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Abstract

The paper presents a predicate locking scheduler that maximizes con-
currency by locking as many of the database entities as possible without
compromising the correctness of execution of the database transactions.
The scheduling strategy that guarantees the maximal concurrency is first
identified, then a predicate language allowing an efficient implementation
of this strategy is given. The optimal predicate locking scheduler is succes-
sively presented, based on a lattice-theoretic formalization of the underly-
ing concepts. Finally, the range of applicability of the optimal scheduling
strategy is circumscribed, by showing that any significant extension to
the expressive power of the predicate language accepted by the optimal
scheduler causes an irreparable loss of efficiency.

1 Introduction

There is a vast literature on the theory and practice of database concurrency
control [11, 1]. A number of algorithms for concurrency control protocols have
been proposed, implemented and used in commercial systems. The most com-
mon technique for concurrency control is locking. One way to use this technique
to obtain correct schedules is to adopt two-phase locking (2PL) [6]. It is in-
teresting to note that 2PL, which was historically the first concurrency control
technique to be proposed, is in some sense the best. It can be shown that, when
transactions access database entities without any specific order, they must be
two-phase locked to preserve the integrity of the database. From a different
point of view, [11] proved that, when the concurrency control algorithm has
only dynamic information on database entities, then the greatest concurrency
achievable is that of 2PL.

When concurrency control is considered, the database is modelled as a fixed
set of entities which can be accessed by read and write operations. However,
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real databases can grow and shrink dynamically. In addition to read and write,
they support insert and delete operations. In the case of dynamic databases a
concurrency control problem arises: the phantom problem [1]. This problem
causes a transaction to obtain inconsistent views of the database, due to the
appearing and disappearing of some database entities, like ghosts. In this case,
2PL does not guarantee the correct execution of concurrent database transac-
tions. In [1], some techniques to solve the phantom problem are discussed.

A more general technique to solve this problem is predicate locking. Pred-
icate locking allows sets of database entities rather than single entities to be
locked. This is obtained by using complex predicates, such as Boolean combi-
nations of simple predicates, to denote sets of database entities.

Predicate locking is not widely used because it poses two main problems.
First, it is very expensive, since it requires the detection of conflicts between
predicates. Second, it performs poorly, since it permits a low level of concur-
rency between concurrent database transactions.

In this paper we present a predicate locking scheduler that is both opti-
mal and efficient. The former property means that the scheduler maximizes
concurrency. The latter means that, by limiting the expressive power of the
predicate language, the scheduler can be realized by a polynomially bounded
algorithm. Since we also show that any significant extension to the predicate
language causes the scheduler to lose its efficiency, our scheduler turns out to
be the best predicate locking scheduler that maximizes concurrency.

The paper is structured as follows. Section 2 presents a formal model of
predicate locking, and defines a correctness criterion for predicate locking sched-
ulers. The typical predicate locking scheduler is briefly examined in Section 3,
with the aim of showing its limits with respect to concurrency. In Section 4, the
scheduling strategy guaranteeing maximal concurrency is presented and proved
to be correct. Section 5 provides an efficient implementation of this strategy,
identifying a predicate language that allows the effective computation of the
predicates involved in the strategy. Finally, it is shown that any significant
extension to the expressivity of the identified predicate language results in the
loss of the efficiency of the scheduler.

2 The model

We present a model that extends the model for database concurrency control
presented in [11] to the predicate locking case.
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2.1 The database and the predicate language

Most of the work on predicate locking (for example [6, 12, 2]) assumes a record-
based database model, quite often the relational model, in which expressions
of the tuple calculus [3] are used as predicates. Our aim is to define a model
that, following [11], makes no assumptions on the structure of the objects of
the database, and allows the denotation of sets of such objects by means of the
formulae of a first-order language.

Definition 1: A database is a triple 〈E,D,S〉 where

(i) E = {e1, e2, . . .} is a countable set of database entities;

(ii) D = {〈D1,≺1〉, 〈D2,≺2〉, . . . , 〈Dm,≺m〉}, m ≥ 1, is a set of domains of
the database; each Di is a non-empty set, totally ordered by the binary
relation ≺i;

(iii) S = {〈N1, R1〉, 〈N2, R2〉, . . . , 〈Nn, Rn〉}, n ≥ m, is a set of properties of
the database, where for all 1 ≤ i ≤ n, Ni is a name, and Ri is either E, in
which case 〈Ni, Ri〉 is said to be a complex property, or Ri is Dj for some
1 ≤ j ≤ m, in which case 〈Ni, Ri〉 is said to be a simple property.

A database state DB is a pair 〈EDB, FDB〉 where EDB, the state entities, is
a finite subset of E, and FDB is a mapping assigning to each property name
a total function from the state entities to the property range, that is, for all
1 ≤ j ≤ n, FDB(Nj) : EDB → Rj if Nj is the name of a simple property, and
FDB(Nj) : EDB → EDB if Nj is the name of a complex property. 2

The database entities are abstract objects which occur in database states;
a database state gives a status, i.e. a set of property values, to its entities,
consistently with the information contained in the database schema. The model
allows entity aggregation [15] by letting complex properties range over database
entities. Simple properties range over totally ordered sets, the domains, which
in commercial database systems are numbers, time values, strings of characters,
and so on, each of which is equipped with a total ordering relation.

The notion of database state permits us to model a database as an object
that evolves over time, and whose entities can be denoted by means of expres-
sions involving their properties, such as those of the language introduced by the
next definition.

Definition 2: Given a database 〈E,D,S〉, the database predicate language L
is the many-sorted first-order language defined as follows:

(i) the sorts of L are SE , S1, S2, . . . , Sm; the alphabet of L consists of the
following symbols: one constant symbol of sort SE for each database
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entity, and, for all 1 ≤ i ≤ m, one constant symbol of sort Si for each
element in the domain Di; countably many variable symbols x, y, z, . . . ,

all of sort SE ; for all 1 ≤ i ≤ n, one function symbol Ni of sort 〈SE , SE〉
if Ni is a complex property name, whereas if Ni is the name of a simple
property ranging over Dj , the sort of Ni is 〈SE , Sj〉; for all 1 ≤ i ≤ m,

one binary predicate symbol ≺i of sort 〈Si, Si〉, and the equality predicate
symbol, which for short we use in place of (m + 1) equality symbols, one
for each sort S, of sort〈S, S〉;

(ii) for any sort S, a constant term of sort S is a constant symbol of sort S; an
atomic function term of sort S is an expression of the form Ni(x), where
x is a variable and Ni is of sort 〈SE , S〉; a function term of sort S is either
an atomic function term of sort S, or is an expression of the form Ni(t),
where t is a function term of sort SE and Ni is of sort 〈SE , S〉;

(iii) a simple atomic formula has the form γ(φ, δ), where γ is a predicate
symbol of sort 〈S, S〉, φ is a function term of sort S, and δ a constant
term of sort S; a complex atomic formula is an expression of the form
γ(φ1, φ2), where γ is as above and both φ1 and φ2 are function terms of
sort S;

(iv) the well-formed formulae are built out of the atomic formulae by using
the logical connectives ¬,∧ and quantifier ∃ in the standard way. 2

As is customary, we will assume all the other typical logical connectives,
such as ∨,⊃ and ≡, and the universal quantifier ∀ as part of our language,
introduced as abbreviations of the corresponding official expressions.

Example 1: Let us consider a database regarding people’s social life, with
the properties:

〈Best friend, E〉,〈Lives in, String〉,〈Hobby, String〉,〈Age, PositiveInteger〉.

In order to know who is not an amateur musician and lives where her best
friend lives, the following query can be formulated:

Hobby(x) 6= Music ∧ Lives in(x) = Lives in(Best friend(x)).

In order to simplify notation, the variable specification in function terms will
be omitted, when no ambiguity can arise. The people who are younger than
their best friend are found by the query:

Age ≤ Age(Best friend). 2
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Table I: A database state

x Best friend(x) Lives in(x) Hobby(x) Age(x)

e1 e2 Pisa Tennis 27
e2 e3 Pisa Cooking 30
e3 e1 Florence Music 32

A database is an interpretation of the constant and predicate symbols of
its predicate language, because, assigning the usual meaning to equality, it
provides an extension for these symbols. In the same way, a database state is
an interpretation of the function symbols of the database language. Therefore,
by means of the standard semantics for first-order languages [5], sets of database
entities can be associated via a database state to open formulae of the database
language with one free variable. This is introduced in the model by the next
definition, where we assume as known the notions of free variable and truth in
a first-order language.

Definition 3: Given a database 〈E,D,S〉 and its predicate language L, let L1

be the subset of L consisting of the open formulae of L with one free variable,
also called predicates. Given a database state DB and a predicate φ(x), the
extension of φ(x) in DB, εDB[φ(x)], is the set of entities e ∈ EDB such that
φ(e) is true in DB. 2

The extension of the first query of the previous example in the database
state shown in Table I is the set {e1}, whereas the extension of the second
query is {e1, e2}.

In the rest of the paper, we will assume a database consisting of one domain,
the set of natural numbers, totally ordered by the arithmetical relation ≤ . As
it will be shown, this assumption is not strictly needed by our scheduler, which
works also for arbitrarily dense domains, but is dictated by simplicity. The
predicate language of our database has one constant symbol for each natural
number, and no others, and just one binary predicate symbol beside equality,
standing for ≤ . To simplify notation, we assume the natural numbers as con-
stant symbols and ≤ and = as predicate symbols. We will omit the specification
of this database whenever no ambiguity can arise.

2.2 Steps, Transactions, Schedules

A step is the atomic unit of interaction between the user and the database. In
predicate locking, steps are lock or unlock actions on sets of database entities
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denoted via predicates, which come into existence at certain time points. Other
kinds of actions, such as read or write, play no role in assessing whether or not
a schedule is legal, therefore they are ignored in the model.

Definition 4: Let T be a totally ordered countable set of time points. A step
is an element of a countable set S, on which the following total functions are
defined:

a : S → {lock, unlock}, the action of the step;

p : S → L1, the predicate of the step; and

t : S → T, the time of the step. 2

We call a lock (unlock) step a step whose action is lock (unlock). A lock step
s represents a lock request on the entities that, in the current database state,
are denoted by the predicate p(s). Unlock steps, although structurally similar to
lock steps, have quite a different meaning: one such steps s has to be understood
as the request to release the entities which have been granted to a previously
output lock step s′ with the same predicate as s. In fact, unlock steps correspond
one-to-one with output lock steps, and the correspondence is established via
their predicate. The rationale behind this interpretation of unlock steps is that
the status of an entity may be changed by the transaction that has locked it;
as a result, that entity could no longer satisfy the predicate of the step that
is supposed to unlock it, thus remaining locked after the completion of the
transaction that has used it. As the new status of the locked entities will in
general be unpredictable, it is unrealistic to ask transactions to specify the
correct unlock predicates, hence the unlock steps have to be interpreted as
described above.

The time value of an input step is intended as the moment in which the
request is received by the scheduler, whereas the time value of an output step
is intended as the moment in which the scheduler outputs the step. It is thus
reasonable to assume, as we will, that no two steps can have the same time. A
step s is said to reference an entity e in a database state DB when e belongs to
the extension of p(s) in DB.

In the classical theory of concurrency control, a lock step applies to a single
database entity, specified as argument of the step; two lock steps are said to
conflict if they apply to the same entity. In predicate locking, two important
differencies exist: first, lock steps reference set of entities; second, they do it
in an indirect way, via predicates that denote these entities without explicitly
mentioning them. The former fact is dealt with by defining conflict in terms
of the non-disjointness of the involved sets of entities. The latter fact requires
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considering database states, as the entities denoted by a predicate vary in ac-
cordance with the database state. As a result, two lock steps may address a
common entity in a state but not in another one. The problem is solved by
taking a very conservative approach, illustrated by the next definition.

Definition 5: Two lock steps s1 and s2 conflict if there exists a database state
DB in which they reference a common entity, i.e. εDB[(p(s1)]∩εDB[(p(s2))] 6= ∅.
2

It is important to observe that this notion of conflict avoids the phantom
problem mentioned in the Introduction. In addition, it can be stated in logical
terms.

Proposition 1: Two steps s1 and s2 conflict if and only if (p(s1) ∧ p(s2)) is
satisfiable.
Proof: (p(s1)∧p(s2)) is satisfiable if and only if there exists a database state DB
such that εDB[(p(s1)∧p(s2))] 6= ∅, or, equivalently, εDB[(p(s1)]∩εDB[(p(s2))] 6=
∅. 2

Sequences of lock and unlock steps constitute locked transactions, according
to well known rules [11]. These rules can be imported in the predicate locking
case as follows.

Definition 6: A locked transaction, or simply a transaction, LT, is a sequence
of steps satisfying the following conditions, for each database state DB and
database entity e ∈ EDB :

(i) there is at most one lock step s in LT referencing e;

(ii) a lock step referencing e is in LT if and only if there is in LT exactly one
unlock step referencing e;

(iii) a lock step referencing e in LT precedes an unlock step referencing e in
LT ;

(iv) the order of the steps is consistent with the time of the steps, that is a
step si precedes a step sj in LT if and only if t(si) < t(sj). 2

This definition guarantees that the predicates of the steps of transactions
are globally equivalent, ruling out: (a) transactions that “forget” to unlock
previously locked items, such as T : s1s2, where s1 is a lock step with predicate
A ≥ 0 and s2 is an unlock step with predicate A ≥ 1; and (b) transactions that
unlock more data than previously locked, such as T as defined above except that
s1’s predicate is A ≥ 2. The definition is based on a static criterion, assuming
that the database state will be the same during the execution of a transaction.
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The special semantics given to unlock steps guarantees its correctness also in
case of state changes. It should also be noticed that the set of transactions
is not decidable, because, as has just been shown, testing whether two steps
reference the same database entity amounts to testing the satisfiability of a
first-order formula, a problem known to be unsolvable. The issue will be taken
up later, when the predicate language will be restricted in order to make the
satisfiability test effective.

