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Abstract.
We introduce the formal framework of a generalized interaction
scheme for information access between users and information sources.
Within this framework we describe an interaction manager which
supports more complex interaction schemes than those that are
supported by existing systems, including: query by example, an-
swer enlargement/reduction, query relaxation/restriction, index relax-
ation/contraction, ”relevance” feedback, and adaptation facilities. We
give the foundations of this interaction manager from a mathematical
point of view, in terms of an abstract view of an information source.

1 Introduction

Information sources such as information retrieval systems [2], or databases and
knowledge bases [12], aim at organizing and storing information in a way that
allows users to retrieve it in a flexible and efficient manner. Commonly, for
retrieving the desired information from an information source, the user has to
use the query language that is provided by the system.

We propose an interaction scheme whose objective is to make the desired ob-
jects easy to find for the user, even if the source has a query language which
is unknown to the user. This scheme is actually a generalization of the in-
teraction schemes that are currently used by information systems. In partic-
ular, we describe an interaction manager which supports several kinds of in-
teraction, including: query by example, index relaxation/contraction, query re-
laxation/restriction, answer enlargement/reduction, ”relevance” feedback, and
adaptation facilities, in a uniform manner.

We view the interaction of a user with the information source as a sequence of
transitions between contexts where a context is a consistent ”interaction state”.



The user has at his/her disposal several ways to express the desired transition.
Then, it is the interaction manager that has to find (and drive the user to)
the new context. Methods allowing the user to specify a transition relatively
to the current context are also provided. Furthermore, we describe methods for
restricting the set of transitions to those that can indeed lead to a context. As we
shall see below, the unified interaction scheme that we introduce allows defining
more complex interaction mechanisms than those that are supported by existing
systems. We describe this scheme in terms of an abstract view of a source.

The paper is organized as follows. Section 2 introduces contexts and context
transitions. Section 3 describes how context transitions can be specified using
replacements. Section 4 describes how the interaction manager can find a new
context after a context transition specification. Section 5 introduces relative
replacements and Section 6 describes context transitions using restricted relative
replacements. Section 7 concludes the paper and identifies issues for further
research.

2 A Context-based Interaction Scheme

We view a source S as a function S : Q → A where Q is the set of all queries that
S can answer, and A is the set of all answers to those queries, i.e. A={ S(q) | q ∈
Q}. As we focus on retrieval queries, we assume that A is a subset of P(Obj),
the powerset of Obj, where Obj is the set of all objects stored at the source.

Let S be the set of all sources that can be derived by ”updating” the source
S (e.g. for adapting it), but for the moment let us suppose that S is the set of
all functions from Q to P(Obj).

Let U denote the set of all triples in S×Q×A, i.e. U = S×Q×A. A triple
c = (S, q, A) ∈ U is called an interaction context, or context for short, if S(q) = A.
Let C denote the set of all contexts, i.e. C= { (S, q, A) ∈ U |S(q) = A}. Given
a context c = (S, q, A), S is called the source view of c, q is called the query
of c and A is called the answer of c. The interaction between the user and the
source is carried out by a software module called Interaction Manager (IM).
We view the interaction of a user with the source as a sequence of transitions
between contexts. At any given time, the user is in one context, the focal context.
At the beginning of the interaction with the system the user starts from the
initial context (S, ε, ∅) where S is the stored information source, ε is the empty
query and ∅ is the empty answer1. There are several methods the user can use
for moving from one context to another, i.e. for changing the focal context.
For example, in the traditional query-and-answer interaction scheme, the user
actually ”replaces” the current query q by formulating a new query q′ and the
”interaction manager” drives him to the new context (S, q′, A′) where A′ = S(q′).

1 We assume that S(ε) = ∅ therefore (S, ε, ∅) is a context.



However this is only one way of changing the focal context. Several other ways
will be presented below.

At first we introduce some preliminary material. There are three partially
ordered sets (posets) that can be exploited by the interaction manager:

– The poset of answers (P(Obj),⊆)

– The poset of queries (Q,≤). Given two queries q and q′ of Q, we write q ≤ q′

iff S(q) ⊆ S(q′) in every possible source S in S. We write q ∼ q′ is both
q ≤ q′ and q′ ≤ q hold. Let Q∼ denote the set of equivalence classes induced
by ∼ over Q.

