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Abstract. The extraction of information from a source containing term-
classified objects is plagued with uncertainty. In the present paper we
deal with this uncertainty in a qualitative way. We view an information
source as an agent, operating according to an open world philosophy. The
agent knows some facts, but is aware that there could be other facts, com-
patible with the known ones, that might hold as well, although they are
not captured for lack of knowledge. These facts are, indeed, possibilities.
We view possibilities as explanations and resort to abduction in order
to define precisely the possibilities that we want our system to be able
to handle. We introduce an operation that extends a taxonomy-based
source with possibilities, and then study the property of this operation
from a mathematical point of view.

1 Introduction

Taxonomies are probably the oldest conceptual modeling tool. Nevertheless, they
make a powerful tool still used for indexing by terms books in libraries, and
very large collections of heterogeneous objects (e.g. see [8]) and the Web (e.g.
Yahoo!, Open Directory). The extraction of information from an information
source (hereafter, IS) containing term-classified objects is plagued with uncer-
tainty. From the one hand, the indexing of objects, that is the assignment of a
set of terms to each object, presents many difficulties, whether it is performed
manually by some expert or automatically by a computer programme. In the
former case, subjectivity may play a negative role (e.g. see [10]); in the latter
case, automatic classification methods may at best produce approximations. On
the other hand, the query formulation process, being linguistic in nature, would
require perfect attuning of the system and the user language, an assumption
that simply does not hold in open settings such as the Web.
A collection of textual documents accessed by users via natural language queries
is clearly a kind of IS, where documents play the role of objects and words play
the role of terms. In this context, the above mentioned uncertainty is typically
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dealt with in a quantitative way, i.e. by means of numerical methods: in a doc-
ument index, each term is assigned a weight, expressing the extent to which the
document is deemed to be about the term. The same treatment is applied to
each user query, producing an index of the query which is a formal representa-
tion of the user information need of the same kind as that of each document.
Document and query term indexes are then matched against each other in order
to estimate the relevance of the document to a query (e.g. see [1]).

In the present study, we take a different approach, and deal with uncertainty in a
qualitative way. We view an IS as an agent, operating according to an open world
philosophy. The agent knows some facts, but it does not interpret these facts as
the only ones that hold; the agent is somewhat aware that there could be other
facts, compatible with the known ones, that might hold as well, although they
are not captured for lack of knowledge. These facts are, indeed, possibilities. One
way of defining precisely in logical terms the notion of possibility, is to equate
it with the notion of explanation. That is, the set of terms associated to an
object is viewed as a manifestation of a phenomenon, the indexing process, for
which we wish to find an explanation, justifying why the index itself has come
to be the way it is. In logic, the reasoning required to infer explanations from
given theory and observations, is known as abduction. We will therefore resort to
abduction in order to define precisely the possibilities that we want our system
to be able to handle. In particular, we will define an operation that extends an IS
by adding to it a set (term, object) pairs capturing the sought possibilities, and
then study the property of this operation from a mathematical point of view.
The introduced operation can be used also for ordering query answers using a
possibility-based measure of relevance.

The paper is structured as follows. Sections 2 and 3 provide the basis of our
framework, introducing ISs and querying. Section 4 introduces extended ISs
and Section 5 discusses query answering in such sources. Subsequently, Section
6 generalizes extended ISs and introduces iterative extensions of ISs. Finally,
Section 7 concludes the paper. For reasons of space, proofs are just sketched.

2 Information Sources

An IS consists of two elements. The first one is a taxonomy, introduced next.

Definition 1: A taxonomy is a pair O = (T,K) where T is a finite set of
symbols, called the terms of the taxonomy, and K is a finite set of conditionals
on T, i.e. formulae of the form p → q where p and q are terms; K is called the
knowledge base of the taxonomy. The knowledge graph of O is the directed graph
GO = (T, L), such that (t, t′) ∈ L iff t→ t′ is in K. 2

The second element of an IS is a structure, in the logical sense of the term.