Schedules are formed by mixing the steps of transactions.

Definition 7: A schedule of the transactions LT1, LT2, . . . , LTk is a function
that associates a set S of steps to the k-tuple 〈LT1, LT2, . . . , LTk〉 such that a
step is in S if and only if it is in one of LT1, LT2, . . . , LTk. 2

A schedule, and in general any set of steps, can be seen as a sequence of steps
by ordering the steps in the set by their occurrence in time; in the rest of the
paper we will sometimes treat sets of steps as sets and sometimes as sequences,
depending on which of the two is most convenient in the circumstance.

2.3 Predicate Locking Schedulers

A scheduler transforms schedules into schedules, thus it is most naturally seen
as a function whose domain and range are schedules. However, not all schedules
can be reasonably given as input to a scheduler. Consider the transactions a1a2

and b1b2, where a1 and b1 are lock steps whose corresponding unlock steps
are a2 and b2, respectively. In addition, assume that a1 and b1 conflict. Now
consider a scheduler that adopts a first-in first-out policy, that is it outputs first
the lock steps it receives first (provided that the output schedule is correct, of
course). Then the sequence a1b1b2a2, which according to the above definition
is a schedule, cannot be considered a realistic input to this scheduler. For the
scheduler would grant the lock requested by a1, defer the step b1 to preserve
the correctness of the output, and then be faced with step b2, asking to unlock
entities that have not yet been granted. If, on the other hand, the scheduler was
designed in such a way that it would delay a1 and grant b1, then the sequence
a1b1a2b2 could not be accepted as a reasonable input schedule.

As it turns out, if we want to define schedules as the sequences of steps
that could realistically be given as input to a scheduler, we ought to define
schedules in terms of schedulers. On the other hand, schedulers being functions
on schedules, they should be defined in terms of schedules. The way out of this
circularity is to consider schedulers as partial functions which are undefined on
unrealistic schedules, that is schedules suffering from the anomaly illustrated
in the previous example. This partiality has no practical effect on schedulers,

8



because schedules are generated by the effective interaction between the users
and the database, therefore it will never be the case that a user releases entities
that have never been received. Consequently, unrealistic schedules will never
be submitted to a scheduler.

In the theory of database concurrency control [11], any schedule output by
a scheduler must satisfy two conditions: first, it must consist of the same steps
as the input schedule; second, it must be legal, that is no two transactions in it
may simultaneously hold the same database entity in lock. In predicate locking,
the first condition turns out to be too restrictive, because steps reference sets of
entities, and forcing the output lock steps to be the same as the input ones would
make the scheduler handle the database entities in rigidly defined packages,
decided by the users. Our approach, presented in detail in Section 4.1, is based
on the splitting of each input lock step in two main sub-steps: one addressing
only entities held by some other transaction, the other addressing only free
entities. The former sub-step is delayed, while the latter is output.

The resulting scheduler grants as many as possible of the requested entities,
having a much more active role than the classical scheduler. While the latter
simply says a “yes” or a “no” on every input step, the former analyzes the
input lock steps and decides what entities to grant, on the basis of an opti-
mality criterion. But it is important to observe that this higher flexibility of
the scheduler produces the desired increased concurrency only in presence of a
higher flexibility of transactions. In particular, transactions must satisfy two
requirements. First, since the requested data are granted by the scheduler in
successive batches, the transactions must be able to process the data in suc-
cessive batches. Many applications fit into this scenario, for instance all those
requiring sequential processing of the data. The added programming complex-
ity seems affordable, whether it is given to the application coder or it is taken
by the system, which makes the data fragmentation entirely transparent as in
distributed query processing. Second, the data must be released as soon as
possible and in the same format they have been received. This means that the
input unlock steps strictly correspond to the output lock steps, as the latter
establish how the requested data are granted. If any of these two requirements
is missed, then there is no gain in adopting such a sophisticated scheduler.
However, there is also no loss.

In order to render our model adequate to the just described splitting strat-
egy, we will require that for each possible database state DB, input step s and
entity e referenced by s inDB, there must be exactly one output step referencing
e in DB, and vice versa. Given our assumptions on unlock steps, and in order
to introduce time, we further refine the condition in question to the following;
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for any database state DB:

(1) there exists a total, injective function that associates to each input lock
step s and entity e referenced by s, a lock step s′ referencing e output by
the scheduler no earlier than s;

(2) there exists a total, injective function that associates to each output lock
step s and entity e referenced by s, a lock step s′ referencing e input to
the scheduler no later than s;

(3) an unlock step is output by the scheduler if and only if it is input to the
scheduler.

As far as the legality of the output schedules is concerned, by definition a
transaction never asks to lock the same entity twice, therefore conflicts always
arise between steps of different transactions. We can then state the legality
condition as follows: for any database state DB and entity e,

(4) if two lock steps referencing e are output, then an unlock step referencing
e is output in between them.

In order to define schedulers, the following abbreviations are introduced; for
a database state DB, a set of steps A, an entity e, and a time point t :

LS(A) = {(l, e) | l ∈ A, a(l) = lock, e ∈ εDB[p(l)]},
U(A) = {u ∈ A | a(u) = unlock},

C(A, e, t) =
∑

s∈A

count(s, e, t)

where

count(s, e, t) =





0 if t(s) > t

−1 if t(s) ≤ t, e ∈ εDB[p(s)] and a(s) = unlock

1 if t(s) ≤ t, e ∈ εDB[p(s)] and a(s) = lock

In practice, LS(A) contains the pairs (lock step, requested entity) occurring
in a given set of steps A; U(A) are the unlock steps in A; C(A, e, t) gives the
balance of a database entity e in the set A at time t, lock steps being counted
positively, unlock steps negatively.

Definition 8: A scheduler F is a partial function from schedules to schedules
such that for all database states and schedules sch ∈ dom(F ) :

(i) there is a one-to-one mapping R between LS(sch) and LS(F (sch)), such
that
((l, e), (l′, e′)) ∈ R if and only if e = e′ and t(l) ≤ t(l′);
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(ii) U(sch) = U(F (sch));

(iii) for any database state, entity e and time point t, C(F (sch), e, t) ≤ 1. 2

The first condition is the formal counterpart of sentences (1) and (2), the
second of sentence (3), and the third of sentence (4) above. At this point, we
notice that any bijection between LS(sch) and LS(F (sch)) would capture the
same correctness criterion as condition (i); however, we have preferred to follow
strictly the informal statements, which come directly from our intuition.

In the previous definition we have in fact abused terminology, because the
term “scheduler”, which for us denotes a function, is typically used to name
the programs which are responsible for concurrency control. From now on we
shall return to this latter use of the term, intepreting the conditions given in
Definition 8 as requirements for the correctness of these programs.

A useful notion in predicate locking is that of active lock step, that is a step
referencing database entities that are currently held by some transactions.

Definition 9: Given a scheduler F and a schedule sch ∈ dom(F ), a lock step
s is said to be active in F at time t on a database state DB, if for each entity
e ∈ εDB[p(s)], count(s, e, t) = 1. 2

3 The typical predicate locking scheduler

Figure 1 presents what can be considered as the typical predicate locking sched-
uler. The behavior of this scheduler can be characterized as follows: each sched-
ule output by typ sch consists of the same steps as the input schedule; an input
lock step s is output by typ sch if and only if it does not conflict with an active
lock step; otherwise, s is enqueued and kept in the queue until all the entities
it references are available.

In order to realize this behavior, typ sch uses the global variables of type
set L and Q to keep track of the active and the queued lock steps, respectively.
Both these variables are externally initialized to the empty set. In addition,
the Boolean variable disjoint records whether the predicate of the step being
scheduled conflicts with the predicate of some active lock step. In scheduling a
lock step s, typ sch examines the active lock steps in order to ascertain whether
one of these steps conflicts with s. This is done by testing the satisfiability of
the conjunction of p(s) and the predicate associated to each active step s′. If
a conflicting step is found in L, s is queued, that is added to Q. If no step in
L conflicts with s, disjoint is true : in this case s is added to L and output.
When an unlock step s is given as input to typ sch, the corresponding lock is
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procedure typ sch (s : step)
s′: step
disjoint: boolean
begin
if action(s) = ‘lock’ then

begin
disjoint ← true
for each s′ ∈ L do

if satisfiable(p(s′) ∧ p(s)) then
begin
Q ← Q ∪ {s}
disjoint ← false
end

if disjoint then
begin
L ← L ∪ {s}
output(s)
end

end
if action(s) = ‘unlock’ then

begin
output(s)
for each s′ ∈ L do

if p(s′) = p(s) then L ← L − {s′}
for each s′ ∈ Q do typ sch(s′)
end

end

Figure 1: The typical predicate locking scheduler
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removed from L, s is output, and each queued step is scheduled again to see if
it can be granted.

The proof of the following proposition is trivial.

Proposition 2: typ sch is correct. 2

The typical scheduler suffers from an evident drawback, caused by the rigid-
ity of its locking strategy, as shown by the following example.

Example 2: Consider a schedule s1s2 . . . , where s1 and s2 are lock steps such
that p(s1) is (1 ≤ N1 ≤ 10), and p(s2) is (N1 ≥ 9). Suppose this schedule is given
as input to our typical scheduler; in response, the scheduler outputs s1; then,
the conjunction of p(s1) and p(s2) being the satisfiable predicate (9 ≤ N1 ≤ 10),
the scheduler delays s2 until it receives the unlock corresponding to s1. In so
doing, the scheduler achieves a low degree of parallelism, as it does not grant the
lock on the entities satisfying the predicate (N1 ≥ 11), which are not locked. A
more flexible scheduler would only delay the lock of the already locked entities,
in our case those satisfying the predicate (9 ≤ N1 ≤ 10), thus deferring the
execution of only a portion of the action asking for the lock. 2

4 The optimal predicate locking scheduler

The strategy adopted by the typical scheduler is motivated by the fact that
computing predicates is in general a difficult task, plagued by very well-known
intractability results. In fact, the trade-off between efficiency and concurrency,
which is typical of schedulers, is resolved by the typical scheduler in a drastic
way: in order to maximize efficiency, it minimizes concurrency. We place our-
selves at the other extreme of the trade-off, and give priority to the concurrency
of the scheduler. For this purpose, in this section we tackle two problems: first,
the identification of the optimal predicate locking scheduler, that is the one
allowing the highest degree of parallelism regardless of the database predicate
language; second, the study of the performance of such a scheduler, as a neces-
sary step towards the identification of a predicate language allowing tractable
operations on predicates.

4.1 The optimal splitting strategy

The basic principle which must guide the operations of the optimal scheduler
is very simple: whenever a lock step on a set A of database entities is received,
the scheduler should identify the subset of A consisting of the entities not cur-
rently held by some other step, and grant a lock on these entities, while delaying
granting the others. This will result in a split of the step being scheduled into
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sub-steps, so that the largest possible set of database entities is granted, hence
the name of optimal splitting strategy for this scheduling policy. Upon schedul-
ing an unlock request, the scheduler should act in a similar way, granting as
many as possible of the unlocked entities to the pending requests. A somewhat
similar strategy is presented in [8], where the problem of minimizing the set
of tuples to be locked in a relational database when handling predicate locks
is studied. The presented method, however, requires a test (containment map-
pings) known to be NP-hard and, more importantly, does not split a locking
predicate in order to grant the subset of requested tuples which are not locked:
when a conflict is detected, the transaction is delayed, as in the typical approach
examined in the previous section.

In order to achieve the optimal splitting strategy, the scheduler needs to
know, at each moment, which entities are currently held by the active steps, and
which steps are enqueued on the active steps. Clearly, a step s is enqueued on an
active step t if s has been input to the scheduler after t and it requests entities
denoted by t’s predicate. This information can be conveniently represented by
means of a binary tree, named the splitting tree, which is an extension of the
semantic tree [3]. The complementary pair of a predicate p is the pair (p, p),
either member of which is said to be an instance of p.

Definition 10: Given a schedule sch = 〈s1, s2, . . . , sm〉, a splitting tree of sch

is a labelled binary tree such that:

(i) each leaf node is either open or closed, but not both;

(ii) each non-leaf node has two outgoing links, labelled by the complementary
pair of the predicate of a step in sch;

(iii) no two nodes on the path from the root to a leaf node have outgoing links
labelled by the same complementary pair.

For any node n of a splitting tree,

• the node predicate of n, pred(n), is true if n is the root node, otherwise
it is the conjunction of the predicates found as labels in descending from
the root node to n;

• the tag of n is “s” (“s”) if the incoming link of n is labelled by the positive
(negative) instance of the predicate of a step s. The signature of n is the
concatenation of the tags of the nodes encountered in descending from
the root node to n;

• if n is a closed node, the queue of n, is a subsequence of sch in which none
of the steps mentioned in the signature of n occurs. 2
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Figure 2: A splitting tree.

