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Abstract. We present a model for complex documents possibly consist-
ing of a hierarchically structured set of images or texts. Documents are
represented both at the form level (as sets of physical features of the
representing objects), at the content level (as sets of properties of the
represented entities), and at the structure level. A uniform and powerful
query language allows queries to be issued that transparently combine
features pertaining to form, content and structure alike. Queries are ex-
pressions of a (fuzzy) logical language. While that part of the query that
pertains to (medium-independent) content is “directly” processed by an
inferential engine, that part that pertains to (medium-dependent) form
is entrusted to specialised document processing procedures linked to the
logical language by a procedural attachment mechanism. The model thus
combines the power of state-of-the-art document processing techniques
with the advantages of a clean, logically defined framework for under-
standing multimedia document retrieval.

1 Introduction

Research on multimedia document (MD) retrieval is still in its early stages, due
to the inherent difficulty of indexing documents pertaining to media other than
text in a way that faithfully reflects their information content and, as a conse-
quence, that significantly impacts on retrieval. Nonetheless, a number of retrieval
systems for media other than text have been built (see e.g. [9]) and, in some cases,
even turned into commercial products [3, 7]. We think that the common trait of
these multimedia retrieval systems (MRSs) and of the underlying research mod-
els is the lack of a proper representation and use of the content of non-textual
documents: only features pertaining to their form, being amenable to automatic
extraction through digital signal processing (DSP) techniques, are used upon
retrieval. But this is disturbing, as documents, irrespective of the representation
medium they employ, should properly be regarded as information carriers, and
as such should be considered along two parallel dimensions, that of form (or
syntax, or symbol) and that of content (or semantics, or meaning).

We present a model where MDs are represented both at the form level (as
sets of physical features of the objects representing a slice of the world) and at



the content level (as sets of properties of the real-world objects represented). At
the form level the representation is medium-dependent, so we envisage (and allow
for) different document processing techniques in order to specifically deal with
each different media the sub-documents are expressed in. At the content level, in-
stead, the representation is medium-independent, and a unique language for con-
tent representation is thus adopted. This model deals with complex documents
possibly consisting of a hierarchically structured set of “atomic” sub-documents,
which may in turn be either images or chunks of text. Besides allowing a rich
representation of these atomic sub-documents, the model also allows the explicit
representation of the hierarchical structure of the document. Features pertaining
to form, content and structure alike may thus participate in the representation
and in queries, thus corroborating the view of a document as a multifaceted
entity. Actually, we deem important a fourth, orthogonal facet of documents,
namely its profile; for reasons of space deal with it only in the full paper. Also,
although we only consider images and text, the way this model enforces the in-
teraction between these two media is illustrative of how other media might also
be allowed in.

The model we present here is logic-based, in the sense that our language for
content representation is based on a description logic (DL)1. Although document
properties pertaining to form are not represented explicitly in the DL, they af-
fect the DL-based reasoning through a mechanism of procedural attachments.
That is, those symbols of the DL that pertain to form may be viewed as calls to
(non-logical) routines that implement the document processing (e.g. DSP) tech-
niques specific to the representation medium at hand, thus computing (rather
than logically inferring) form-related document properties. This implements the
connection between (logical) reasoning about content and (non-logical) reason-
ing about form from a “practical” point of view. From the standpoint of the
semantics of the representation and query languages, this latter connection is
instead established by restricting the set of interpretations of the logical lan-
guage to those that verify the constraints imposed at form level by the results
of the document processing analysis. This mechanism for giving semantics to
procedural attachments is known as the method of concrete domains [2].

