence, pages 344–
348, Philadelphia, PA, 1986.

[18] Joan Peckham and Fred Maryanski. Semantic data
models. ACM Computing Surveys, 20:154–189,
1988.

[19] Manfred Schmidt-Schauß and Gert Smolka. At-
tributive concept descriptions with complements.
Artificial Intelligence, 48:1–26, 1991.

[20] Fabrizio Sebastiani and Umberto Straccia. A com-
putationally tractable terminological logic. In Pro-
ceedings of SCAI-91, 3rd Scandinavian Conference
on Artificial Intelligence, pages 307–315, Roskilde,
Denmark, 1991.

[21] Cornelis J. van Rijsbergen. A new theoretical frame-
work for information retrieval. In Proceedings of the
1986 ACM Conference on Research and Develop-
ment in Information Retrieval, pages 194–200, Pisa,
Italy, 1986.

[22] Cornelis J. van Rijsbergen. A non-classical logic
for information retrieval. The Computer Journal,
29:481–485, 1986.