Example 3: Figure 2 shows a splitting tree of a schedule including the three
lock steps, s1, s2, and s3, such that:

p(s1) = N ≥ 11, p(s2) = N ≤ 20, p(s3) = N ≤ 99.

Closed leaf nodes are represented as disks, whereas open leaf nodes are depicted
as circles. The predicate of the node indicated by the triangle is (21 ≤ N ≤
99), its signature is given by the string “s1s3s2”, and its queue may be any
subsequence of the input schedule not including s1, s2 and s3. The predicate of
the nodes with a square is false. Notice that the descendants of a node whose
predicate is false, have false as associated predicate. 2

It is immediately verified that if P1, .., Pm are the predicates associated
to the leaf nodes of a splitting tree and DB is any database state, then the
extensions of P1, .., Pm in DB, εDB[P1], ..., εDB[Pm], are a partition of EDB.

In fact, in scheduling lock and unlock steps according to the optimal splitting
strategy, a scheduler can be thought of as building a splitting tree whose closed
leaf nodes are one-to-one with the lock steps output by the scheduler. Let us
see how.

The scheduler starts with a splitting tree consisting only of the root node,
whose predicate is true, and which is an open node, representing the fact that all
the database entities are free. When the first lock step, s1, arrives, the scheduler
must output it immediately, thus granting the lock on the entities requested by
s1. This operation can be represented by attaching two nodes to the root of
the splitting tree, one labelled with the predicate of s1, p(s1), and leading to a
closed node with an empty queue; the other labelled with p(s1), and leading to
an open node. Now let us assume the lock step s2 is to be scheduled; what we
want our scheduler to do is to grant the lock on the free entities among those
requested by the newly arrived lock step. This means that the scheduler must
output a lock step with predicate (p(s1)∧p(s2)), while queueing up a step with
predicate (p(s1)∧p(s2)), if this is satisfiable. This behavior is represented in the
splitting tree by attaching two links to the currently open node: one labelled
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Figure 3: Successive splitting trees.

p(s2), and leading to a closed node; the other labelled p(s2), and leading to
an open node. The queue of the closed node untouched by these operations is
augmented with the insertion of s2, in case (p(s1) ∧ p(s2)) is satisfiable, that is
if the newly arrived step requests some entity held by s1. The resulting splitting
tree is shown in Figure 3.a, in which the names of the predicates have been used
as labels and, for a better readability, queues of pending steps are not shown.
Figure 3.b presents the splitting tree after the scheduling of a third lock step
s3. In general, supposing that the current splitting tree has k open leaf nodes,
n1, n2, . . . , nk, the scheduling of a lock step s according to the optimal splitting
strategy results in the output of k lock steps r1, r2, . . . , rk, such that

p(ri) = pred(ni) ∧ p(s), for all 1 ≤ i ≤ k.

Correspondingly, a pair of links must be added to each open leaf node of the
splitting tree, one, labelled p(s), leading to a closed node; the other, labelled
p(s), leading to an open node. In addition, s is inserted into the queue of each
closed node c such that (pred(c) ∧ p(s)) is satisfiable.

An unlock step is accepted by the scheduler if its predicate is that of an
active lock step, i.e. it is the predicate of a closed leaf node of the current
splitting tree. Now let us suppose that the scheduler receives an unlock step
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whose predicate is p(s1). This means that the entities denoted by p(s1) are now
free and can be granted to the steps pending on s1. Suppose both s2 and s3 are
in this state and that the scheduler considers them in their arrival order. In
this case, we want the scheduler to output two lock steps; one with predicate
(p(s1) ∧ p(s2)), which would leave free the entities denoted by the predicate
(p(s1) ∧ p(s2)); the other with predicate (p(s1) ∧ p(s2) ∧ p(s3)). The entities
denoted by (p(s1) ∧ p(s2) ∧ p(s3)) are now free and ready to be allocated to
forthcoming steps. The modifications to the splitting tree needed to represent
these operations are reported in Figures 3.c and 3.d. The queue of the closed
node corresponding to the first output step includes s3, whereas that associated
to the node of the second step is empty. In general, the scheduling of an unlock
step can be seen as the composition of the scheduling of several lock steps,
one for each step pending on the unlocked node. If we let 〈q1, q2, . . . , qk〉 be
any permutation of the predicates of the pending steps, in order to follow the
optimal splitting strategy the scheduler must output k lock steps r1, r2, . . . , rk,

such that

p(rj) = p(s) ∧ qj ∧ q1 ∧ q2 ∧ . . . qj−1, for all 1 ≤ j ≤ k.

The entities left free after this re-scheduling are those denoted by the predicate:

p(s) ∧ q1 ∧ q2 ∧ . . . ∧ qk.

The corresponding operations on the tree are the obvious generalization of those
presented in Figures 3.c and 3.d.

The question naturally arises whether the order in which pending steps are
re-scheduled impacts on the performance of the scheduler. The answer to this
question is positive: different re-scheduling orders may make a difference on
how efficient the scheduler is in re-assigning database entities to pending steps.
However, this difference depends on the current database state, and taking it
into account would go against the philosophy of predicate locking, which solves
the phantom problem just because it operates at the level of predicates and
not on the current database state. For this reason, in the rest of the paper we
will adopt the simplest re-scheduling policy: pending steps will be selected for
re-scheduling according to their arrival order.

Another question concerns the size of the splitting tree. Let us consider
again the tree shown in Figure 3.d, and suppose that an unlock step with
predicate (p(s1) ∧ p(s2) ∧ p(s3)) is input to the scheduler. The resulting tree is
shown in Figure 4.a, and an equivalent, simplified version of this tree is given
in Figure 4.b. The simplification consists in the collapse of two sibling open
leaf nodes into their parent node, and is justified by the intuitive criterion that
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Figure 4: A splitting tree simplification.

the two trees denote, in each database state, the same sets of free and locked
database entities. It is easily verified that, by applying this simplification, the
scheduling of the unlock steps corresponding to all the closed leaf nodes will
eventually produce the initial splitting tree, consisting of just the root node.

4.2 The scheduler

We are now in the position of formalizing the behavior of our optimal scheduler,
which will be done by means of optimal tree states. An optimal tree state is
the formal representation of a splitting tree generated by the optimal splitting
strategy.

Definition 11: A tree state is a 4-tuple 〈Λ,Φ, q, z〉, where: Λ and Φ are sets
of predicates, q is a total function from Λ to schedules, and z is a total function
from (Λ∪Φ) to signatures. The state predicate of a tree state is the disjunction
of the predicates in Λ. 2

As will be clear in a moment, a tree state is intended to model a splitting
tree, hence its four components will stand, respectively, for closed leaf node
predicates, open leaf node predicates, queues of the closed leaf nodes, and sig-
natures of the leaf nodes.

In order to formally capture the tree simplification discussed in the previous
section, we next define a function that applies this simplification to tree states
(“ ‘ξ” stands for the character string “ξ”).

Definition 12: Given a tree state τ = 〈Λ, Φ, q, z〉, two predicates φ1 and φ2

in Φ are said to be resolving if and only if z(φ1) = ‘ξs and z(φ2) = ‘ξs; the
resolvent of φ1 and φ2 is the predicate (φ1 ∨φ2), whose signature is given by ‘ξ.
The simplification of τ, ς(τ), is the state τ = 〈Λ, Φ′, q, z′〉, where Φ′ is obtained
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Table II: A tree state with resolving predicates

Λ Φ q z

p(s1) ∧ p(s2) 〈s3〉 ‘s1s2

p(s1) ∧ p(s2) ∧ p(s3) 2 ‘s1s2s3

p(s1) ∧ p(s2) 〈s3〉 ‘s1s2

p(s1) ∧ p(s2) ∧ p(s3) ‘s1s2s3

p(s1) ∧ p(s2) ∧ p(s3) ? ‘s1s2s3

p(s1) ∧ p(s2) ∧ p(s3) ? ‘s1s2s3

by recursively replacing in Φ each pair of resolving predicates by their resolvent,
and z′ is obtained by modifying z accordingly. 2

The last definition takes into account the fact that more than one simpli-
fication may take place upon scheduling an unlock step. The recursion of the
simplification process is clearly harmless. First, as shown in Section 4.1, at
most one open leaf node is added to the splitting tree upon scheduling an un-
lock step, hence there will always be at most one pair of resolving predicates.
Second, the simplification decreases the size of Φ and that of signatures, hence
the process will always terminates in a linear number of steps.

Among the infinitely many tree states introduced by Definition 11, we wish
to select those corresponding to an optimal splitting strategy, as illustrated by
the following example.

Example 4: The tree state corresponding to the splitting tree of Figure 4.a,
is given in Table II. The predicates marked with a star are resolving. In the
simplified state (not shown), these are replaced by their resolvent, given by
(p(s1) ∧ p(s2)), whose signature is given by “s1s2”. It is quickly verifiable that
the simplified state corresponds to the splitting tree of Figure 4.b. 2

In the following definition, if s is a sequence, x a variable and P a condi-
tion on s, we will let the expression “s|x : P” stand for the subsequence of s

consisting of those elements x satisfying P. The function cat concatenates its
string arguments.

Definition 13: Let sch be the schedule s1s2 . . . sm. The optimal scheduling
of sch is the sequence of tree states 〈τ1, . . . , τm〉, where τk = 〈Λk,Φk, qk, zk〉 is
the k-th optimal tree state on sch, 1 ≤ k ≤ m, inductively defined as follows:

τ1 :

Λ1 = {p(s1)}
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Φ1 = {p(s1)}
q1(λ) = 2

z1(θ) =

{
‘s1 if θ is p(s1)
‘s1 if θ is p(s1)

for all λ ∈ Λ1 and θ ∈ (Λ1 ∪ Φ1).

τk+1, if sk+1 is a lock step:

Λk+1 = Λk ∪ {φ ∧ p(sk+1)| φ ∈ Φk and φ ∧ p(sk+1) is satisfiable}
Φk+1 = {φ ∧ p(sk+1)| φ ∈ Φk and φ ∧ p(sk+1) is satisfiable}

qk+1(λ) =





qk(λ) t sk+1 if λ ∈ Λk and (λ ∧ p(sk+1)) is satisfiable
qk(λ) if λ ∈ Λk and (λ ∧ p(sk+1)) is unsatisfiable
2 if λ 6∈ Λk

zk+1(θ) =





cat(zk(φ), ‘sk+1) if θ is φ ∧ p(sk+1)
cat(zk(φ), ‘sk+1) if θ is φ ∧ p(sk+1)
zk(θ) otherwise

for all λ ∈ Λk+1 and θ ∈ (Λk+1 ∪ Φk+1).

τk+1, if sk+1 is an unlock step, is given by the simplification of the tree state
τu, defined as follows. Let qk(p(sk+1)) be the sequence 〈si1si2 . . . sip〉; then:

Λu = Λk − {p(sk+1)} ∪ {αj | 1 ≤ j ≤ p and αj is satisfiable} where

αj = p(sk+1) ∧ p(sij ) ∧
j−1∧

l=1

p(sil)

Φu =

{
Φk ∪ {β} if β is satisfiable
Φk otherwise where

β = p(sk+1) ∧
p∧

j=1

p(sij )

qu(λ) =

{
qk(λ) if λ ∈ Λk

sij+1 . . . sip |s : (αj ∧ p(s)) is satisfiable if λ = αj

zu(θ) =





cat(zk(p(sk+1)), ‘si1 , . . . , ‘sij−1 , ‘sij ) if θ is αj

cat(zk(p(sk+1)), ‘si1 , . . . , ‘sip) if θ is β

zk(θ) otherwise

for all λ ∈ Λu and θ ∈ (Λu ∪ Φu). 2

The pseudo-Pascal procedure tree sch, given in Figure 5, implements in a
straightforward way the optimal splitting strategy, by operating on the current
optimal tree state as defined above.
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procedure tree sch (s: step)
l: step; λ, φ, φ′: predicate
begin
if a(s) = ‘lock’ then

begin
for each λ in Λ if satisfiable(λ ∧ p(s)) then append(q(λ), s)
for each φ in Φ if satisfiable(φ ∧ p(s)) then begin

Φ ← Φ − {φ}; λ ← φ ∧ p(s); q(λ) ← 2; z(λ) ← cat(z(φ), ‘s); Λ ← Λ ∪ {λ}
output− lock − step(λ)
if satisfiable(φ ∧ p(s)) then begin

φ′ ← φ ∧ p(s); z(φ′) ← cat(z(φ), ‘s); Φ ← Φ ∪ {φ′}
end

end
end

else if a(s) = ‘unlock’ then begin
output(s)
φ ← p(s); Λ ← Λ − {φ}
if empty(q(φ)) then simplify(Φ ∪ {φ})
else for each l in q(φ) if satisfiable(φ ∧ p(l)) then begin

λ ← φ ∧ p(l); q(λ) ← cut(q(φ), λ); z(λ) ← cat(z(φ), ‘l); Λ ← Λ ∪ {λ}
output− lock − step(λ)
φ ← φ ∧ p(l); z(φ) ← cat(z(φ), ‘l)
end

if satisfiable(φ) then Φ ← Φ ∪{φ}
end

end

Figure 5: The optimal predicate locking scheduler
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In scheduling a newly arrived lock step s, tree sch tests if s’s predicate
conflicts with the predicate (λ) of each closed leaf node; for each such detected
conflict, tree sch appends s to λ′s queue, waiting to be scheduled. Successively,
tree sch test whether s’s predicate is disjoint from the predicate (φ) of each open
leaf node; if not, φ is removed from Φ, because some of the entities it denotes
are going to be granted to s, as required by the optimal splitting strategy. The
predicate denoting these entities (given by φ∧p(s)) is computed, it is given the
empty queue and the proper signature, and it is added to Λ. The corresponding
lock step is output. The variable λ is used to hold this predicate during the
operations just described. If some entity denoted by φ is left free, φ ∧ p(s) is
satisfiable and is thus added to Φ after setting its signature. Notice that if for
some φ ∈ Φ, φ ∧ p(s) is not satisfiable, tree sch leaves it unchanged; and this
is exactly what the specification of τ prescribes, since in this case φ ∧ p(s) is
equivalent to φ.