Our DL-based query language thus allows the expression of retrieval requests
addressing, among other things, both form- and content-related similarity, and
its underlying logic permits to bring to bear domain knowledge (whose represen-
tation DLs are especially good at) in the retrieval process. The query language
also includes facilities for fuzzy reasoning (which actually make it a full-fledged
fuzzy DL) so as to address the inherently quantitative nature of notions like
“similarity” between images/text or between their features (colour, shape, mor-
phology, and the like). The model is extensible, in that the set of symbols rep-
resenting similarity can be enriched at will to account for different, possibly
medium-specific notions of similarity, and for different methods for computing

1 DLs have already been applied to IR in [12]; we believe this work is different, however,
in that rather than on the tool itself we focus more on the way to make concrete use
of it and to link it to other extant MD retrieval technology.



them. The resulting retrieval model thus extends that of current MRSs with the
use of semantic information processing and reasoning about image/text content.
So far, the only attempts in this direction had been based on textual annotations
to non-textual documents (see e.g. [17]), in some cases supported by the use of
thesauri to semantically connect the terms occurring in the text [10]; this means
that text is seen as mere comment on the non-textual document, and not as an
object of independent interest and therefore subject to retrieval per se. In our
model images and text are both first-class citizens, and this clearly indicates how
the extension to other media could be accomplished.

The paper is organised as follows. Section 2 concisely introduces the fuzzy
DL that will constitute our main tool throughout the paper. Sections 3 to 5 deal
with the aspects of documents that our model addresses (namely: form, content
and structure); for each of them we first discuss issues related to modelling and
then switch to the semantics of the related query facilities. Section 6 presents a
unified, hierarchically structured query language which brings together all the
issues discussed in Sections 3 to 5. In Section 7 we deal with retrieval and show
how the degree of relevance of a document to a query may be seen in terms
of the fuzzy DL that underlies both the representation and query languages.
We conclude by briefly touching on issues of implementation, while leaving the
discussion on the computational complexity of the model to the full paper.

2 Fuzzy ALC
The formalism we have chosen for representing and querying document contents
is a Description Logic (DL – see e.g. [4]). DLs are contractions of first order logic
(FOL), and have an “object-oriented” character that makes them especially suit-
able for reasoning about hierarchies of structured objects. The specific DL that
we use in this paper is ALC [16]; however, we stress that our model is not tied
in any way to this particular choice, and any other (possibly much more expres-
sive) DL would easily fit into it2. The language of ALC includes unary and bi-
nary predicate symbols, called primitive concepts (indicated by the metavariable
A with optional subscripts) and primitive roles (metavariable R), respectively.
These are the basic constituents by means of which concepts (metavariable C),
i.e. “non-primitive unary predicate symbols”, are built via concept constructors3

according to the BNF rule C −→ A | C1 u C2 | ¬C | ∀R.C.
For example, the complex concept Personu∀Friend.¬Musician is obtained

by combining the primitive concepts Person and Musician and the primitive

2 The reason why we have opted for ALC is that it is universally considered the “min-
imal” DL (as much as K is considered the “minimal” modal logic) and is therefore
regarded as the most convenient workbench for carrying out logical work of an ex-
perimental nature. Reverting to one’s DL of choice may then be considered the very
last (and usually straightforward) step in the development of a logical DL-based
model.

3 This DL does not contain role constructors; thus, the terms “primitive role” and
“role” are equivalent in ALC.



role Friend by the conjunction (u), universal quantification (∀) and negation
(¬) constructors, and denotes the persons none of whose friends are musicians.
As customary, disjunction C1 t C2 and existential quantification ∃R.C will be
used as abbreviations of expressions ¬(¬C1 u¬C2) and ¬(∀R.¬C), respectively.
The language of ALC also includes (crisp) assertions, i.e. expressions built out
of concepts, roles and individual constants (metavariable a with an optional
subscript) according to the following BNF rules:

1. C(a), meaning that a is an instance of C; (Musician u Teacher)(tim)
makes the individual constant tim a Musician and a Teacher;

2. R(a1, a2), meaning that a1 is related to a2 by means of R
(e.g. Friend(tim,tom));

3. T v T ′, where T and T ′ are both concepts or both roles, meaning that T is
more specific than T ′ (e.g. PianoPlayer v (Musician u ∃Plays.Keyboard)).

Assertions of type 1 and 2 are called simple assertions, while assertions of type 3
are called axioms. In order to deal with the uncertainty inherent in similarity-
based retrieval, we extendALC with fuzzy assertions (see e.g. [5]), i.e. expressions
of the form 〈α, n〉 where α is a crisp assertion and n ∈ [0, 1], meaning that α
holds “to degree n”4. We will use the terms fuzzy simple assertion and fuzzy
axiom with the obvious meaning, and call the resulting logic fuzzy ALC.