– The poset of sources (S,v). Given two sources S and S′ in S, S v S′ iff
S(q) ⊆ S′(q) in every query q ∈ Q.

For every element x of the above lattices, we shall use Br(x) to denote the
elements that are greater than or equal to x, and Nr(x) to denote the elements
that are less than or equal to x in the corresponding poset.

3 Context Transition Specifications (CTSs) through
Replacements

At first we study the case where the user replaces one component of the focal
context (i.e. either S, q or A) by another component by explicitly providing the
new component. Later on, we will further study these replacements and we will
describe methods that allow the user to specify the desired replacement without
having to provide explicitly the new component (i.e. methods for defining the
new component relatively to the current).

The replacements that can be applied to a context c = (S, q, A) can be:

(a) query replacement, denoted by [q → q′],
(b) answer replacement, denoted by [A → A′], and
(c) source view replacement, denoted by [S → S′]

As mentioned earlier, the user should always be in a context i.e. in a triple
(S, q, A) where S(q) = A. This means that after any of the above kinds of
replacement, the interaction manager should try to reach a context c′ by changing
one (or both) of the remaining two components of the focal context. Instead of
leaving the IM to decide, it is the user that indicates to the IM the component(s)
to be changed during a replacement. A replacement plus an indication of the
above kind, is what we call a Context Transition Specification (CTS). Below we
discuss each possible CTS, assuming a focal context (S, q,A). For each CTS,
we also discuss the motivation beneath. We do it in brief because we mainly
focus on founding this interaction scheme from a mathematical point of view.
However, we think that the set of CTSs that we propose are elemental, in the



sense that other more sophisticated interaction schemes can be analyzed using
the set of CTSs that we propose.

Query replacement [q → q′]

– [q → q′/A]
Here the answer A must be changed. This is the classical query-and-answer
interaction scheme: when the user replaces the current query q with a new
query q′, the user is given a new answer (i.e. an A′ such that A′ = S(q′)).
Thus we can write: [q → q′/A](S, q, A) = (S, q′, S(q′)).

– [q → q′/S]
Here the source view S must be changed. This means that the user replaces
the current query q by a query q′, because the user wants the current answer
A to be the answer of q′, not of q. The IM should try to ”adapt” to the
desire of the user by changing the source view from S to an S′ such that
S′(q′) = A.

Answer replacement [A → A′]

– [A → A′/q]
Here the query must be changed. This interaction scheme may help the user
to get acquainted with the query language of the source. It can be construed
as an alternative query formulation process. The user selects a number of
objects (i.e. the set A′) and asks from the IM to formulate the query that
”describes” these objects. Subsequently the user can change the query q′

in a way that reflects his/her information need. Roughly this resembles the
Query By Example (QBE) process in relational databases. It also resembles
the relevance feedback mechanisms in Information Retrieval systems. For
example, the user selects a subset A′ of the current answer A consisting
of those elements of A which the user finds relevant to his/her information
need. Subsequently, the IM has to change appropriately the query.

– [A → A′/S]
Here the source view S has to be changed. This case resembles the CTS
[q → q′/S] that was described earlier. Here the user wants A′ (instead of A)
to be the answer of q. The IM should try to adapt to the desire of the user
by changing the source view from S to an S′ such that S′(q) = A′.

Source view replacement [S → S′]

– [S → S′/A]
Here the answer A must be changed. This is the classical interaction scheme:
whenever the source changes (e.g. after an update) the answers of queries
change as well, i.e. here we have A′ = S′(q).

– [S → S′/q]
Here the query q must be changed. This resembles the way that a relational
database management system changes the query q that defines a relational
view, after an update of the database, in order to preserve the contents
(tuples) of the view.



We have seen six kinds of context transition specifications. Table 1 summa-
rizes the above discussion and it also includes the cases where the IM can change
two components of the focal context during one transition. In summary, the user
has 9 different ways to specify the desired context transition.

Table 1. Replacements and possible reactions of the interaction manager

Replacements on c = (S, q, A) c′

Query Replacement [q → q′] (S, q′,A′) (S′, q′, A) (S′, q′,A′)
Answer Replacement [A → A′] (S,q′, A′) (S′, q, A′) (S′,q′, A′)
Source View Replacement [S → S′] (S′,q′, A) (S′, q,A′) (S′,q′,A′)

4 Finding the Target Context(s)

Given a focal context c and a context transition specification R, the role of the
IM is to find the desired context R(c), if one exists.