When an unlock step s is received, tree sch outputs it, and if no step is
pending on the unlocked predicate, we have the kind of situation presented
in Figure 4.a. The simplification discussed in the previous section may thus
take place, under the responsibility of the procedure simplify, not presented as
not particularly interesting. Otherwise, tree sch enters a loop in which it re-
schedules the pending steps, in the same order as they appear in the involved
queue; to this end, the predicate of each such step l is matched with the pred-
icate denoting the currently free entities (φ), to ascertain whether l references
some of the freed entities. If not, l is no longer considered. If yes, a new pred-
icate λ is generated whose queue is set to the subsequence of q(φ) following l

and consisting of the steps conflicting with it (this is done by the cut procedure,
which is not presented). The signature of λ is set to the proper value and λ is
finally inserted into Λ. The predicate denoting the free entities, φ, is modified
in order to reflect the lock just granted, and so is its signature. If, at the end of
the re-scheduling loop, φ is satisfiable, then some of the unlocked entities have
not been re-assigned to a pending step; to keep track of this, φ is added to Φ.

In order to prove the correctness of tree sch, we need the following lemma.

Lemma 1: For any schedule sch in the domain of tree sch, database state
and time point t,

C(tree sch(sch), e, t) =

{
1 if e satisfies a predicate in Λ at t

0 otherwise.

Proof: A lock step is output if and only if a closed leaf node is created, hence

C(tree sch(sch), e, t) = 0
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if e is not referenced by the predicate of a closed leaf node. In addition, given
any two closed leaf node predicates p and q, there exists an input predicate c

such that c is used to compute p and c is used to compute q, or vice versa.
Hence no entity e can satisfy two closed leaf node predicates, hence

C(tree sch(sch), e, t) = 1

for all entities satisfying a closed leaf node predicate. 2

Proposition 3: tree sch is correct.
Proof: We must show that conditions (i) to (iii) of Definition 8 hold. The
proof for condition (ii) is trivial, whereas (iii) directly follows from the previous
lemma. We will then give the proof of condition (i), by specifying the required
bijective mapping. For a generic database state DB, let sk be the k-th input
lock step of a schedule sch in the domain of tree sch, and e ∈ EDB a database
entity satisfying p(sk) in DB, so that (sk, e) ∈ LS(sch). There is exactly one leaf
node n, with predicate P, such that e satisfies P. If n is an open leaf node, upon
scheduling sk the scheduler outputs a lock step s whose predicate is P ∧ p(sk),
satisfied by e, so that (s, e) ∈ LS(tree sch(sch)). As time(sk) = time(s), we
can pose (sk, e)R(s, e). If n is a closed leaf node, sk is queued on n, and, even-
tually, when it will be dequeued to be scheduled, the scheduler will be in the
same condition as in the previous case, and will output a lock step s′, such that
time(sk) < time(s′). We can then set (sk, e)R(s′, e). The mapping R so built is
clearly total and injective from LS(sch) to LS(tree sch(sch)). Assume that it
is not surjective, that is that there exists a lock step so output by the scheduler
and an entity e referenced by so in DB, i.e. (so, e) ∈ LS(tree sch(sch)), such
that there is no pair in R whose second member is (so, e). There are two pos-
sibilities: (1) so is output upon the scheduling of a lock step sa; in this case, e

satisfies the predicate pred(o)∧p(sa), where o is an open leaf node of the current
tree; but then e satisfies p(sa), hence (sa, e) ∈ LS(sch), and, by construction,
(sa, e)R(so, e), so we have a contradiction. (2) so is output upon the scheduling
of an unlock step sb whose predicate is that of a closed node c. In this case, e

satisfies the predicate

pred(c) ∧ p(sd) ∧ p(sd+1) ∧ . . . ∧ p(sd+h)

where d ≥ 0, h ≥ 1, and sd+h is the last input lock step received by the scheduler.
But then e satisfies p(sd+h), hence (sd+h, e) ∈ LS(sch), and, by construction,
(sd+h, e)R(so, e). Thus in this case too we have a contradiction. Therefore R is
the total, injective and surjective mapping from LS(sch) to LS(tree sch(sch))
required by Definition 8. 2
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4.3 Performance

According to [11], the performance of the scheduler is given by the concur-
rency and the efficiency of the scheduler. Concurrency measures the degree of
parallelism allowed by the scheduler, and is directly related to the amount of
data that the scheduler is able to grant without compromising the correctness
of execution of transactions. As the optimal splitting strategy maximizes such
amount, the concurrency of tree sch is maximal.

The efficiency of a scheduler is a measure of the complexity of the algorithm
implementing the scheduler. A scheduler is efficient if it fulfills the following
two conditions [11]: (a) the size of the state data structure is at any moment
bounded by a polynomial in the size of the initial state and the number of steps
that have arrived so far, and (b) the number of steps needed to test whether a
step will be output or will join the queue, and to update the state to reflect the
information obtained from the last step, are both polynomial in the size of the
state.

The state data structure used by tree sch is a tree state. Since both the
size of queues and that of signatures are no greater than the number of steps
received so far, we can focus on the two other components of the state. In
particular, to prove that tree sch satisfies condition (a), we must show: that the
number of leaf nodes of the current splitting tree is bounded by a polynomial
in the number of steps that have arrived so far, and that so is the size of the
predicates associated to these nodes. As far as the former issue is concerned,
the following proposition settles the case.

Proposition 4: For any schedule sch,

|Φk| ≤ k,

|Λk| ≤ 1
2
(k2 − k) + 1, for all 1 ≤ k ≤ |sch|.

Proof: Let us first consider the size of the set of open leaf node predicates.
Considering the worst case, when all the predicates generated by the optimal
splitting strategy are satisfiable and no simplification takes place, we have:

|Φ1| = 1

|Φk+1| =
{
|Φk| if sk+1 is a lock step
|Φk|+ 1 if sk+1 is an unlock step

Notice that in case of unlock, the predicate β of Definition 13 is added to Φ.

The part of the proposition for Φk follows immediately. Now let us consider the
closed leaf node predicates. In case of a lock step, the worst case is when all
predicates generated by the optimal splitting strategy are satisfiable; in case of
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an unlock step, the worst case is when no simplification takes place, the steps
to be re-scheduled are all the lock steps received so far except the first (which
is never enqueued), and all these steps generate a satisfiable predicate αj . We
have therefore:

|Λ1| = 1

|Λk+1| ≤
{
|Λk|+ |Φk| if sk+1 is a lock step
|Λk|+ k − 2 if sk+1 is an unlock step.

As we have already proved that |Φk| ≤ k, we have

|Λk+1| ≤ |Λk|+ k.

By a simple induction argument, the proposition follows. 2

The size of the predicates associated to the leaf nodes of the tree depends on
the form of the predicates of the input lock steps, as does the complexity of the
satisfiability test involved in condition (b) above. Without loss of generality,
we assume these predicates to be of the form:

pos∧

i=1

ci ∧
neg∧

j=1

cpos+j

where each ck is the predicate of an input lock step (not necessarily step k),
and either pos or neg may be 0, but not both. As already pointed out, this
test is not effective in the general case of first-order languages, and there is no
evidence that the restricted first-order language that we have assumed as the
database predicate language makes things any easier.

There is a vast literature on methods for testing logical properties of database
predicates such as equivalence, implication (sometimes called containment), and
satisfiability (sometimes called disjointness). However, what is generally offered
by these studies is a decision procedure, whereas our scheduler requires a pro-
cedure that, beside testing satisfiability, also computes complex predicates. In
particular, [9] studies the implication and equivalence problems for conjunctive
queries, and does not deal with satisfiability, whereas [4] provides an algorithm
for deciding the disjointness of conjunctive queries. This procedure can be used
as a basis for an instance of the scheduler typ sch, as the author envisages a
predicate locking scheduler based on a satisfiability check. [7] shows that test-
ing the satisfiability of quantifier-free formulae in Conjunctive Normal Form is
NP-hard. However, [12] presents a polynomial time algorithm that tests the
satisfiability of the conjunction of simple and complex atomic formulae con-
taining no negated equality formulae. [2] proposes to take such formulae as
the disjuncts of a DNF formula, so that by a polynomially bounded number

25



of applications of the above mentioned algorithm, the satisfiability of the DNF
can be tested. However, for the reason pointed out above, we will assume as
predicates of the input lock steps the simple formulae of [12], obtaining the
language given in the next definition.

Definition 14: Given a database 〈E,D,S〉, the simplified database predicate
language LS, is the subset of L defined as follows:

(i) the sorts and the alphabet of LS are the same as those of L, except for
the predicate symbols, of which there are two ≺i and Âi for each sort,
beside the equality symbol;

(ii) the terms of LS are the constant and the atomic function terms of L;

(iii) the atomic formulae, or simply the atoms, of LS are the simple atomic
formulae of L, built with constant and atomic function terms, and the
always true atom true;

(iv) the well-formed formulae of LS are built out of the atoms of LS by using
the logical connective ∧ in the standard way. 2

The semantics of LS is the standard first-order semantics, where each Âi is
to be interpreted as the negation of the corresponding ≺i, that is:

Âi (φ, δ) ≡ ≺i (φ, δ)

where φ is an atomic function term and δ is a constant term. This introduces a
restricted form of negation. In order to express in a compact way the conjunc-
tion of mutually consistent ≺i and Âi atoms, we further introduce m ternary
predicate symbols ¿i, that is, if a ≤ b,

≺i (φ, b) ∧ Âi (φ, a) ≡ ¿i (φ, a, b).

As we have assumed a database consisting of one domain, the natural num-
bers ordered by the ≤ relation, the simplified language we will deal with has
four predicate symbols: the binary symbols =, ≤ and >, and the ternary sym-
bol ≤≤ . The binary symbols < and ≥ can then be added by defining them in
the proper way.

A formula of LS is a conjunction of simple atoms, in which the same function
term may appear an arbitrary number of times. It can be shown that all the
atoms on the same term can be reduced to a single atom, so that we may assume
that a formula contains exactly one atom per function symbol, as the missing
atoms can be replaced by true without altering the semantics of the formula.
Analogously, it can be shown that the negation of an LS formula is not in LS,
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as the negation of an interval atomic predicate yields the disjunction of two
atoms.

Proposition 5: The predicate
∧pos

i=1 ci ∧
∧neg

j=1 cpos+j , where each ck, 1 ≤ k ≤
pos + neg, is a formula, in the worst case is equivalent to the disjunction of
(2 · n)neg formulae, where n is the number of the properties of the database.
Proof: In the worst case, each cpos+j yields the disjunction of a pair of atoms
for each function symbol, that is the disjunction of 2 ·n atoms. The conjunction
of neg of these disjunctions is equivalent, by distributivity, to a disjunction of
(2 · n)neg formulae. 2

5 An efficient optimal scheduler

The last proposition tells us that computing leaf node predicates by means
of the distributive and De Morgan laws has an exponential cost. However,
the problem is not inherently intractable, and in this section we will present a
method to efficiently solve it.

5.1 The grid method

Let us suppose that the schedule s1s2 . . . is input to tree sch, where s1 and s2

are lock steps such that:

p(s1) = (10 ≤ N1 ≤ 30) ∧ (N2 ≥ 16)

p(s2) = (N1 ≥ 20) ∧ (10 ≤ N2 ≤ 20).

As we have seen, tree sch responds to the arrival of s1 by outputting it; upon
receiving s2, it must output a lock step whose predicate is (p(s1)∧p(s2)), given
by:

[(N1 ≥ 31) ∧ (10 ≤ N2 ≤ 20)] ∨ [(N1 ≥ 20) ∧ (10 ≤ N2 ≤ 15)]. (1)

In addition, tree sch must compute the predicate (p(s1) ∧ p(s2)), which turns
out to be:

(N1 ≤ 9)∨[(N1 ≥ 31)∧(N2 ≥ 21)]∨[(N1 ≤ 19)∧(N2 ≤ 15)]∨(N2 ≤ 9).(2)

Now, let us consider a geometrical representation of the database space, where
each point of a 2-dimensional space is taken to represent a combination of the
values of the database properties. A point of this space can be associated to
the set of the database entities having the coordinates of the point as property
values in the current database state; moreover, since the interpretation of the
constant and predicate symbols of the database language is state independent,
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Figure 6: Geometrical interpretations of a scheduler state.

we can associate to a formula of LS a convex region of the space. According
to this representation, the state of the scheduler in the above example can
be depicted as in Figure 6.a, where the shadowed regions contain the points
associated to the locked entities and the remaining areas the points associated to
the free entities. As Figure 6.a shows, the formulae (1) and (2) are semantically
redundant; in particular, the region (N1 ≤ 9) ∧ (N2 ≤ 9) is denoted by three
disjuncts of (2) (namely the first, third and fourth disjunct), and the region
(N1 ≥ 31)∧ (10 ≤ N2 ≤ 15) is contained in the denotation of both the disjuncts
constituting (1). This redundancy can be eliminated by representing locked
and free database entities via the predicates corresponding to the regions in the
partition presented in Figure 6.b. This partition is the product of partitions of
the property domains, and can be conveniently represented and manipulated by
means of an extension of the grid directory [10], hence the name of grid method.