The semantics of fuzzy ALC is based on fuzzy interpretations, i.e. pairs
I = (∆I , (·)I) where ∆I is a non-empty set (the domain of discourse) and
(·)I is a function (the interpretation function) mapping i) each concept into
a function from ∆I to [0, 1], ii) each role into a function from ∆I × ∆I to
[0, 1], and iii) each individual constant into ∆I in such a way that, for all
d ∈ ∆I , (C1 u C2)

I(d) = min{C1
I(d), C2

I(d)}, (¬C)I(d) = 1 − CI(d) and
(∀R.C)I(d) = mind′∈∆I{max{1 − RI(d, d′), CI(d′)}}. Note that the condition
for the “∀” constructor is obtained by interpreting universal quantification as
infinite conjunction.

A fuzzy interpretation I is said to be a model of a fuzzy assertion 〈C(a), n〉
iff CI(aI) ≥ n, of a fuzzy assertion 〈R(a1, a2), n〉 iff RI(a1

I , a2
I) ≥ n, and of

a fuzzy assertion 〈T v T ′, n〉 iff mind∈∆I{max{1 − T I(d), T ′I(d)}} ≥ n for all
d ∈ ∆I . A set of fuzzy assertions Σ is said to entail a fuzzy assertion 〈α, n〉
(written Σ |=f 〈α, n〉) iff all models of all fuzzy assertions in Σ are models of
〈α, n〉. Given Σ and a crisp assertion β, the maximal degree of truth of β w.r.t.
Σ (written Maxdeg(Σ, β)) is defined as the n ∈ [0, 1] such that Σ |=f 〈β, n〉 and
there is no m > n such that Σ |=f 〈β, m〉.

The pivotal role that fuzzy ALC has in the context of our model will become
clear in the next sections. The connection between logical reasoning in fuzzy
ALC and non-logical computation through medium-specific document processing

4 The logic we are actually experimenting with is more expressive than this, as it
includes features for selective closed-world reasoning and for inconsistency-tolerant,
shallow reasoning; we omit discussion of these features for brevity. The interested
reader may refer to [13].



techniques will be realised by identifying a number of special ALC predicate
symbols (SPSs) and imposing that their semantics be not a generic subset of ∆I

(or ∆I ×∆I) but one that complies with the results of the document processing
analysis.

3 Form

We now proceed to discussing the “form” dimension of images and text; we
present models for image layouts and text layouts, which consist of the symbolic
representations of the form-related aspects of an image or text, respectively.
Each notion is endowed with a mereology, i.e. a theory of parts, based on notions
such as atomic region, region and grounded region5. We also introduce SPSs for
querying such models, which will be used in the unified query language discussed
in Section 6. The reader will note the evident parallelism, even down to many
details, in our treatment of image form and text form; given that form is the only
medium-specific aspect of documents, this shows the potential of this model for
extension to other media.

3.1 Image Layouts

Modelling Image Layouts We recall some elementary notions from digital
geometry (see e.g. [15, Chapter 11]). Let IN be the set of natural numbers. A zone
is any subset of IN2, i.e. a set of points. A zone S is aligned if min{x | 〈x, y〉 ∈
S} = 0 and min{y | 〈x, y〉 ∈ S} = 0. The neighbours of a point P = 〈x, y〉,
when both x and y are non-zero, are the points 〈x− 1, y〉, 〈x, y − 1〉, 〈x, y + 1〉,
and 〈x + 1, y〉. If only one of P ’s coordinates is 0, then P has only 3 neighbours;
〈0, 0〉 has only two neighbours. Two zones are said to be neighbour to each other
if they are disjoint and a point in one of them is a neighbour of a point in the
other one. A path of length n from point P to point P ′ is a sequence of points
P = P0, P1, . . . , Pn = P ′ such that Pi is a neighbour of Pi−1, 1 ≤ i ≤ n. Let S
be a zone and P and P ′ points of S: P is connected to P ′ in S if there is a path
from P to P ′ consisting entirely of points of S. For any P in S, the set of points
that are connected to P in S is called a connected component of S. If S has only
one component, it is called a simply connected zone.