Searching for an answer (in the cases [q → q′/A] and [S → S′/A])
The cases in which the interaction manager has to change the answer in

order to reach to a context (i.e. after a query or source replacement), are rela-
tively simple: the desired context always exists and the desired answer A′ can
be derived using the query evaluation mechanism of the source. In particular, in
the case [q → q′/A] (”query replacement - change of answer”) the new context
is (S, q′,S(q′)), while in the case [S → S′/A] (”source replacement - change of
answer”) the new context is (S′, q,S′(q)).

The cases in which the interaction manager has to find a new query or a
new source view are less straightforward. The main problem is that the desired
context does not always exist.

Searching for a query q (in the cases [A → A′/q] and [S → S′/q])
In cases [A → A′/q] and [S → S′/q] we are looking for a q ∈ Q such that

S(q) = A for given S and A. Let us first try to define a ”naming service”, i.e. a
method for computing one or more queries that describe (name) a set of objects
A ⊆ Obj. For supporting the naming service we would like to have a function
n : P(Obj) → Q such that for each A ⊆ Obj, S(n(A)) = A. Having such a
function, we would say that the query n(A) is an exact name for the object set
A. Note that if S is an onto function then the naming function n coincides with
the inverse relation of S, i.e. with the relation S−1 : P(Obj) → Q. However,
this is not always the case, as more often than not, S is not an onto function,
i.e. A ⊂ P(Obj). Furthermore, if S is onto and one-to-one, then S−1 is indeed a



function, thus there is always a unique q such that S(q) = A for each A ⊆ Obj
2.

As S is not always an onto function, we shall introduce two ”approximate”
naming functions, a lower naming function n− and an upper naming function
n+. We can define the function n− and n+ as follows:

n−(A) = lub{ q ∈ Q | S(q) ⊆ A}
n+(A) = glb{ q ∈ Q | S(q) ⊇ A}

where A is any subset of Obj. Now let A be a subset of Obj for which both
n−(A) and n+(A) are defined (i.e. the above lub and glb exist). It is clear that
in this case it holds:

S(n−(A)) ⊆ A ⊆ S(n+(A))

and that n−(A) and n+(A) are the best ”approximations” of the exact name of
A. Note that if S(n−(A)) = S(n+(A)) then both n−(A) and n+(A) are exact
names of R. If Q is a query language that (a) supports disjunction (∨) and
conjunction (∧) and it is closed with respect to both these operations, and (b)
has a top (>) and a bottom (⊥) element such that S(>) = Obj and S(⊥) = ∅,
then the functions n− and n+ are defined for every subset A of Obj. Specifically,
in this case (Q∼,≤) is a complete lattice, thus these functions are defined as:

n−(A) =
∨
{ q ∈ Q | S(q) ⊆ A}

n+(A) =
∧
{ q ∈ Q | S(q) ⊇ A}

As Q is usually an infinite language, n−(A) and n+(A) are queries of infinite
length. This means that in practice we also need a method for computing a
query of finite length that is equivalent to n−(A) and another that is equivalent
to n+(A). If however Q does not satisfy the above conditions (a) and (b), then
n−(A) and n+(A) may not exist. For such cases, we can define n− and n+ as fol-
lows: n−(A) = max{ q ∈ Q | S(q) ⊆ A} and n+(A) = min{ q ∈ Q | S(q) ⊇ A},
where max returns the maximal element(s), and min the minimal element(s).
Clearly, in this case we may have several lower and upper names for a given A. A
specialization of these naming functions for the case of taxonomy-based sources
is described in [10].

Let us now return to our problem. If a naming function nS is available for
source S, then the context we are looking for exists and can be found as follows:

– [A → A′/q](S, q,A) = (S, nS(A′), A′)
– [S → S′/q](S, q, A) = (S′, nS′(A), A)

2 Usually, sources are not one-to-one functions. For instance, the supported query
language may allow formulating an infinite number of different queries, while the set
of all different answers A is usually finite (e.g. P(Obj)).