Definition 2: Given a taxonomy O = (T,K), a structure on O is a pair
U = (Obj, I) where: Obj is a countable set of objects, called the domain of the
structure, and I is a finite relation from T to Obj, that is I ⊆ T × Obj, called
the interpretation of the structure. 2



As customary, we will treat the relation I as a function from terms to sets of
objects and, where t is a term in T, write I(t) to denote the extension of t,
i.e. I(t) = {o ∈ Obj | (t, o) ∈ I}.
Definition 3: An information source (IS) S is a pair S = (O,U) where O is a
taxonomy and U is a structure on O. 2

It is not difficult to see the strict correspondence between the notion of IS and
that of a restricted monadic predicate calculus: the taxonomy plays the role of the
theory, by providing the predicate symbols (the terms) and a set of axioms (the
knowledge base); the structure plays the basic semantical role, by providing a
domain of interpretation and an extension for each term. These kinds of systems
have also been studied in the context of description logics [3], where terms are
called concepts and axioms are called terminological axioms. For the present
study, we will mostly focus on the information relative to single objects, which
takes the form of a propositional theory, introduced by the next Definition.

Definition 4: Given an IS S and an object o ∈ Obj, the index of o in S, indS(o),
is the set of terms in whose extension o belongs according to the structure S,
formally: indS(o) = {t ∈ T | (t, o) ∈ I}. The context of o in S, CS(o), is defined
as: CS(o) = indS(o) ∪K. 2

For any object o, CS(o) consists of terms and simple conditionals that collec-
tivelly form all the knowledge about o that S has. Viewing the terms as propo-
sitional variables makes object contexts propositional theories. This is the view
that will be adopted in this study.

Example 1: Throughout the paper, we will use as an example the IS graphi-
cally illustrated in Figure 1, given by (the abbreviations introduced in Figure 1
are used for reasons of space): T = {>, C, SC, MPC, UD, R, M, UMC}, K = {C→
>, SC → C, MPC → C, UD → >, R → SC, M → SC, UMC → MPC, UMC → UD}, and
U is the structure given by: Obj = {1, 2} and I = {(SC, 1), (M, 2), (MPC, 2)}.
The index of object 2 in S, indS(2) is {M, MPC}, while the context of 2 in S is
CS(2) = indS(2) ∪K. Notice that the taxonomy of the example has a maximal
element, >, whose existence is not required in every taxonomy. 2

Given a set of propositional variables P, a truth assignment for P is a function
mapping P to the set of standard truth values, denoted by T and F, respec-
tively [5]. A truth assignment V satisfies a sentence σ, V |= σ, if σ is true in
V, according to the truth valuation rules of predicate calculus (PC). A set of
sentences Σ logically implies the sentence α, Σ |= α, iff every truth assignment
which satisfies every sentence in Σ also satisfies α.

In the following, we will be interested in deciding whether a certain conditional
is logically implied by a knowledge base.

Proposition 1: Given a taxonomy O = (T,K) and any two terms p, q in T,
K |= p→ q iff there is a path from p to q in GO. 2

From a complexity point of view, the last Proposition reduces logical implication
of a conditional to the well-known problem on graphs REACHABILITY, which
has been shown to have time complexity equal to O(n2), where n is the number



of nodes of the graph [7]. Consequently, for any two terms p, q in T, K |= p→ q
can be decided in time O(|T |2).
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Fig. 1. A source

3 Querying Information Sources

We next introduce the query language for extracting information from an IS in
the traditional question-answering way.

Definition 5: Given a taxonomy O = (T,K), the query language for O, LO,
is defined by the following grammar, where t is a term in T :

q ::= t | q ∧ q′ | q ∨ q′ | ¬q | (q) 2

The answer to queries is defined in logical terms by taking a model-theoretic
approach, compliant with the fact that the semantical notion of structure is used
to model the extensional data of an IS. To this end, we next select, amongst the
models of object contexts, the one realizing a closed-world reading of an IS,
whose existence and uniqueness trivially follow from the next Definition.

Definition 6: Given an IS S, for every object o ∈ Obj, the truth model of o in
S, Vo,S , is the truth assignment for T defined as follows, for each term t ∈ T :

Vo,S(t) =

{
T if CS(o) |= t
F otherwise

Given a query ϕ in LO, the answer of ϕ in S is the set of objects whose truth
model satisfies the query: ans(ϕ, S) = {o ∈ Obj | Vo,S |= ϕ}. 2

In the Boolean model of information retrieval, a document is returned in response
to a query if the index of the document satisfies the query. Thus, the above
definition extends Boolean retrieval by considering also the knowledge base in
the retrieval process.