Given a set of colours C, an image layout (see also [11]) is a triple i =
〈Ai, πi, f i〉, where Ai, the domain, is a finite, aligned, rectangular zone; πi is
a partition of Ai into non-empty connected zones {T1, ..., Tn}, called atomic
regions; f i is a total function (the colour function) from πi to C assigning a
colour to each atomic region in such a way that no two neighbour atomic regions
have the same colour. The regions of an image layout i = 〈Ai, πi, f i〉 are defined
as the set πi

e = {S | ∃T1, ..., Tk ∈ πi, k ≥ 1, S = ∪k
i=1Ti, S connected}; i.e. a

5 Each of these three notions will be defined twice, once for images and once for text.
The context will obviously tell which notion is meant from time to time. Note also
that the term “layout” is used elsewhere in the literature in a different sense, namely
to denote the rendering of a document on a display device.



region is a connected zone obtained by the union of one or more atomic regions.
The fact that we do not require S to be simply connected allows some interesting
visual objects (e.g. the figure of a goalkeeper partly covered by an approaching
ball) to be classified as regions.

The extended colour function of an image layout i = 〈Ai, πi, f i〉 is defined
as the function f i

e that assigns to each region S a colour distribution (i.e. a
mapping f i

e(S) from C to [0,1] such that
∑

{c∈C}
f i

e(S)(c) = 1) defined as f i
e(S)(c) =

∑
Tj∈Z

|Tj |
|S| , where Z is the set containing all and only the atomic regions Tj in

{T1, . . . , Tk} that have colour c (i.e. f i(Tj) = c) and |S| is the cardinality of
a region S viewed as a set of points. Intuitively, this function determines the
percentage of a region that has a given colour. A region S is not bound to a
particular image layout, but is just a “window” that can be opened on many of
them. This binding is instead realized in the notion of grounded region, which
we define as a pair 〈i, S〉 where i = 〈Ai, πi, f i〉 is an image layout and S ∈ πi

e.
Finally, we define the image universe IU as the set of all possible image layouts
of any domain.

Querying Image Layouts Queries referring to the form dimension of images
are called visual queries, and can be partitioned as follows:

1. concrete visual queries: these consist of full-fledged images that are submitted
to the system as a way to indicate a request to retrieve “similar” images;

2. abstract visual queries: these are artificially constructed image elements (thus,
“abstractions” of image layouts) that address specific aspects of image sim-
ilarity; they can be further categorised into:
(a) colour queries: specifications of colour distributions, used to indicate a

request to retrieve those images that have a similar colour distribution;
(b) shape queries: specifications of one or more shapes (closed simple curves

in the 2D space) and possibly of their spatial relationships, used to in-
dicate a request to retrieve those images in which the specified shapes
occur as contours of significant objects, in the specified relationships;

and other categories, such as spatial and texture queries [8], which for reasons
of space will not be dealt with here.

Concrete visual queries are processed by “global matching”, i.e. by matching a
vector of features extracted from the query image, with each of the homologous
vectors extracted from the images candidate for retrieval. Abstract visual queries
are treated analogously, but at a different level of granularity, i.e. by “local
matching”: only the visual features indicated in the query (such as shape or
colour) are represented in the vectors involved. There are a number of different
techniques for performing image matching, each based on a specific set of features
and a specific way for combining them in order to obtain a similarity assessment.
These techniques are mostly application-dependent, in that their effectiveness



is a function of the type of candidate images and, most importantly, of the
goal of retrieval, which greatly affects the relevant similarity criteria. For all
these reasons our model does not provide the machinery for defining similarity
functions; the choice of which technique to adopt is not important for the rest
of the model, so we leave it unspecified and introduce only the SPSs that link
it to the rest of the language. Before this, however, we need to introduce two
SPSs whose function is to allow queries to be addressed to a portion of an image
layout, rather than to the image layout as a whole:

– HAIR(i, r) (standing for Has Atomic Image Region): relates the image lay-
out i to one of its grounded atomic regions r;

– HIR(i, r) (Has Image Region): relates the image layout i to one of its
grounded regions r.