If only approximate naming functions are available, then two ”approximate”
next contexts exist:

– [A → A′/q](S, q,A) =
{

(S, n−S (A′), S(n−S (A′)))
(S, n+

S (A′), S(n+
S (A′)))

– [S → S′/q](S, q, A) =
{

(S′, n−S′(A), S′(n−S′(A)))
(S′, n+

S′(A), S′(n−S′(A)))

Notice that in the above cases, IM does not change only q, but also the
answer. In the case [A → A′/q], the new context has an answer, say A”, which
is the closest possible to the requested (by the user) answer A′. In the case
[S → S′/q], the new context has an answer A′ which is the closest possible to
the current A.

Searching for a source view S (in the cases [A → A′/S] and [q → q′/S])
In cases [A → A′/S] and [q → q′/S] we are looking for a S ∈ S such

that S(q) = A for given q and A. Note that the desired source S always exists
if and only if S is the set of all functions from Q to A. We cannot describe
any mechanism for finding the desired S′ within such an abstract framework.
However, later on we shall see how restricted relative replacements and a source
relaxation/contraction mechanism can be exploited in order to support this kind
of interaction.

The following list summarizes how the IM can find the target context after
each kind of CTS:

(1) [q → q′/A](c) = (S, q′, S(q′)), i.e. it relies on query evaluation
(2) [S → S′/A](c) = (S′, q, S′(q)), i.e. it relies on query evaluation
(3) [A → A′/q](c) = (S, nS(A′), A′), i.e. it relies on naming functions
(4) [S → S′/q](c) = (S′, nS′(A), A), i.e. it relies on naming functions
(5) [A → A′/S](c) =?, i.e. this is an open issue
(6) [q → q′/S](c) =?, i.e. this is an open issue

5 Relative Replacements and Relative CTSs

Until now we have described how the IM could react to a context transition
specification. Now we shall focus on the replacements. Certainly, the user can
manually specify a replacement, e.g. submit a new query, select a set of objects
A′ ⊆ Obj, or update the source S by adding, deleting or modifying some of the
contents of S.

Here we describe methods that allow the user to specify the desired replace-
ment without having to provide explicitly the new component, i.e. methods for
defining the new component relatively to the current. These methods can be
helpful for the user during the interaction with the system.

The three partial orders mentioned earlier can be exploited for moving to a
component (answer, query, or source) that covers, or is covered by, the current



component. Given a component x, let x+ denote a component that covers x,
and let x− denote a component that is covered by x 3. Note that there may not
always exist a unique x+ or a unique x−. Specifically, we may have zero, one, or
more x+’s and x−’s for a given x.

Let Up(x) denote a component among those greater than x and that the
IM can compute (ideally Up(x) = x+), and let Down(x) denote a component
among those less than x and that the IM can compute (ideally Down(x) = x−).
Notice that these Up and Down functions correspond to

– a query relaxation/contraction mechanism, if applied to Q,
(i.e. [q → Up(q)] and [q → Down(q)])
Such mechanisms have been proposed for several kinds of sources, including
relational [6], semi-structured [4], taxonomy-based [11], Description-Logics-
based [9, 3] and Web sources [7].

– an answer enlargement/reduction mechanism, if applied to A,
(i.e. [A → Up(A)] and [A → Down(A)])

– a source relaxation/contraction mechanism, if applied to S
(i.e. [S → Up(S)] and [S → Down(S)]).
An example of such a mechanism for the case of taxonomy-based sources,
founded on abduction, is described in [8].

These relative replacements can be used within context transition specifica-
tions. At the user interface level, this means that the user can have at his/her
disposal two buttons, ”Up” and ”Down” for every component of the focal con-
text. By pressing a button, the corresponding replacement is specified. Figure 1
sketches such a user interface. The option control labelled ”Change” allows the
user to indicate to the IM the component (S, q, or A) that should be changed
in order to reach the new context. Then, it is the task of the IM to try to reach
a context, using the approach indicated by the user, and subsequently to deliver
this context to the user. A CTS defined by a relative replacement will be called
relative CTS.