Example 2: The answer to the query C in the IS introduced in Example 1,
ans(C, S), consists of both object 1 (since {SC, SC→ C} ⊆ CS(1) hence V1,S(C) =
T) and object 2 (since {MPC, MPC→ C} ⊆ CS(2) hence V2,S(C) = T). 2

The next definition introduces the function αS , which, along with Proposition 1,
provides a mechanism for the computation of answers.



Definition 7: Given an IS S, the solver of S, αS , is the total function from
queries to sets of objects, αS : LO → P(Obj), defined as follows:

αS(t) =
⋃
{I(u) | K |= u→ t}

αS(q∧q′) = αS(q)∩αS(q′), αS(q∨q′) = αS(q)∪αS(q′), and αS(¬q) = Obj\αS(q).
2

As intuition suggests, solvers capture sound and complete query answerers.

Proposition 2: For all ISs S and queries ϕ ∈ LO, ans(ϕ, S) = αS(ϕ). 2

We shall also use I− to denote the restriction of αS on T , i.e. I− = αS|T .

Example 3: In the IS previously introduced, the term C can be reached in
the knowledge graph by each of the following terms: C, SC, MPC, R, M, and UMC.
Hence: ans(C, S) = αS(C) = I(C)∪I(SC)∪I(MPC)∪I(R)∪I(M)∪I(UMC) = {1, 2}.
Likewise, it can be verified that ans(M, S) = {2} and ans(UMC, S) = ∅. 2

In the worst case, answering a query requires (a) to visit the whole knowledge
graph for each term of the query and (b) to combine the so obtained sets of
objects via the union, intersection and difference set operators. Since the time
complexity of each such operation is polynomial in the size of the input, the time
complexity of query answering is polynomial.

4 Extended Information Sources

Let us suppose that a user has issued a query against an IS and that the answer
does not contain objects that are relevant to the user information need. The user
may not be willing to replace the current query with another one, for instance
because of lack of knowledge on the available language or taxonomy. In this
type of situation, both database and information retrieval (IR) systems offer
practically no support. If the IS does indeed contain relevant objects, the reason
of the user’s disappointment is indexing mismatch: the objects have been indexed
in a way that is different from the way the user would expect.
One way of handling the problem just described, would be to consider the index
of an IS not as the ultimate truth about how the world is and is not, but as
a flexible repository of information, which may be interpreted in a more liberal
or more conservative way, depending on the context. For instance, the above
examples suggest that a more liberal view of the IS, in which the camera in
question is indexed under the term M, could help the user in getting out of the
impasse. One way of defining precisely in logical terms the discussed extension,
is to equate it with the notion of explanation. That is, we view the index of
an object as a manifestation, or observation, of a phenomenon, the indexing
process, for which we wish to find an explanation, justifying why the index itself
has come to be as it is. In logic, the reasoning required to infer explanations
from given theory and observations, is known as abduction.
The model of abduction that we adopt is the one presented in [4]. Let LV be the
language of propositional logic over an alphabet V of propositional variables,



with syntactic operators ∧, ∨, ¬, →, > (a constant for truth) and ⊥ (falsity). A
propositional abduction problem is a tuple A = 〈V,H,M, Th〉, where V is a finite
set of propositional variables, H ⊆ V is the set of hypotheses, M ⊆ V is the set
of manifestations, and Th ⊆ LV is a consistent theory. S ⊆ H is a solution (or
explanation) for A iff Th∪S is consistent and Th∪S |= M. Sol(A) denotes the
set of the solutions to A. In the context of an IS S, the terms in S taxonomy play
both the role of the propositional variables V and of the hypotheses H, as there
is no reason to exclude apriori any term from an explanation; the knowledge
base in S taxonomy plays the role of the theory Th; the role of manifestation,
for a fixed object, is played by the index of the object. Consequently, we have
the following

Definition 8: Given an IS S and object o ∈ Obj, the propositional abduction
problem for o in S, AS(o), is the propositional abduction problem AS(o) =
〈T, T, indS(o),K〉. The solutions to AS(o) are given by:

Sol(AS(o)) = {A ⊆ T | K ∪A |= indS(o)}

where the consistency requirement on K ∪ A has been omitted since for no
knowledge base K and set of terms A, K ∪A can be inconsistent. 2

Usually, certain explanations are preferable to others, a fact that is formalized
in [4] by defining a preference relation � over Sol(A). Letting a ≺ b stand for
a � b and b 6� a, the set of preferred solutions is given by:

Sol�(A) = {S ∈ Sol(A) | 6 ∃S′ ∈ Sol(A) : S′ ≺ S}.