The intended semantics of HAIR is:

HAIRI : IU × (IU × 2IN2
) → [0, 1], taking an image layout and a grounded

atomic image region into {0, 1} depending on whether the latter
belongs to the former, that is:

HAIRI(i, 〈i′, S〉) =
{

1 if i = i′

0 otherwise.

The condition for HIR is analogous and will thus not be spelled in detail. We
can now discuss the SPSs specifically dealing with visual queries; these are cat-
egorised into:

– SPSs for “global matching”: in general, there will be a set of such SPSs, each
capturing a specific similarity criterion. Since from the conceptual viewpoint
these SPSs form a uniform class, we will just discuss one of them, to be
understood as a representative of the whole class. Any other symbol of the
same sort can be added without altering the structure and philosophy of the
language. So, for global matching we use the SPS
• SI(i, j) (Similar Image): assesses the similarity between two image lay-

outs i and j;
– SPSs for “local matching”: these come in two sorts. First we have selectors,

which are SPSs needed to select the type of feature that needs to be used in
matching:
• HS(r, s) (Has Shape): relates a grounded region r to its shape s;
• HC(r, c) (Has Colour): relates a grounded region r to its colour c.

Second, we have true SPSs for local matching, assessing the similarity be-
tween individual features of images. Similarly for what we have done for
global matching, we include in the language one SPS for each type of feature
to be matched; so we have:
• SC(c, c′) (Similar Colour): returns the similarity between two colours
c and c′;



• SS(s, s′) (Similar Shape): returns the similarity between two shapes s
and s′.

The semantic clauses for the symbols introduced so far is defined as follows:

SII : IU × IU → [0, 1], assigning to each pair of image layouts their
degree of similarity.

The semantics of SC and SS is analogous.

HSI : (IU × 2IN2
)× 2IN2 → [0, 1], assigning to each pair 〈grounded image region,

shape〉 their degree of similarity;

HCI : (IU × 2IN2
)× C → [0, 1], assigning to each pair 〈grounded image region,

colour〉 the percentage of the latter in the for-
mer, that is, HCI(〈i, S〉, c) = f i

e(S)(c).

SPSs for querying image layouts are the first SPSs we encounter, so a word of
explanation is in order. The semantic clauses above specify their intended seman-
tics, or desired behaviour. But how do we turn a desired behaviour into an actual
behaviour? From the “practical” point of view, we interpret every occurrence of
these SPSs not as the occurrence of an uninterpreted predicate symbol, but as
a call to a routine that implements the desired image processing technique. In
knowledge representation, this would be called a procedural attachment. From
the semantic point of view, instead, we apply the so-called method of concrete
domains [2]: instead of defining retrieval in terms of all the interpretations I
that simply satisfy the set of ALC assertions representing our document base,
we also require these interpretations to satisfy the semantic clauses above (see
Section 7.1). A fuzzy interpretation I will thus be called an image interpretation
if it satisfies the semantic conditions for the SPSs introduced in this section.

3.2 Text Layouts

Modelling Text Layouts Let IN be the set of natural numbers. We define an
interval S ⊂ IN to be aligned iff min{x | x ∈ S} = 0. Given the set of words Λ+

on an alphabet Λ, we define a text layout as a triple t = 〈At, πt, f t〉 where At

(the domain) is a finite aligned interval, πt is a partition of At into non-empty
intervals {T1, ..., Tn} called atomic regions, and f t is a total function (the word
function) assigning a word to each atomic region. The regions of a text layout
t = 〈At, πt, f t〉 are defined as the set πt

e = {S | ∃T1, ..., Tk ∈ πt, k ≥ 1, S =
∪k

i=1Ti, S is an interval}; i.e. a region is the interval obtained by the union of
one or more pairwise-adjacent atomic regions. Similarly to the case of images, a
region S is not bound to a particular text layout, but is just a “window” that can
be opened on many of them. This binding is realized in the notion of grounded
text region, which we define as a pair 〈t, S〉, where t = 〈At, πt, f t〉 is a text layout
and S ∈ πt

e. Finally, we define the text universe T U as the set of all possible text
layouts of any domain.