A grid directory for k attributes consists of two parts: first, a dynamic k-
dimensional array, called the grid array; second, k 1-dimensional arrays called
linear scales, each defining a partition in intervals of the domain of a property.
In a grid structure, each grid array cell contains a pointer to a sequence of
records. In our structure, which we call the grid state, the cells of the grid array
will correspond in a many-to-one way to the leaf nodes of the current splitting
tree; thus, each cell will contain the information associated to its corresponding
node, that is:

• a binary value, G, indicating the leaf node type; we will use G = 1 for
closed nodes, and G = 0 for open nodes;

• the queue Q of the steps pending on the node;

• the signature Z of the node.

The grid state representing the situation of the example is given in the following
table, where, following the convention adopted for the geometrical representa-
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tion, the domain of N1 is placed horizontally, whereas the domain of N2 is
placed vertically. Each cell of the grid array gives, in order, the G-, Q- and
Z-value on the corresponding region of the partition.

(9] [10,19] [20,30] [31)
[21) 0 2 s1s2 1 2 s1 1 2 s1 0 2 s1s2

[16,20] 0 2 s1s2 1 2 s1 1 〈s2〉 s1 1 2 s1s2

[10,15] 0 2 s1s2 0 2 s1s2 1 2 s1s2 1 2 s1s2

(9] 0 2 s1s2 0 2 s1s2 0 2 s1s2 0 2 s1s2

Let us assume that the scheduler now receives the step:

s3 : lock[(15 ≤ N1 ≤ 25) ∧ (N2 ≤ 12)]

In order to represent the predicate of this step in the above grid state, three
intervals must be split, namely:

• the interval [10, 15] in N2’s domain, into the intervals [10, 12] and [13, 15];

• the interval [10, 19] in N1’s domain, into the intervals [10, 14] and [15, 19];

• the interval [20, 30] in N1’s domain, into the intervals [20, 25] and [26, 30].

The resulting grid state is:

(9] [10,14] [15,19] [20,25] [26,30] [31)

[21) 0 2 s1s2s3 1 2 s1 1 2 s1 1 2 s1 1 2 s1 0 2 s1s2s3

[16,20] 0 2 s1s2s3 1 2 s1 1 2 s1 1 〈s2〉 s1 1 〈s2〉 s1 1 2 s1s2

[13,15] 0 2 s1s2s3 0 2 s1s2s3 0 2 s1s2s3 1 2 s1s2 1 2 s1s2 1 2 s1s2

[10,12] 0 2 s1s2s3 0 2 s1s2s3 1 2 s1s2s3 1 〈s3〉 s1s2 1 2 s1s2 1 2 s1s2

(9] 0 2 s1s2s3 0 2 s1s2s3 1 2 s1s2s3 1 2 s1s2s3 0 2 s1s2s3 0 2 s1s2s3

The set of the database space points denoted by the predicate of the newly
arrived step is represented by a subset of the grid cells. The step is enqueued on
those cells from this subset which are contained in a cell of the previous state
with a 1 G-value. For the other cells, a lock step is output and the G-value of
these cells is set to 1. The Z-value of the new state’s cells is also properly set.

Upon unlocking, the cells of the grid array that are denoted by the unlock
predicate are identified; if their queue is empty, then no step is waiting for the
unlocked entities, so their G-value is turned to 0; otherwise, the first step is
popped from the queue and the G-value is left at 1, meaning that the dequeued
step is granted the corresponding entities. For instance, suppose that the step:

s4 : unlock[((N1 ≥ 20) ∧ (10 ≤ N2 ≤ 15)) ∨ ((N1 ≥ 31) ∧ (10 ≤ N2 ≤ 20))]
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unlocking the entities denoted by the predicate p(s1)∧p(s2), is now input to the
scheduler. Notice that the step’s predicate is not part of the database language
LS, which only applies to input lock steps. The resulting grid state is:

(9] [10,14] [15,19] [20,25] [26,30] [31)

[21) 0 2 s1s2s3 1 2 s1 1 2 s1 1 2 s1 1 2 s1 0 2 s1s2s3

[16,20] 0 2 s1s2s3 1 2 s1 1 2 s1 1 〈s2〉 s1 1 〈s2〉 s1 0 2 s1s2s3

[13,15] 0 2 s1s2s3 0 2 s1s2s3 0 2 s1s2s3 0 2 s1s2s3 0 2 s1s2s3 0 2 s1s2s3

[10,12] 0 2 s1s2s3 0 2 s1s2s3 1 2 s1s2s3 1 2 s1s2s3 0 2 s1s2s3 0 2 s1s2s3

(9] 0 2 s1s2s3 0 2 s1s2s3 1 2 s1s2s3 1 2 s1s2s3 0 2 s1s2s3 0 2 s1s2s3

By looking at the signatures of the regions associated to free entities, we
can see that no simplification of the corresponding splitting tree takes place.
But upon receiving the step:

s5 : unlock[((15 ≤ N1 ≤ 25) ∧ (N2 ≤ 9)) ∨ ((15 ≤ N1 ≤ 19) ∧ (10 ≤ N2 ≤ 12))],

unlocking the entities denoted by p(s1) ∧ p(s2) ∧ p(s3), the following grid is
produced:

(9] [10,14] [15,19] [20,25] [26,30] [31)

[21) 0 2 s1s2s3 1 2 s1 1 2 s1 1 2 s1 1 2 s1 0 2 s1s2s3

[16,20] 0 2 s1s2s3 1 2 s1 1 2 s1 1 〈s2〉 s1 1 〈s2〉 s1 0 2 s1s2s3

[13,15] 0 2 s1s2s3 0 2 s1s2s3 0 2 s1s2s3 0 2 s1s2s3 0 2 s1s2s3 0 2 s1s2s3

[10,12] 0 2 s1s2s3 0 2 s1s2s3 0 2 s1s2s3 1 2 s1s2s3 0 2 s1s2s3 0 2 s1s2s3

(9] 0 2 s1s2s3 0 2 s1s2s3 0 2 s1s2s3 0 2 s1s2s3 0 2 s1s2s3 0 2 s1s2s3

in which there are resolving predicates, namely those associated to the cells
denoting free entities and whose signatures are: “s1s2s3” and “s1s2s3.” By
replacing the resolving signatures with their resolvent, the following grid is
obtained:
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(9] [10,14] [15,19] [20,25] [26,30] [31)
[21) 0 2 s1s2 1 2 s1 1 2 s1 1 2 s1 1 2 s1 0 2 s1s2

[16,20] 0 2 s1s2 1 2 s1 1 2 s1 1 〈s2〉 s1 1 〈s2〉 s1 0 2 s1s2s3

[13,15] 0 2 s1s2 0 2 s1s2 0 2 s1s2 0 2 s1s2s3 0 2 s1s2s3 0 2 s1s2s3

[10,12] 0 2 s1s2 0 2 s1s2 0 2 s1s2 1 2 s1s2s3 0 2 s1s2s3 0 2 s1s2s3

(9] 0 2 s1s2 0 2 s1s2 0 2 s1s2 0 2 s1s2 0 2 s1s2 0 2 s1s2

The grid array of this grid state may be reduced, since the cells on the
columns corresponding to the intervals [10, 14] and [15, 19] are pairwise identical,
i.e. they show the same G-, Q- and Z-values. These two columns can thus be
collapsed into one, thus causing the merge of the corresponding intervals. The
reduced state is:

(9] [10,19] [20,25] [26,30] [31)
[21) 0 2 s1s2 1 2 s1 1 2 s1 1 2 s1 0 2 s1s2

[16,20] 0 2 s1s2 1 2 s1 1 〈s2〉 s1 1 〈s2〉 s1 0 2 s1s2s3

[13,15] 0 2 s1s2 0 2 s1s2 0 2 s1s2s3 0 2 s1s2s3 0 2 s1s2s3

[10,12] 0 2 s1s2 0 2 s1s2 1 2 s1s2s3 0 2 s1s2s3 0 2 s1s2s3

(9] 0 2 s1s2 0 2 s1s2 0 2 s1s2 0 2 s1s2 0 2 s1s2

The partitions underlying the grid states seen so far can be characterized
as follows:

(i) each region of a partition is given by the Cartesian product of sets drawn
from a partition of each property domain;

(ii) the database entities associated to any region of a partition are either all
locked or all free in the current state;

(iii) each partition is the one with the largest regions among those satisfying
the properties (i) and (ii) above.

The first two properties are evident. To see that also the third holds, it is suffi-
cient to observe that if we make one region of a partition bigger by augmenting
any set of a property domain partition, then we lose the second property, as
at least one region of the resulting partition would include both locked and
free entities. Partitions that satisfy condition (i) will be said to be regular,
while those satisfying condition (ii) will be said to be discriminating (a certain
predicate).
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5.2 Discriminating partitions

In this section we will provide a lattice-theoretic formalization of the partitions
presented in the previous section and of their corresponding grid states.

Definition 15: Given a database 〈E,D,S〉, with simple properties 〈N1, Di1〉, . . . , 〈Nn, Din〉,
the database space ∆ is the set Di1 ×Di2 × . . .×Din . A database partition, or
simply a partition, is any partition of ∆. 2

In order to compare partitions with respect to their size, we introduce a
relation between partitions based on a region containment criterion. Let π be
the set of all partitions of a given database.

Definition 16: Given two partitions H1 and H2 in π, H1 is smaller than
H2, H1 v H2, if and only if for each H1 ∈ H1 there exists H2 ∈ H2 such that
H1 ⊆ H2. H1 is strictly smaller than H2, H1 < H2, if and only if H1 v H2 and
H1 6= H2.

As it can be easily proved [13]:

Proposition 6: (π,v) is a partial order. Moreover, given any two partitions
H1 = {A1, A2, . . . , Ak} and H2 = {B1, B2, . . . , Bm} in π,

glb(H1,H2) = {Ai ∩Bj | Ai ∈ H1, Bj ∈ H2}, and

lub(H1,H2) = {∪Ai∈IAi | I is a smallest subset of H1 such that,

for some J ⊆ H2, ∪Ai∈IAi = ∪Bj∈JBj}

are, respectively, the greatest lower bound and the least upper bound of H1

and H2. 2

As a corollary of the last proposition, (π,v) is a lattice [14]. The greatest
and smallest element of the lattice, respectively denoted by H> and H⊥, are
readily found:

H> = {∆},
H⊥ = {{x} | x ∈ ∆}.

One important characteristic of the partitions presented in the previous
section is that they discriminate the state predicate. The next two definitions
make this concept precise.

Definition 17: Given a formula φ of the database language LS, the set defined
by φ, def [φ], is the set of points 〈a1, a2, . . . , an〉 of the database space such that
the formula obtained by replacing in φ each function term Nj(x) by aj is true
for all 1 ≤ j ≤ n. 2
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Unlike the extension of a formula, the set defined by a formula does not
require the interpretation of the function symbols, therefore it is independent
from database states. Intuitively, a point 〈a1, a2, . . . , an〉 is in the set defined
by a formula α if, whenever an entity e takes aj as value of the j-th property
in a certain database state, then e satisfies α in that state. The relationship
between the satisfiability of a formula in LS and the set defined by that formula
is given in the following proposition.

Proposition 7: For any formula α in LS, α is satisfiable if and only if
def [α] 6= ∅.
Proof: (←) Let 〈a1, a2, . . . , an〉 ∈ def [α]. Then, the database state DB such
that FDB(Nj)(e) = aj for some entity e ∈ EDB and for all 1 ≤ j ≤ n, satisfies
α. (→) Conversely, if α is satisfiable, there exists a database state DB such that
εDB[α] 6= ∅. Let e be in εDB[α]. Then the point 〈FDB(N1)(e), FDB(N2)(e), . . . , FDB(Nn)(e)〉
is in def [α], which is therefore non-empty. 2

Definition 18: Given a formula φ of the database language and a partition
H, H is said to be a discriminating partition of φ if and only if for any H ∈ H,

either H ⊆ def [φ] or (H ∩ def [φ]) = ∅. The discriminating function of H is
the total function G from H to {0, 1} such that, for all H ∈ H, G(H) = 1 if
H ⊆ def [φ], and G(H) = 0 otherwise. 2

Example 5: Let us consider our small database with two properties; the set
defined by the simple atom (N2 ≥ 2) is S1 = {〈n1, n2〉 | n2 ≥ 2}. A discrimi-
nating partition of this simple atom is {S1, S1}, where S1 is the complement of
S1 in the database space, that is S1 = {〈n1, n2〉| n2 ≤ 1}. The discriminating
function of the partition is: G(S1) = 1 and G(S1) = 0. 2

The following lemma highlights useful properties of discriminating parti-
tions.

Lemma 2: Let H1 and H2 be partitions and α and β formulae. Then:

(i) H1 discriminates α if and only if it discriminates α;

(ii) if H1 discriminates α and β then it discriminates (α ∧ β);

(iii) if H2 discriminates α and H1 v H2, then H1 discriminates α.