In the present context, we require the preference relation to satisfy the following
criteria, reflecting the application priorities in order of decreasing priority: (1)
explanations including only terms in the manifestation are less preferable than
explanations including also terms not in the manifestation; (2) explanations
altering the behaviour of the IS to a minimal extent, are to be preferred; (3)
between two explanations that alter the behaviour of the IS equally, the simpler,
that is the smaller, one is to be preferred. Without the first criterion, all minimal
solutions would be found amongst the subsets of M, a clearly undesirable effect,
at least as long as alternative explanations are possible. In order to formalize
our intended preference relation, we start by defining perturbation.

Definition 9: Given an IS S, an object o ∈ Obj and a set of terms A ⊆ T,
the perturbation of A on S with respect to o, p(S, o,A) is given by the number of
additional terms in whose extension o belongs, once the index of o is extended
with the terms in A. Formally:

p(S, o,A) = |{t ∈ T | (CS(o) ∪A) |= t and CS(o) 6|= t}|. 2

As a consequence of the monotonicity of the PC, for all ISs S, objects o ∈ Obj and
sets of terms A ⊆ T, p(S, o,A) ≥ 0. In particular, p(S, o,A) = 0 iff A ⊆ indS(o).

We can now define the preference relation over solutions of the above stated
abduction problem.

Definition 10: Given an IS S, an object o ∈ Obj and two solutions A and A′

to the problem AS(o), A � A′ if either of the following holds:



1. p(S, o,A′) = 0
2. 0 < p(S, o,A) < p(S, o,A′)
3. 0 < p(S, o,A) = p(S, o,A′), and A ⊆ A′. 2

In order to derive the set Sol�(AS(o)), we introduce the following notions.

Definition 11: Given an IS S and an object o ∈ Obj, the depth of Sol(AS(o)),
do, is the maximum perturbation of the solutions to AS(o), that is:

do = max{p(S, o,A) | A ∈ Sol(AS(o))}
Moreover, two solutions A and A′ are equivalent, A ≡ A′, iff they have the same
perturbation, that is p(S, o,A) = p(S, o,A′). 2

It can be readily verified that ≡ is an equivalence relation over Sol(AS(o)),
determining the partition π≡ whose elements are the set of solutions having the
same perturbation. Letting Pi stand for the solutions having perturbation i,

Pi = {A ∈ Sol(AS(o)) | p(S, o,A) = i}
it turns out that π≡ includes one element for each perburbation value in between
0 and do, as the following Proposition states.

Proposition 3: For all ISs IS S and objects o ∈ Obj, π≡ = {Pi | 0 ≤ i ≤ do}.
In order to prove the Proposition, it must be shown that {Pi | 0 ≤ i ≤ do} is
indeed a partition, that is: (1) Pi 6= ∅ for each 0 ≤ i ≤ do; (2) Pi ∩ Pj = ∅
for 0 ≤ i, j ≤ do, i 6= j; (3)

⋃{Pi | 0 ≤ i ≤ do} = Sol(AS(o)). Items 2 and
3 above are easily established. Item 1 is trivial for do = 0. For do > 0, item 1
can be established by backward induction on i : the basis step, Pdo 6= ∅, is true
by definition. The inductive step, Pk 6= ∅ for k > 0 implies Pk−1 6= ∅, can be
proved by constructing a solution having perturbation k−1 from a solution with
perturbation k. Finally, it trivially follows that this partition is the one induced
by the ≡ relation. 2

We are now in the position of deriving Sol�(AS(o)).