Querying Text Layouts We distinguish between two categories of queries
addressing text layouts:

1. full-text queries, requesting texts that share some given syntactic features
with a given text pattern, which de facto identifies a set of texts;

2. semantic similarity queries, aimed at retrieving texts which are similar in
semantic content to a given text.

In a query of type 1, the text pattern can be specified in many different ways,
e.g. by enumeration, via a regular expression, or via ad hoc operators specific to
text structure such as proximity, positional and inclusion operators (for instance,
in the style of the model for text structure presented in [14]). As in the case of
images (Section 3.1), the choice as to what sub-language for text patterns to
adopt in our model is not important for the rest of the model, so we will leave
this piece of the query language unspecified and limit ourselves to specifying
how to link it to the main body of the language. To this end, we simply need the
SPS ISyST (standing for Is Syntactically Similar To), whose purpose will
be to relate a text layout with the text pattern that it matches. The semantics
of the ISyST role is the following:

ISySTI : T U × T U → [0, 1], assigning 1 to each pair 〈text layout, text layout〉
such that the former is equal to the latter, that is:

ISySTI(t, t′) =
{

1 if t = t′

0 otherwise;

For instance, if we allowed regular expressions in our language for text patterns,
the ALC concept ∃ISyST.*Ãinfo* would denote the text layouts in which at least
one word with “info” as a prefix occurs.

Queries of type 2 involve instead semantic similarity matching between text
layouts. They are processed on the basis of automatically constructed document
and query representations, i.e. representations obtained without any human in-
tervention (we will see another semantics-related type of queries, namely seman-
tic content-based queries, in Section 4). In this sense, the “semantics” of a text
layout is typically a set of terms occurring in the text and which, based on sta-
tistical properties, are deemed significant for assessing semantic similarity. Here
too, we do not commit to a specific technique for establishing semantic similar-
ity, as there are various plausible candidates for this; instead, our model allows
the use, for processing this particular kind of queries, of any available semantic
similarity engine. To this end, the language provides a class of SPSs, each mod-
elling semantic similarity according to the specific engine which the SPS invokes.
Here we just discuss a generic representative of this class of SPSs, i.e. the ALC
role ISeST(t, t′) (standing for Is Semantically Similar To) which, given two
text layouts as input, returns their degree of similarity. Formally,

ISeSTI : T U × T U → [0, 1], such that ISeST(t1, t2) gives the degree of
similarity of text layout t1 to text layout t2



Finally, similarly to what we did for images, we introduce two SPSs whose func-
tion is to allow queries (of various kinds, included queries of type 1 and 2 above)
to be addressed to a portion of a text layout, rather than to the text layout as
a whole. Not surprisingly, the SPSs are:

– HATR(t, r) (Has Atomic Text Region): relates the text layout t to one of
its grounded atomic regions r;

– HTR(t, r) (Has Text Region): relates the text layout t to one of its grounded
regions r.

whose semantic conditions parallel those for HAIR(i, r) and HIR(i, r) and will
thus not be spelled out. A fuzzy interpretation I will be called a text inter-
pretation if it satisfies the semantic conditions for the SPSs introduced in this
section.

4 Modelling and Querying Content

4.1 Modelling Content

We take the content of a document (be it a text, or an image, or any combination
of the two) to be a situation, i.e. the set of all states of affairs “compatible” with
the information contained in the document. For instance, the content of an image
will be the set of states of affairs that verify the facts depicted in the image,
irrespective e.g. of when the action takes place, of what the people represented
therein are thinking of, and of other facts taking place outside the setting of the
image. Let l be a layout (either text or image) uniquely identified (in a way to
be made precise later) by the individual constant l. A content description δ for
l is a set of fuzzy assertions, consisting of the union of four component subsets:

1. the layout identification, a set containing only a single fuzzy assertion of the
form 〈Ego(l), 1〉, whose role is to associate, along with the layout naming
functions νI and νT (see Section 7.1), a content description with the layout
it refers to. In what follows σ(l) will denote the set of the (possibly many)
content descriptions whose identification is 〈Ego(l), 1〉;