Proof: Trivial. 2

The concepts introduced so far allow us to formulate the central problem of
the optimal scheduler in semantic terms: to identify, at each scheduling stage,
the largest partition that discriminates the current state predicate. It is not
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difficult to see that this partition, let it be Hσ, is given by

Hσ = {def [σ], def [σ]},

where σ is the state predicate of the above tree state. To see that keeping track
of Hσ may be very expensive, let us consider one of its descendants in (π,v),
namely the closed leaf nodes partition, which for the tree state 〈Λ,Φ, q, z〉 is
given by:

HΛ = {def [λi] | λi ∈ Λ} ∪
⋃

φj∈Φ

def [φj ]

The analysis of the efficiency of tree sch reveals (Proposition 5) that comput-
ing each λi has, in the worst case, an exponential cost, therefore so does the
computation of HΛ and Hσ, when a DNF representation os used.

It turns out that the size of a partition is one of the factors that impacts
on efficiency; another factor, indeed much more important, is the shape of the
regions of the partition. The next definition introduces the special kind of
partitions informally presented in the previous section, built upon partitions of
the domains of the database properties. Let A1,A2, . . . ,Am, m ≥ 1, be sets of
sets; we will use the following abbreviation:

bi prod(A1,A2, . . . ,Am) = {A1 ×A2 × . . .×Am | Ai ∈ Ai, 1 ≤ i ≤ m}.

Definition 19: A partition of the database space is said to be regular if it is
given by bi prod(h1, h2, . . . , hn), where hk is a partition of Dik , for all 1 ≤ k ≤ n.

2

Lemma 3: Let H = bi prod(h1, h2, . . . , hn) and H′ = bi prod(h′1, h′2, . . . , h′n)
be regular partitions. Then H < H′ implies hi v h′i, for all 1 ≤ i ≤ n, and for
at least one i hi < h′i.
Proof: Trivial. 2

Let πr stand for the set of the regular partitions. The following proposition
shows that regular partitions are closed under the operations glb and lub, hence
(πr,v) is a lattice too.

Proposition 8: IfH1 = bi prod(h1, h2, . . . , hn) andH2 = bi prod(i1, i2, . . . , in)
are regular partitions, so are glb(H1,H2) and lub(H1,H2).
Proof: Extending the glb operator to partitions of single domains, we have that

glb(H1,H2) = bi prod(glb(h1, i1), . . . , glb(hn, in)).

From Proposition 6, the generic element of the glb(H1,H2), is given by:

(h1j1 × . . .× hnjn) ∩ (i1k1 × . . .× inkn) = (h1j1 ∩ i1k1)× . . .× (hnjn ∩ inkn),
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where hljl
∈ hl and iljl

∈ il for all 1 ≤ l ≤ n. Analogously, it can be shown that

lub(H1,H2) = bi prod(lub(h1, i1), . . . , lub(hn, in)). 2

It should be intuitively evident, and will later be proved, that computing
regular partitions is much easier than computing partitions whose regions are
arbitrarily shaped. This motivates the adoption of this kind of partitions in the
implementation of the optimal scheduler.

Definition 20: Given a tree state τ = 〈Λ, Φ, q, z〉 with state predicate σ, the
grids of τ, GR(τ), are the 4-tuples 〈H, G, Q,Z〉, where:

(i) H is a regular partition that, for each λ ∈ Λ and φ ∈ Φ, discriminates
λ, φ and λ ∧ p(s) for each step s in q(λ);

(ii) G is the discriminating function of σ;

(iii) Q is a total function fromH to sequences of steps, such that for all H ∈ H,

Q(H) =

{
q(λ)|s : (H ∩ def [p(s)]) 6= ∅ if H ⊆ def [λ] for some λ ∈ Λ
2 otherwise

(iv) Z is a total function from H to signatures, such that for all H ∈ H,

Z(H) = z(θ), where H ⊆ def [θ], for some θ ∈ (Λ ∪ Φ).

Each 4-tuple in GR(τ) is called a grid state. The grid states in GR(τ) are said
to be equivalent to each other and to τ. 2

The correspondence between tree and grid states captured by the last def-
inition is the formal counterpart of the shift in perspective discussed in the
previous section. The definition requires each grid state equivalent to τ to dis-
criminate three kinds of predicates: (1) the closed leaf node predicates, because
they are the predicates output by the scheduler, so they can be considered
the medium of exchange between the scheduler and the outside world; (2) the
open leaf node predicates, because it is on the basis of these predicates that
the predicates of the first kind are computed upon scheduling a new lock step;
(3) the predicates of the form λ ∧ p(s), because they denote the entities that
will be granted at some point in the future. The second component of a grid
state will permit us to distinguish regions that correspond to locked entities
from regions associated to free entities. The third component is needed to keep
track of queued steps; notice that since the set defined by a closed leaf node
predicate may be partitioned into several regions, the queue associated to one
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such region need not contain all the steps queued on the closed leaf node pred-
icate, but only those whose predicates denote entities belonging to that region.
Finally, the Z component is needed to perform the simplification following an
unlock. We will apply to grid states the same notational convention adopted
for tree states, taking the freedom to specify a step number for grid states and
for their components, when needed.

For a given tree state, there will generally be many equivalent grid states,
differing in the partition component (the other components are uniquely deter-
mined by the first one and by the definition of grids). The ordering defined
on partitions can then be used to establish an ordering among equivalent grid
states, in order to capture an efficiency criterion.

Definition 21: Given the grid states γ1 = 〈H1, G1, Q1, Z1〉 and γ2 = 〈H2, G2, Q2, Z2〉
in the grids of a given tree state τ, γ1 is said to be less efficient than γ2, γ1 ve γ2,

if and only if H1 v H2. γ1 is strictly less efficient than γ2, γ1 <e γ2, if and only
if H1 < H2. 2

The efficiency relation induces a lattice structure on the grids of a given tree
state, based on the structure induced on partitions by the v relation. To see
how, for a given tree state τ, let us set:

πr(τ) = {H ∈ πr | 〈H, G, Q,Z〉 ∈ GR(τ)},

where πr is the set of regular partitions.
Proposition 9: For any tree state τ, (πr(τ),v) is a sublattice of (πr,v).
Proof: It must be shown that for any two partitions H1 and H2 in πr(τ), both
glb(H1,H2) and lub(H1,H2) are in πr(τ). As far as the former is concerned,
by lemma 2(iii) glb(H1,H2) discriminates the same predicates discriminated by
H1 and H2, therefore it is in πr(τ). On the other hand, lub(H1,H2) is not in
πr(τ) if and only if it does not discriminate one of the predicates discriminated
by H1 and H2, but, for the minimality required by the definition of lub, this
may only happen if that predicate is not discriminated by one of H1 and H2,

contradicting the hypothesis. 2

From the last proposition and the definition of the efficiency relation, it
follows that also (GR(τ),ve) is a lattice.

For the efficient implementation of our scheduler, we are interested in the
maximal grid state among those equivalent to the current tree state. The fol-
lowing proposition gives a necessary and sufficient condition for the maximality
of grid states.

Proposition 10: Let H = bi prod(h1, h2, . . . , hn) be a regular partition of
a grid state γ = 〈H, G, Q, Z〉, in GR(τ) for some tree state τ. Then γ is the
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maximum of (GR(τ),ve) if and only if for no two elements hi1 and hi2 of a
domain partition hi, 1 ≤ i ≤ n, for all regions H1,H2 ∈ H differing only for hi1

and hi2 , that is:

HI = h1j1 × . . .× hiI × . . .× hnjn I = 1, 2,

where hljl
∈ hl, for all 1 ≤ l ≤ n, l 6= i, the following conditions hold:

(i) Z(H1) = Z(H2), and

(ii) Q(H1) = Q(H2).

Proof: (→) If such elements hi1 and hi2 exist, then a more efficient grid than
γ is easily derived. (←) If γ is not maximal, then there exists a grid state
γ′ = 〈H′, G′, Q′, Z ′〉 in GR(τ), with H′ = bi prod(h′1, . . . , h′n), such that γ <e γ′,
that is H < H′. By Lemma 3, H < H′ implies that, for at least one i, there
exist two sets hi1 and hi2 in hi and a set h′i1 in h′i such that (hi1∪hi2) ⊆ h′i1 . Let
H denote any region in H′ that has h′i1 as component, and let H1, H2 denote
the corresponding regions in H, having hi1 and hi2 as components in place of
h′i1 , respectively. It follows that (H1 ∪ H2) ⊆ H. If H1 and H2 are contained
in the set defined by two different leaf node predicates in Λ, the γ′ would not
discriminate all the predicates in (Λ ∪ Φ), hence it would not be in GR(τ); it
follows that either H1 and H2 are contained in def [λ] for some λ ∈ Λ, or they
are both contained in def [φ] for some φ ∈ Φ. So we have Z(H1) = Z(H2).
Furthermore, if it were Q(H1) 6= Q(H2), then H1 and H2 would satisfy the
predicate of different subsets of the steps enqueued on that predicate, hence
γ′ would not discriminate (λ ∧ p(s)) for a step s ∈ q(λ), thus violating again
condition (i) in the definition of GR(τ), which would mean that γ′ is not a
member of GR(τ). It follows that Q(H1) = Q(H2). 2

We will denote as γo = 〈Ho, Go, Qo, Zo〉 the maximum of (GR(τ),ve), also
called the optimal grid. The last proposition suggests a method to find γo start-
ing from any grid γ in GR(τ) : if γ satisfies the hypotheses of the proposition,
then it is the maximum; if not, the proof of the proposition indicates how to
find a larger grid γ′, on which the same process is iterated. Since the number of
domains is finite, and so is the cardinality of each domain partition, the max-
imal grid can be found in a finite number of such iterations. This fact will be
exploited when we need to pass from a non-optimal grid state to the optimal
one.

The problem of efficiently implementing our scheduler can be posed as fol-
lows: given an input schedule sch, find γo

k for all 1 ≤ k ≤ |sch|. We will specify
the solution to this problem in an inductive way; for an arbitrary schedule sch,
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Table III: Components of simple partitions

αj tj

true {Dij}
(Nj(x) ≤ d) {{c ∈ Dij | c ≤ d}, {c ∈ Dij | c ≥ (d + 1)}}
(Nj(x) ≥ d) {{c ∈ Dij | c ≤ (d− 1)}, {c ∈ Dij | c ≥ d}}
(d1 ≤ Nj(x) ≤ d2) {{c ∈ Dij | c ≤ (d1 − 1)}, {c ∈ Dij | d1 ≤ c ≤ d2},

{c ∈ Dij | c ≥ (d2 + 1)}}

we will first identify the optimal grid state after the scheduling of the first step
in sch, that is γo

1 ; then, we will show how the optimal state resulting from the
scheduling of the first (k + 1) steps in sch, γo

k+1, can be derived from the k-th
optimal state γo

k, both in case the (k +1)-th step in sch is a lock and an unlock
step.

In order to establish the basic case, let us now consider the optimal regular
partition that discriminates a simple formula.

Definition 22: Let β = (α1 ∧ α2 ∧ . . .∧ αn) be a formula of LS. The simple
partition of β, Hβ

S , is the regular partition bi prod(t1, . . . , tn), where each ti

is the simple domain partition of αi and is given by {def [αi], def [αi]}, for all
1 ≤ i ≤ n. 2

For each kind of simple atom, Table III shows the corresponding simple
domain partition. Each member of these partitions is an interval, with the
exception of def [αl] when αl is an interval predicate, in which case we have the
union of two intervals.

Proposition 11: For any simple formula β, the largest regular partition
that discriminates β is the simple partition of β.

Proof: Suppose not. Then there is a regular partition H that discriminates β

such that Hβ
S < H. By Lemma 3, there must be at least one domain partition

hk of H that is strictly smaller than the k-th domain partition of the simple
partition of β. If β is true, then all αj are true, hence hk must consist of one set
larger than the domain of the k-th database property, Dik . This is clearly not
possible. If β has at least one simple atom αl different from true, then it follows
that hk = {Dik}. In this case, it can be proved that H does not discriminate β,

contradicting the hypotheses. 2

We are now ready to give γo
1 .

Proposition 12: For any schedule sch = s1 . . .

Ho
1 = Hp(s1)

S .
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For all regions H = h1 × . . .× hn in Hp(s1)
S ,

Go
1(H) =

{
1 if hj = def [p(s1)j ] for all 1 ≤ j ≤ n

0 otherwise

Qo
1(H) = 2

Zo
1(H) =

{
‘s1 if hj = def [p(s1)j ] for all 1 ≤ j ≤ n

‘s1 otherwise

where p(s1)j denotes the j-th atom in p(s1).
Proof: By definition of τ, the grid states in GR(τ1) must discriminate p(s1) and
p(s1), which Hp(s1)

S does by virtue of the previous proposition, and Lemma 2(i).
Clearly Go

1 is the discriminating function of p(s1), and by definition of τ, Q and
Z are properly defined. So we have that the above grid state is in GR(τ1). The
optimality of this state follows from that of Hp(s1)

S . 2

The following proposition presents the derivation of the optimal grid state
in the case of the scheduling of a lock step.