Below we enumerate all possible relative CTSs:

(1) [q → Up(q)/A]: query relaxation resulting in answer enlargement
[q → Down(q)/A]: query contraction resulting in answer reduction

(2) [S → Up(S)/A]: source relaxation resulting in answer enlargement
[S → Down(S)/A]: source contraction resulting in answer reduction

(3) [A → Up(A)/q]: answer enlargement resulting in query relaxation
[A → Down(A)/q]: answer reduction resulting in query contraction

(4) [S → Up(S)/q]: source relaxation resulting in query contraction
[S → Down(S)/q]: source contraction resulting in query relaxation

(5) [A → Up(A)/S]: answer enlargement resulting in source relaxation
[A → Down(A)/S]: answer reduction resulting in source contraction

(6) [q → Up(q)/S]: query relaxation resulting in source contraction
[q → Down(q)/S]: query contraction resulting in source relaxation

3 An element x+ covers an element x if x+ > x and x+ ≤ x′ for every x′ > x.
An element x is covered by an element x− if x− < x and x− ≥ x′ for every x′ < x.
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Go !

S q A

q

A

< current query >

< current answer >

Fig. 1. A user interface for specifying context transitions through relative replacements

6 Restricting the Relative CTSs

The three partial orders mentioned in Section 2 (and their interrelationships)
can be exploited in order to restrict the set of relative CTSs to those for which
the IM can indeed compute the target context. Below we describe how we can
restrict relative replacements according to the CTS in which they appear.

Up/Down on Sources
As we saw earlier, source replacements appear in cases (2) and (4) of CTSs.

In these cases, there is no need to restrict Up(S) or Down(S) because the IM can
always find the target context. In particular, CTS (2) relies on query evaluation
and CTS (4) on naming functions:

(2) [S → S′/A](c) = (S′, q, S′(q)), i.e. it relies on query evaluation
(4) [S → S′/q](c) = (S′, nS′(A), A), i.e. it relies on naming functions

Up/Down on Answers
Answer replacements appear in cases (3) and (5) of CTSs. CTS (2) relies on

naming functions, while CTS (5) is still open:

(3) [A → A′/q](c) = (S, nS(A′), A′), i.e. it relies on naming functions
(5) [A → A′/S](c) = ?, i.e. this is an open issue

Note that we can restrict Up/Down(A) so that to support CTS (3) even if
naming functions are not available (or if they are available, but there is no exact
name for A′). This can be achieved by defining:

Up(A) = S(Up(q))
Down(A) = S(Down(q))

In this way, the IM can find the target context without using any naming func-
tion. i.e.



(3R) [A → S(Up(q))/q](c) = (S, Up(q), S(Up(q)))
[A → S(Down(q))/q](c) = (S, Down(q), S(Down(q)))

Another interesting remark is that by restricting Up(A) or Down(A) the IM
can support CTS (5). This can be achieved by defining Up(A) and Down(A) as
follows:

Up(A) = Up(S)(q)
Down(A) = Down(S)(q)

In this way, the IM can find the target context:

(5R) [A → Up(S)(q))/S](c) = (Up(S), q, Up(S)(q))
[A → Down(S)(q))/S](c) = (Down(S), q, Down(S)(q))

Up/Down on Queries
Query replacements appear in cases (1) and (6) of CTSs:

(1) [q → q′/A](c) = (S, q′, S(q′)), i.e. relies on query evaluation
(6) [q → q′/S](c) = ?, i.e. this is an open issue

CTS (1) relies on query evaluation, hence no restriction is needed. CTS (6)
is still open but by restricting Up/Down(q) the IM can support it, if naming
functions are available. This can be achieved by defining Up(q) and Down(q) as
follows:

Up(q) = nDown(S)(A)
Down(q) = nUp(S)(A)

In this way, the IM can find the target context:

(6R) [q → nUp(S)(A)/S](c) = (Up(S), nUp(S)(A), A)
[q → nDown(S)(A)/S](c) = (Down(S), nDown(S)(A), A)

In this section we showed how the IM can support all kinds of relative CTSs
through restricted relative replacements.

7 Concluding Remarks

We introduced a unified formal framework which captures several interaction
schemes between users and information systems. This unified view allowed us
to describe more complex interaction mechanisms that those supported by the
existing systems. The value of this unification is not only theoretical. It can be
directly reflected in the interaction between the user and the information source,
i.e in the user interface.

Further research includes specializing the introduced framework for the case
where the source is a taxonomy-based source (such as a Web Catalog), a rela-
tional database, a semistructured database [1], or a Description-Logics database
[5].
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