2. the object anchoring, a set of fuzzy assertions of the form 〈Rep(r, o), n〉,
where r is an individual constant that uniquely identifies a grounded region
of l and o is an individual constant that identifies the object represented in
the region6;

3. the situation anchoring, a set of fuzzy assertions of the form 〈About(l, o), n〉,
where l and o are as above. By using these assertions, it can be stated what
the situation described by the layout is “globally” about;

6 The combined effect of components 1 and 2 could have been achieved by eliminat-
ing the Ego predicate symbol and making the Rep predicate symbol ternary, i.e.
Rep(l,r,o). While extended DLs capable of dealing with predicate symbols of arity
≥ 2 do exist, we prefer to use Ockham’s razor and stick to the simpler, orthodox
DLs of which ALC is the standard representative.



4. the situation description, a set of fuzzy simple assertions (where neither
the predicates Ego, Rep and About occur), describing important facts stated
in the layout about the individual constants identified by assertions of the
previous two kinds.

While the task of components 1 to 3 is actually that of binding the form and
content dimensions of the same layout, component 4 pertains to the content
dimension only.

As an example, let us consider a photograph showing a singer, Kiri, perform-
ing as Zerlina in Mozart’s “Don Giovanni”. Part of a plausible content description
for this image, named i, could be (for simplicity, in this example we only use
crisp assertions):

{Ego(i), About(i,DonGiovanni), Rep(r,Kiri), Plays(Kiri,Zerlina)}

Note that there may be more than one content description for the same layout l;
this reflects the fact that an image may be considered under multiple viewpoints.
In Section 7.1 we will see that, as a result of this, the “degrees of relevance” of
a layout to a query resulting from different content descriptions do not add up.
Any of components 2 to 4 can be missing in a content description.

4.2 Querying Content

Queries pertaining to content are called content-based queries, and involve con-
ditions on the semantics of a text or image. In the case of text we have dis-
cussed a type of queries that also lay a claim of being grounded on semantics,
namely “semantic similarity queries”. In the case of images, some types of con-
crete visual queries (depending on the underlying technique being used) also
lay a similar claim. The main difference between these two types of queries and
content-based queries is that, while the former are processed on the basis of au-
tomatically constructed document and query representations, the representations
used in content-based queries reflect a (human) conceptualisation, even though
this may have been derived with the aid of an automatic support. We can there-
fore see these two categories of queries as addressing two different notions of
content: content “as understood by program” versus content “as understood by
mind”.

Note that there are no SPSs specific to content-based queries, as there exists
no underlying content-assessing engine that we want to hook our representations
to! Reasoning about content will be performed “directly” (i.e. without procedu-
ral attachments) by fuzzy ALC, using component 4 of content descriptions as
input. The results of this logical reasoning activity will be transparently merged
to the results of non-logical computations (obtained through the procedural at-
tachments to the various SPSs) by fuzzy ALC using components 1 to 3 of content
descriptions.



5 Modelling and Querying Document Structure

As mentioned in the introduction, we take multimedia documents to be complex
documents consisting in general of a hierarchically structured set of “atomic”
sub-documents, which may in turn be either chunks of text or images. It is
just natural, then, to allow our model to deal not only with the features of
these sub-documents, but also with the way these are structured into a complex
document. We hence define the notion of document and characterize a set of
SPSs for addressing its features within queries.

5.1 Modelling Structure

A document is a pair d = 〈wn, R〉, where

1. wn is a pair 〈n,w〉 where n ∈ IN is the order of the layout and
w : [1, n] → (IU ∪ T U);

2. R = {ρ1, . . . , ρm} is a set of intervals such that 1) ρi ⊆ [1, n] for all 1 ≤ i ≤ m;
2) [1, n] ∈ R; and 3) for all ρi, ρj ∈ R, ρi ⊆ ρj or ρj ⊆ ρi or ρi ∩ ρj = ∅.