Proposition 13: Let γo
k = 〈Ho

k, G
o
k, Q

o
k, Z

o
k〉 be the optimal grid for an input

schedule sch, |sch| > k, whose (k + 1)-th step sk+1 is a lock step. Then γo
k+1 is

given by:

H = glb(Ho
k,Hp(sk+1)

S ),

and for all regions H ∈ H, if H ′ denotes the region of Ho
k such that H ⊆ H ′,

G(H) =

{
1 if H ⊆ def [p(sk+1)]
Go

k(H
′) otherwise

Q(H) =

{
Qo

k(H
′) t sk+1 if H ⊆ def [p(sk+1)] and Go

k(H
′) = 1

Qo
k(H

′) otherwise

Z(H) =





cat(Zo
k(H ′), ‘sk+1) if Go

k(H
′) = 0 and H ⊆ def [p(sk+1)]

cat(Zo
k(H ′), ‘sk+1) if Go

k(H
′) = 0 and H ∩ def [p(sk+1)] = ∅

Zo
k(H ′) if Go

k(H
′) = 1

Proof: Let us first prove that the above grid state is in GR(τk+1). We must
show that it satisfies the four conditions established by Definition 20. The
first of these conditions requires that H discriminate both the predicates in
(Λk+1 ∪ Φk+1), and (λ ∧ p(s)) for each λ ∈ Λk+1, s ∈ q(λ). From the definition
of τ, we have that:

Λk+1 = Λk ∪ {φ ∧ p(sk+1)| φ ∈ Φk and φ ∧ p(sk+1) is satisfiable}
Φk+1 = {φ ∧ p(sk+1)| φ ∈ Φk and φ ∧ p(sk+1) is satisfiable}.

By Lemma 2, it can be shown that H discriminates all the members of these
two sets. For all λ ∈ Λk+1 we have three cases:
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(1) if λ ∈ Λk and (λ∧ p(sk+1)) is satisfiable, then qk+1(λ) = qk(λ)t sk+1. By
hypothesis and Lemma 2(ii), H discriminates λ∧ p(s) for all s ∈ qk(λ); it
follows that it also discriminates λ ∧ p(sk+1);

(2) if λ ∈ Λk and (λ ∧ p(sk+1)) is not satisfiable, then qk+1(λ) = qk(λ). By
hypothesis H discriminates λ ∧ p(s) for all s ∈ qk(λ);

(3) if λ 6∈ Λk, then qk+1(λ) = 2, and no discrimination is in this case required
to H.

The second condition of Definition 20 requires that the function G above dis-
criminate σk+1, which is given by:

∨

λ∈Λk+1

λ ≡
∨

λ∈Λk

λ ∨
∨

φ∈Φk

(φ ∧ p(sk+1)).

Now let H ∈ H, H ⊆ H ′ ∈ Ho
k. G discriminates σk+1, if and only if G(H) = 1

when H is included in def [σk+1], and G(H) = 0 when H is not included in
def [σk+1]. It follows that G(H) = 1 if and only if H ⊆ def [p(sk+1)], and
G(H) = Go

k(H
′) in all the other cases. The third condition of Definition 20 re-

quires that, for all H ∈ H :

Q(H) =

{
q(λ)|s : (H ∩ def [p(s)]) 6= ∅ if H ⊆ def [λ] for some λ ∈ Λk+1

2 otherwise

Let H ′ be as above. If H ⊆ def [λ] for some λ ∈ Λk+1, then we have the
same three cases analyzed above, from whose inspection the condition follows.
Finally, the fourth condition of Definition 20 requires that:

Z(H) = z(θ), where H ⊆ def [θ], for some θ ∈ (Λ ∪ Φ).

If θ ∈ Λk+1, then either (a) θ ∈ Λk, in which case Z(H) must be by the
hypothesis Zo

k(H ′); or (b) θ is of the form φ∧p(sk+1), in which case Z(H) must
be cat(Zo

k(H ′), ‘sk+1). If θ ∈ Φk+1, then θ is of the form φ ∧ p(sk+1), in which
case Z(H) must be cat(Zo

k(H ′), ‘sk+1). We have thus shown that the grid state
〈H, G, Q,Z〉 ∈ GR(τk+1). To show that it is also the maximum, it is sufficient
to observe that a partition satisfies the first condition of Definition 20, if and
only if it discriminates the predicates discriminated by Ho

k and Hp(sk+1)
S , which,

respectively by hypothesis and by Proposition 11, are the largest partitions that
discriminate Λk, Φk and p(sk+1). By definition of glb, it follows that H is the
maximum of (GR(τk+1),ve). 2

In the scheduling of an unlock step, the derivation of the optimal grid state
is slightly more complicated, due to the possibility that a simplification of the
kind illustrated in the previous section may take place. In order to import this
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simplification on grids, we next define an operation on grid states analogous to
the simplification of tree states.

Definition 23: Given a grid state γ = 〈H, G,Q, Z〉 and two regions H and
H ′ in H, the signatures Z(H) and Z(H ′) are said to be resolving if and only
if Z(H) = ‘ξs and Z(H ′) = ‘ξ s and G(H) = G(H ′) = 0; their resolvent is the
signature ‘ξ. The simplification of γ, Σ(γ), is the grid state 〈H, G, Q, Z ′〉, where
Z ′ is obtained by recursively replacing resolving signatures by their resolvents.
2

As expected, the simplification of equivalent grid and tree states maintains
the equivalence relationship between the corresponding simplified states. This is
intuitively obvious, as the simplification of a tree state just reflects the passage
from a splitting tree to a smaller but equivalent tree, and the simplification of
a grid state only modifies the range of the signature function. The following
proposition formally captures this fact.

Proposition 14: Let τ = 〈Λ, Φ, q, z〉 be a tree state, and γ = 〈H, G, Q, Z〉
be an equivalent grid state, that is γ ∈ GR(τ). Then Σ(γ) ∈ GR(ς(τ)).
Proof: By definition of GR, γ ∈ GR(τ) contains resolving signatures if and only
if τ contains resolving open leaf node predicates. In particular, given H1 and H2

in H, Z(H1) and Z(H2) are resolving if and only if φ1 and φ2 in Φ are resolving
and H1 ⊆ def [φ1] and H2 ⊆ def [φ2]. Then let γ = γ1, γ2, . . . , γn = Σ(γ) and
τ = τ1, τ2, . . . , τn = ς(τ) be the sequences of grid and tree states, respectively,
leading to the simplification of the original state. It can be shown, by induction
on the length of the derivation, that γi ∈ GR(τi) implies γi+1 ∈ GR(τi+1) for
all 1 ≤ i ≤ (n− 1). 2

We can now derive a grid state equivalent to the tree state resulting from
the scheduling of an unlock step. In the following, q ↑ denotes the queue q after
popping its first element.

Proposition 15: Let γo
k = 〈Ho

k, G
o
k, Q

o
k, Z

o
k〉 be the optimal grid for an input

schedule sch, |sch| > k, whose (k + 1)-th step sk+1 is an unlock step, and let
si1si2 . . . sip be the lock steps enqueued on p(sk+1). Then the grid state γu given
by:

Hu = Ho
k;

for all regions H ∈ Ho
k,

Gu(H) =

{
0 if H ⊆ def [p(sk+1)] and Qo

k(H) = 2

Go
k(H) otherwise
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Qu(H) =

{
Qo

k(H) ↑ if H ⊆ def [p(sk+1)] and Qo
k(H) 6= 2

Qo
k(H) otherwise

Zu(H) =





cat(Zo
k(H), ‘si1 , . . . , ‘sip−1 , ‘sip) if H ⊆ def [p(sk+1)] and

Qo
k(H) = 2

cat(Zo
k(H), ‘si1 , . . . , ‘sil−1

, ‘sil) if H ⊆ def [p(sk+1)] and sil is the
first element of Qo

k(H)
Zo

k(H) otherwise

is in GR(τu), where τk+1 = ς(τu).
Proof: We must show that γu satisfies the four conditions of Definition 20. The
proof is analogous to that of Proposition 13, and for brevity we will only show
the part relative to the first condition. From the definition of τu we have that:

Λu = Λk − {p(sk+1)} ∪ {αj |αj is satisfiable} where

αj = p(sk+1) ∧ p(sij ) ∧
j−1∧

l=1

p(sil)

Φu =

{
Φk ∪ {β} if β is satisfiable
Φk otherwise where

β = p(sk+1) ∧
p∧

j=1

p(sij )}.

By hypothesis, Hu discriminates all the predicates in Λk, and (p(sk+1)∧ p(sij ))
for all 1 ≤ j ≤ p. Using a simple induction argument and Lemma 2(ii), it can
be shown that Hu discriminates the predicates of the form:

βj = p(sk+1) ∧
j∧

l=1

p(sil), 0 ≤ j ≤ p.

As a consequence, and by means of an even simpler induction argument, it is
shown that Hu discriminates the predicates:

αj = βj−1 ∧ p(sij ), 1 ≤ j ≤ p.

We have thus proven that Hu discriminates all the predicates in Λu and Φu,

since β is just βp. It remains to show that Hu also discriminates (λ ∧ p(s))
for all λ ∈ Λu and s ∈ qu(λ). This follows immediately from the fact that Hu

discriminates αj and p(sk+1) ∧ p(sir), by means of lemma 2(ii). 2

If follows from the two last propositions that the simplification of γu, Σ(γu)
is in GR(ς(τu)), that is in GR(τk+1). However, there is no guarantee that Σ(γu)
is the maximum of (GR(τk+1),
ve), because γu and Σ(γu) differ in their signature function, respectively Z and
Z ′. In passing from Z to Z ′, Σ(γu) may satisfy condition (i) of Proposition 10.

42



This is desirable, because it is to be expected that a simplification of a splitting
tree results, at least in some cases, in a simplification of the partition of the
corresponding optimal grid state, and in generating γu and its simplified version
Σ(γu) no such simplification is involved.

As already pointed out, the optimal grid state can be obtained from Σ(γu)
by joining the elements of domain partitions that satisfy the hypotheses of
Proposition 10, and repeating the process on the obtained grid state until a
grid state is found that does not satisfy these hypotheses. In this way, an
effective simplification of the partition takes place, which reduces the size of
the current grid state.

We have now set up the theoretical background for defining an efficient
implementation of the optimal scheduler, based on the notion of optimal grid
state.

5.3 The scheduler

In order to maintain a strict correspondence between the theory and the im-
plementation, the scheduler (Figure 7) has been divided into three main pro-
cedures: grid init, responsible for scheduling the first step, thereby initializing
the state data structure; grid lock, which schedules the lock steps following the
first one; and grid unlock, which schedules unlock steps. These procedures are
presented in the usual notation.

The state data structure employed for the implementation of the optimal
scheduler consists of the following components:

• n arrays SC1, . . . , SCn, called scales, one for each property of the database,
in which the current partition of the property domain is maintained; the
size of the array SCj is denoted by Nj , for all 1 ≤ j ≤ n; a cell of the
grid array, representing a member of the current partition of the database
space, is identified by an n-tuple of elements each drawn from the corre-
sponding scale, that is (SC1(i1), SC2(i2), . . . , SCn(in)) where 1 ≤ ij ≤ Nj ,

for all 1 ≤ j ≤ n;

• three functions, G, Q, and Z, giving, for each cell of the grid array, re-
spectively, the G-value, the queue and the signature of the corresponding
element of the current database partition.

Figure 8 shows the grid init procedure. First, the procedure outputs the
lock step s received as input. It then initializes the grid array to the simple
partition of p(s), as required by Proposition 12. It does this by setting each
scale to the corresponding simple domain partition, as required by Definition
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procedure grid sch (s: step)
begin
if first step(s) then grid init(s)
else if a(s) = ‘lock’ then grid lock(s)
else if a(s) = ‘unlock’ then grid unlock(s)
end

Figure 7: The grid sch scheduler

procedure grid init (s: step)
begin
output(s)
for k = 1 to n do

begin
if p(s)k = true then begin SCk(1) ← Dik ; Nk ← 1 end
else begin SCk(1) ← def [p(s)k]; SCk(2) ← def [p(s)k]; Nk ← 2 end
end

for j1 = 1 to N1 do
. . .

for jn = 1 to Nn do
begin
if SC1(j1) = def [p(s)1] and . . . and SCn(jn) = def [p(s)n] then begin

G(SC1(j1), . . . , SCn(jn)) ← 1; Z(SC1(j1), . . . , SCn(jn)) ← ‘s
end

else begin
G(SC1(j1), . . . , SCn(jn)) ← 0; Z(SC1(j1), . . . , SCn(jn)) ← ‘s
end

Q(SC1(j1), . . . , SCn(jn)) ← 2

end
end

Figure 8: The scheduling of the first step

44



procedure grid lock (s: step)
begin
for k = 1 to n do merge(SCk, Nk, def [p(s)k], def [p(s)k], SC ′

k, N
′
k)

for j1 = 1 to N ′
1 do

. . .

for jn = 1 to N ′
n do

begin
k1 ← includes(SC1, SC ′

1(j1))
. . .

kn ← includes(SCn, SC ′
n(jn))

if contained(p(s)1, SC ′
1(j1)) and . . . and contained(p(s)n, SC ′

n(jn)) then begin
G′(SC ′

1(j1), . . . , SC ′
n(jn)) ← 1

if G(SC1(k1), . . . , SCn(kn)) = 1 then begin
Q′(SC ′

1(j1), . . . , SC ′
n(jn)) ← Q(SC1(k1), . . . , SCn(kn)) t s

Z ′(SC ′
1(j1), . . . , SC ′

n(jn)) ← Z(SC1(k1), . . . , SCn(kn))
end

else begin
output(step(SC ′

1(j1), . . . , SC ′
n(jn)))

Q′(SC ′
1(j1), . . . , SC ′

n(jn)) ← 2

Z ′(SC ′
1(j1), . . . , SC ′

n(jn)) ← cat(Z(SC1(k1), . . . , SCn(kn)), ‘s)
end

end
else begin

G′(SC ′
1(j1), . . . , SC ′

n(jn)) ← G(SC1(k1), . . . , SCn(kn))
Q′(SC ′

1(j1), . . . , SC ′
n(jn)) ← Q(SC1(k1), . . . , SCn(kn))

if G(SC1(k1), . . . , SCn(kn)) = 1 then Z ′(SC ′
1(j1), . . . , SC ′

n(jn)) ← Z(SC1(k1), . . . , SCn(kn))
else Z ′(SC ′

1(j1), . . . , SC ′
n(jn)) ← cat(Z(SC1(k1), . . . , SCn(kn)), ‘s)

end
end

end

Figure 9: The scheduling of lock steps
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22. Finally, grid init assigns to G, Q and Z the proper value, as established by
Proposition 12.