Proposition 4: For all ISs S and objects o ∈ Obj,

Sol�(AS(o)) =

{
P0 if do = 0
{A ∈ P1 | for no A′ ∈ P1, A

′ ⊂ A} if do > 0

This proposition is just a corollary of the previous one. Indeed, if do is 0, by
Proposition 3, Sol(AS(o)) = P0 and by Definition 10, all elements in Sol(AS(o))
are minimal. If, on the other hand, do is positive, then by criterion (1) of Defi-
nition 10, all solutions with non-zero perturbation are preferable to those in P0,
and not viceversa; and by criterion (2) of Definition 10, all solutions with pertur-
bation equal to 1 are preferable to the remaining, and not viceversa. Hence, for a
positive do, minimal solutions are to be found in P1. Finally, by considering the
containment criterion set by item (3) of Definition 10, the Proposition results.

Example 4: Let us consider again the IS S introduced in Example 1, and
the problem AS(1). The manifestation is given by {SC}. Letting B stand for the
set {UMC, MPC, UD,>, C}, it can be verified that: Sol(AS(1)) = P(T ) \ P(B) as
B includes all the terms in T not implying SC. Since do = 5, minimal solutions
are to be found in the set P1. By considering all sets of terms in Sol(AS(1)), it



can be verified that: P1 = {{M} ∪ A | A ∈ P({SC, C,>})} ∪ {{R} ∪ A | A ∈
P({SC, C,>})} ∪ {{SC, UD} ∪ A | A ∈ P({>, C})} ∪ {{SC, MPC} ∪ A | A ∈
P({>, C})}. By applying the set containment criterion, we have: Sol�(AS(1)) =
{{M}, {R}, {SC, UD}, {SC, MPC}}. Analogously, it can be verified that:
Sol�(AS(2)) = {{M, MPC, UD}, {R, M, MPC}}. 2

We now introduce the notion of extension of an IS. The idea is that an extended
IS (EIS for short) adds to the original IS all and only the indexing information
captured by the abduction process illustrated in the previous Section. In order
to maxime the extension, all the minimal solutions are included in the EIS.

Definition 12: Given an IS S and an object o ∈ Obj, the abduced index of o,
abindS(o), is given by:

abindS(o) =
⋃
Sol�(AS(o)).

The abduced interpretation of S, I+, is given by
I+ = I ∪ {〈t, o〉 ∈ (T ×Obj) | t ∈ abindS(o)}.

Finally, the extended IS, Se, is given by Se = (O,Ue) where U e = (Obj, I+). 2

Example 5: From the last Example, it follows that the extended S is given by
Se = (O,Ue), Ue = (Obj, I+) where: abindS(1) = {SC, M, R, UD, MPC}, abindS(2) =
{M, MPC, UD, R} and
I+ = {(SC, 1), (M, 1), (R, 1), (UD, 1), (MPC, 1), (M, 2), (MPC, 2), (UD, 2), (R, 2)} 2

5 Querying Extended Information Sources

As anticipated in Section 4, EISs are meant to be used in order to obtain more
results about an already stated query, without posing a new query to the under-
lying information system. The following Example illustrates the case in point.

Example 6: The answer to the query M in the extended IS derived in the
last Example, ans(M, Se), consists of both object 1 (since M ∈ abindS(1) hence
M ∈ CSe(1)) and object 2 (since (M, 2) ∈ I hence (M, 2) ∈ I+). Notice that 1 is
not returned when M is stated against S, i.e. ans(M, S) ⊂ ans(M, Se). Instead,
ans(UMC, S) = ans(UMC, Se) = ∅. 2

It turns that queries stated against an EIS can be answered without actually
computing the whole EIS. In order to derive an answering procedure for queries
posed against an EIS, we introduce a recursive function on the IS query language
LO, in the same style as the algorithm for querying IS presented in Section 3.

Definition 13: Given an IS S, the extended solver of S, αeS , is the total function
from queries to sets of objects, αeS : LO → P(Obj), defined as follows:

αeS(t) =
⋂
{αS(u) | t→ u ∈ K and K 6|= u→ t}

αeS(q ∧ q′) = αeS(q) ∩ αeS(q′)

αeS(q ∨ q′) = αeS(q) ∪ αeS(q′)

αeS(¬q) = Obj \ αeS(q)

where αS is the solver of S. 2



Note that since > is the maximal element the set {αS(u) | > → u ∈ K and K 6|=
u→ >} is empty. This means that αeS(>), i.e.