The grid lock procedure, presented in Figure 9, computes the new optimal
grid in a fresh state data structure, whose components are denoted by priming
the variables of the current one. By Proposition 13, the partition of the new
optimal grid is the greatest lower bound of the current partition and the simple
partition of p(s), and is given, according to Proposition 8, by the bi prod of the
greatest lower bound of the corresponding domain partitions, to be computed
as established by Proposition 6. This computation is the task of the merge
procedure (Figure 10), which takes as input a scale SCk with the current k-th
domain partition, its size, and the elements of the k-th simple domain parti-
tion, which have been denoted as interval1 and interval2, even though one of
them may in fact be the union of two intervals (see Table III). The two other
parameters of merge are the returned new scale and its size. merge checks each
member of SCk against both interval1 and interval2 to ascertain whether the
intersection yields the empty set. If not, the intersection set is assigned to the
new scale. Since also the members of scales are unions of disjoint intervals, the
task of merge is almost trivial.

Having computed the components of the new partition, grid lock examines
each element of this partition to update its G- Q- and Z- values as required by
Proposition 13. For each such element H, grid lock needs to know:

(1) What is the region of the old partition containing H, that is H ′ in Propo-
sition 13. This region is given by (SC1(k1), . . . , SCn(kn)), where each ki

is computed by the includes procedure (not presented), which finds the
member of the old scale SCi containing the i-th component of H.

(2) Whether H is in the region defined by the predicate of the step being
scheduled. Again, this is done scale by scale applying the contained pred-
icate, which checks whether the interval defined by a given atom contains
an element of a domain partition. The procedure implementing the con-
tained predicate is not presented.

In updating the state data structure, grid lock strictly follows the instructions
implicitly given in Proposition 13, with one addition: whenever an element
of the new partition is found to be contained in the set defined by the input
predicate and to come from a 0 G-valued region of the old partition, then, as
expected, a lock step is output. The predicate of this lock step is obtained as
the conjunction of the atoms corresponding to the domain partition elements of
the element in question. This operation is accomplished by the step procedure,
not presented.
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procedure merge (SC, N, interval1, interval2, SC ′, N ′)
split: boolean; increment: integer
begin
increment ← 0
for j = 1 to N do

begin
split ← false

if (SC(j) ∩ interval1) 6= ∅ then begin
split ← true; SC ′(j + increment) ← SC(j) ∩ interval1

end
if (SC(j) ∩ interval2) 6= ∅ then begin

if split then increment ← increment + 1
SC ′(j + increment) ← SC(j) ∩ interval2

end
end

N ′ ← N + increment

end

Figure 10: The procedure computing the greatest lower bound of two domain
partitions

Finally, the grid unlock procedure is given in Figure 11. This procedure first
computes the grid state γu defined in Proposition 15, then its simplification
Σ(γu), by means of the grid simplify procedure, and finally the reduced state,
which the grid reduce procedure obtains by applying the result of Proposition
10, as already explained. Neither grid simplify nor grid reduce are presented,
as they are not conceptually relevant.

In order to compute γu, grid unlock first collects in the pending set the steps
which are enqueued in the regions defined by the predicate of the unlocked
step. The names of these steps are needed to compute the signatures of the
regions involved in the rescheduling process, and are denoted as si1si2 . . . sip

in Proposition 15. The members of pending are then sorted according to their
arrival order by the sort function. grid unlock identifies the regions of the
current partition involved in the unlock in the same way as grid lock, that is
by scanning the whole grid array and testing the single components of each
region against the corresponding atom of the input predicate. For each such
region, grid unlock updates the G, Q and Z functions as required by Proposition
15, with one addition: whenever an element is found to be contained in the
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set defined by the input predicate and to have a non-empty queue, then, as
expected, a lock step is output, so rescheduling the first of the steps pending
on the region. This step is then dequeued by pop-ing the queue of the region.
To compute signatures, two functions are used:

• select, returning the subsequence given as first argument up to and exclud-
ing the element given as second argument. When the second argument is
all, all of the first argument is returned;

• neg, taking as input a sequence of steps and returning the string obtained
by concatenating the names of the steps, negated.

The correctness of grid sch follows from that of tree sch, as these schedulers
grant the same database entities, although possibly grouped in a different way.

Let us now consider the efficiency of grid sch. We recall that the efficiency
of a scheduler is measured with respect to the size of the state data structure,
and the number of steps needed to schedule an input step.

The state data structure used by grid sch is given by the scales SC1, SC2, . . . , SCn

and the functions G, Q and Z. The values taken by these functions are clearly
polynomially sized with respect to the input steps, but their domain is the grid
array representing the current partition, whose size depends on the size of the
scales. We must thus prove that both the size of each scale, that is N i for all
1 ≤ i ≤ n, and the size of each element of the scales are polynomially bounded.
In order to obtain these two results simultaneously, we will consider the number
of intervals in which each property domain is partitioned, letting it be NIj for
the j-th domain partition. Since N j ≤ NIj , any limitation to the latter will
also apply to the former.

Proposition 16: For all 1 ≤ j ≤ n, NIj is at any moment bounded by a
polynomial in the number of steps that have arrived so far.
Proof: Table III shows that NIj

1 ≤ 3. If the (m + 1)-th step s of the schedule
being processed is a lock step, each interval in SCj obtained at step m is
intersected with the intervals in

{def [p(s)j ], def [p(s)j ]}.

In the worst case, p(s)j is an interval predicate whose boundaries are different
from those of the intervals in SCj , so that NIj

m+1 ≤ NIj
m + 2. If s is an unlock

step, the size of the grid can only be decreased by a simplification, therefore
NIj

m+1 ≤ NIj
m. By a simple induction argument, it can be shown that from

NIj
1 ≤ 3

NIj
m+1 ≤ NIj

m + 2
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procedure grid unlock (s: step)
s′: step; pending: set of step
begin
pending ← ∅
for j1 = 1 to N1 do
. . .

for jn = 1 to Nn do
if contained(p(s)1, SC1(j1)) and . . . and contained(p(s)n, SCn(jn)) then

pending ← pending ∪ Q(SC1(j1), . . . , SCn(jn))
pending ← sort(pending)
for j1 = 1 to N1 do
. . .

for jn = 1 to Nn do
begin
if contained(p(s)1, SC1(j1)) and . . . and contained(p(s)n, SCn(jn)) then

if Q(SC1(j1), . . . , SCn(jn)) = 2 then begin
G(SC1(j1), . . . , SCn(jn)) ← 0
Z(SC1(j1), . . . , SCn(jn)) ← cat(Z(SC1(j1), . . . , SCn(jn)), neg(select(pending, all)))
end
else begin
output(step(SC1(j1), . . . , SCn(jn)))
s′ ← pop(Q(SC1(j1), . . . , SCn(jn)))
Z(SC1(j1), . . . , SCn(jn)) ← cat(Z(SC1(j1), . . . , SCn(jn)), neg(select(pending, s′)), ‘s′)
end

end
grid simplify; grid reduce

end

Figure 11: The scheduling of unlock steps
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it follows that NIj
m ≤ (2 ·m + 1) = O(m), for all j, 1 ≤ j ≤ n. 2

As a corollary of the last proposition, we have that the size of the grid array,
N, satisfies the following condition:

N =
n∏

j=1

N j ≤
n∏

j=1

(2 ·m + 1) = O(mn),

and is therefore polynomial in the size of the input, m.

As far as the second measure of efficiency is concerned, we can state the
following.

Proposition 17: The number of steps needed to schedule an input step is
at any moment bounded by polynomial in the number of steps that have been
scheduled so far.
Proof: Both in case of a lock and an unlock step, the scheduler examines the
whole grid array, whose size has been shown to be polynomial in the number
of steps that have been scheduled so far. For each element examined, grid sch
performs operations whose complexity is linear in the product of the size of the
largest queue and the size of the current scales. On the one hand, grid lock
performs n calls to the includes function, which is a linear scanning of a scale,
and n checks of the contained predicate, which requires a containment check
between intervals. On the other hand, grid unlock examines the grid array
twice, the first time to collect pending steps, the second time to update the G,

Q and Z functions, for which n calls to the contained predicate are required
each time. The efficiency of grid sch thus follows. 2

A number of speed-up devices can be used to efficiently implement the
grid lock and grid unlock procedures, which have been shaped in a way that
makes the efficiency analysis of grid sch easier.

The somewhat disturbing fact remains that the size of the grid array may
be exponential in the number of properties of the database, n. The consequent
disappointment can be mitigated by the fact that our analysis: (a) does not take
into account the simplifications allowed by the scheduling of unlock steps, and
(b) assumes that in the scheduling of a lock step every linear scale increases by
two elements. The former factor is especially expected to play a crucial role in
maintaining the actual size of the grid array at a reasonable level. Furthermore,
the number of database properties is constant in time and is not expected to
be significantly high, say in the order of units rather than dozens. While the
former fact allows the designer of the scheduler to be aware of the problem right
from the start and so devise the necessary measures, it is the latter fact that
gives the decisive plausibility to the whole method.
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5.4 From LS to L
We now consider how useful extensions to the expressive power of LS impact
on the efficiency of grid sch.

5.4.1 DNF

The first extension concerns the inclusion in the language of DNF predicates.
In this case, for any input step s, we will have:

p(s) = φ =
m∨

j=1

φj , for m ≥ 1,

where each φj is a formula of LS. Let us call LS+ this extended version of LS.

It is not difficult to see that the scheduling of s is equivalent to the scheduling
of the sequence of steps s1s2 . . . sm, where:

p(sj) = φj , for all 1 ≤ j ≤ m.

Therefore, the complexity of scheduling s is given by the sum of the complexity
of scheduling each sj , hence it is of the same order. From the efficiency of
grid sch on LS that of grid sch on LS+ will follow.

5.4.2 Aggregation

A useful feature of L that is lost in LS is aggregation, expressed through func-
tion terms of the form f1(f2(. . . fm(x) . . .)), where each fj is a function symbol
interpreted, with the exception of f1, as a database complex property. By al-
lowing aggregation in input predicates, our scheduler would be able to handle
predicates like:

Lives in(x) = Pisa ∧ Age(Best friend(x)) ≤ 40,

denoting the entities who live in Pisa and whose best friend is at most 40 years
old. Predicates of this kind address more than one entity: for instance, the
above predicate refers to two entities, one denoted by the variable x, the other
denoted by the atomic function term Best friend(x). In fact, the above formula
is equivalent to:

Lives in(x) = Pisa ∧ (∃y)(y = Best friend(x) ∧ Age(y) ≤ 40).

In order to represent the set defined by this formula, two database spaces are
needed: one corresponding to the property values of x, the other to the property
values of y. This fact can be expressed in a general and formal way by extending
Proposition 7, and showing that a formula containing aggregations is satisfiable
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if and only if the set defined in the extended space is not empty. Even if
the nesting of function terms were limited to a maximum k, with m complex
properties in the database there would be potentially km database spaces to be
kept track of, i.e. km grid arrays for each grid state. Needless to say, this is not
affordable in any reasonable database system.

5.4.3 Complex atoms

Another feature of L that LS lacks is the possibility of expressing complex
atoms, that is formulae of the kind:

Spends(x) ≤ Earns(x),

denoting the individuals who spend no more than they earn. Resorting to the
geometrical interpretation of predicates introduced in Section 5.1, we can see
that complex atoms in general define regions shaped as possibly infinite poly-
gons. The representation of these shapes as sums of rectangles, although geo-
metrically possible, may require as many rectangles as the points in a property
domain (this is the case of the above formula). It follows that the introduction
of complex atoms leads grid states to an unmanageable size.

6 Conclusions

This paper gives three main results. First, it defines the optimal splitting strat-
egy, that is the scheduling policy that allows the maximum level of concurrency
when dealing with predicate locking. This strategy is formalized by means of
tree states, and proved correct. Second, it defines a language that allows an
effective implementation of the optimal splitting strategy. In order to show this,
the theory of discriminating partition is developed and used as a basis for the
implementation of an optimal predicate locking scheduler. Third, it shows that
any significant extension to the expressive power of the predicate language pre-
vents the application of the grid method for implementing the optimal splitting
strategy. This sheds light on one side of the trade-off between efficiency and
concurrency involved in the design of predicate locking schedulers, namely the
side where concurrency is given the highest priority.

It is still an open problem whether there exists an efficient implementation
of the optimal splitting strategy for a predicate language more powerful than
LS+.
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