⋂{αS(u) | > → u ∈ K and K 6|=
u→ >} is actually the intersection of an empty family of subsets of Obj. How-
ever, according to the Zermelo axioms of set theory (see [2] for an overview), the
intersection of an empty family of subsets of a universe equals to the universe.
In our case, the universe is the set of all objects known to the source, i.e. the
set Obj, thus we conclude that αeS(>) = Obj. The same holds for each maximal
element (if the taxonomy has more than one maximal elements).

Proposition 5: For all ISs S and queries ϕ ∈ LO, ans(ϕ, Se) = αeS(ϕ). 2

Example 7: By applying the last Proposition, we have:
ans(M, Se) = αeS(M) = αS(SC) = I(SC) ∪ I(R) ∪ I(M) = {1, 2}. 2

6 Iterative Extension of Information Sources

Intuitively, we would expect that ·+ be a function which, applied to an IS in-
terpretation, produces a new interpretation that is equal to or larger than the
original extension, the former case corresponding to the situation in which the
knowledge base of the IS does not enable to find any explanations for each object
index. Technically, this amounts to say that ·+ is a monotonic function, which is
in fact the case. Then, by iterating the ·+ operator, we expect to move from an
interpretation to a larger one, until an interpretation is reached which cannot be
extended any more. Also this turns out to be true, and in order to show it, we
will model the domain of the ·+ operator as a complete partial order, and use
the notion of fixed point in order to capture interpretations that are no longer
extensible.

Proposition 6: Given an IS S, the domain of S is the set D given by D =
{I ∪ A | A ∈ P(T × Obj)}. Then, ·+ is a continuous function on the complete
partial order (D,⊆).
The proof that (D,⊆) is a complete partial order is trivial. The continuity of
·+ follows from its monotonicity (also, a simple fact to show) and the fact that
in the considered complete partial order all chains are finite, hence the class of
monotonic functions coincides with the class of continuous functions [6]. 2

As a corollary of the previous Proposition and of the Knaster-Tarski fixed point
theorem, we have:

Proposition 7: The function ·+ has a least fixed point that is the least upper
bound of the chain {I, I+, (I+)+, . . .}. 2

Example 8: Let R be the EIS derived in the last Example, i.e. R = Se, and
let us consider the problem AR(1), for which the manifestation is given by the
set abindS(1) above. It can be verified that Sol(AR(1)) = P0 ∪ P1, where:

P0 = {{R, M, MPC, UD} ∪A | A ∈ P({SC, C,>})}
P1 = {{R, M, UMC} ∪A | A ∈ P({SC, C,>, MPC, UD})}

Therefore: Sol�(AR(1)) = {{R, M, UMC}} from which we obtain: abindR(1) =
{R, M, UMC} which means that the index of object 1 in R has been extended with
the term UMC. If we now set P = Re, and consider the problem AP (1), we find



Sol(AP (1)) = P0 = {{R, M, UMC} ∪A | A ∈ P({SC, MPC, UD, C,>})}
Consequently, Sol�(AP (1)) = {{R, M, UMC}} and abindP (1) ⊆ indP (1). Analo-
gously, we have abindR(2) = indR(2) ∪ {UMC} and abindP (2) ⊆ indP (2). Thus,
since ((I+)+)+ = (I+)+, (I+)+ is a fixed point, which means that P is no longer
extensible. Notice that ∅ = ans(UMC, S) = ans(UMC, R) ⊂ ans(UMC, P ) = {1, 2}.
2

7 Conclusion and Future Work

To alleviate the problem of indexing uncertainty we have proposed a mechanism
which allows liberating the index of a source in a gradual manner. This mecha-
nism is governed by the notion of explanation, logically captured by abduction.
The proposed method can be implemented as an answer enlargement 3 process
where the user is not required to give additional input, but from expressing
his/her desire for more objects. Another interesting remark is that the abduced
extension operation can be applied not only to manually constructed taxonomies
but also to taxonomies derived automatically on the basis of an inference service.
For instance, it can be applied on sources indexed using taxonomies of compound
terms which are defined algebraically [9]. The introduced framework can be also
applied for ranking the objects of an answer according to an explanation-based
measure of relevance. In particular, we can define the rank of an object o as

follows: rank(o) = min{ k | o ∈ α(k)e
S (ϕ)}.
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