A grounded region of a document d = 〈wn, R〉 is defined as a pair 〈d, ρ〉 such that
ρ ∈ R; its extent is defined as the set of image or text layouts to which elements
in ρ are mapped by wn. The structure of a document d = 〈wn, R〉 is defined by
the the tree Sd = 〈R, E〉 (where R are the nodes of the tree and E ⊂ R2 are
its edges) such that (ρ1, ρ2) ∈ E iff ρ2 ⊂ ρ1 and there is no ρ3 ∈ R such that
ρ2 ⊂ ρ3 ⊂ ρ1. It can be easily verified that Sd is a tree with root [1, n]. By E+

we indicate the transitive closure of E. We let D be the set of all documents and
R be the set of all intervals [m1,m2], with m1 ≤ m2 and m1,m2 ∈ IN.

5.2 Querying Structure

In querying documents, a user would like to be able to perform the following
kinds of operations:

– navigate along the structure of documents; SPSs for expressing this naviga-
tion will be called structural;

– access the basic constituents of a grounded region, i.e. the image and text
layouts that are in the extent of that region; SPSs for expressing these ac-
cesses will be termed extensional;

– query these image and text layouts. These queries (called ground queries)
are to be expressed by means of the SPSs introduced in Sections 3 and 4.

Structural symbols, in turn, can be categorised as follows:

– generic SPSs, allowing one to access any grounded region of a document,
regardless of the region’s type or position; for this we just need the SPS HN



(standing for Has Node), relating a document to one of its grounded regions.
Its semantics is given by:

HNI : D × (D ×R) → [0, 1], assigning 1 to the pairs 〈document, grounded
region〉 such that the latter is a grounded region of the former; i.e.:

HNI(d, 〈d′, ρ〉) =
{

1 if d = d′

0 otherwise.

– positional SPSs, allowing one to navigate in the structure of the document.
Among the many primitives that might be envisaged in order to model tree
navigation, we adopt the following SPSs:

• Root, a primitive concept denoting roots of documents;
• Leaf, the concept denoting leaf nodes (i.e. image or text layouts) of

documents;
• HasChild, a role denoting the link between nodes and their children

nodes;
• HasParent, a role denoting the link between nodes and their parent node;
• HasDes, the transitive closure of HasChild;
• HasAncestor, the transitive closure of HasParent.

We just show the semantics of two positional symbols, leaving that of the
others for the reader to work out.

LeafI : D ×R → [0, 1], assigning 1 solely to “leaf” grounded regions:

LeafI(〈d, ρ〉) =
{

1 if ρ is a leaf node in d’s structure Sd

0 otherwise;

HasDesI : (D ×R)× (D ×R) → [0, 1], assigning 1 to the pairs of grounded
regions such that the latter is in the offspring of the former:

HasDesI(〈d, ρ〉, 〈d′, ρ′〉) =





1 if d = d′ and 〈ρ, ρ′〉 ∈ E+

where Sd = 〈R, E〉
0 otherwise.

As for extensional SPSs, we include two of them in the language, relating a
grounded region of a document to the image and text layouts it contains. The
SPSs are HasImage and HasText; the semantics of the former is:

HasImageI : (D ×R)× IU → [0, 1], such that, given d = 〈wn, R〉
HasImageI((d, ρ), i) =

{
1 if ρ ∈ R and w(k) = i for some k ∈ ρ
0 otherwise.

while that of the latter is perfectly analogous. A fuzzy interpretation I will be
called a document interpretation if it satisfies the semantic conditions for the
SPSs introduced in this section.



6 A Unified Query Language

We are now in the position of defining the query language of the model. This
language satisfies the two basic requirements necessary for complying with the
philosophy of our model, namely: 1) it is a concept language of a DL, so that
matching queries against documents can be done in the logical framework defined
so far; and 2) it complies with the semantics of the symbols for addressing form,
content and structure introduced in the previous sections.

In order to closely reflect a query specification process, the language will be
presented in a top-down fashion, starting from concepts addressing documents
and their structure, and proceeding down to the queries addressing the basic
components of documents, i.e. text and images.

6.1 Document Queries

The following grammar defines the document query language.

〈document-query〉 ::= 〈document-concept〉 |
〈document-query〉 u 〈document-query〉 |
〈document-query〉 t 〈document-query〉

〈document-concept〉 ::= ∃HN.〈node-concept〉
〈node-concept〉 ::= 〈extent-concept〉 |

〈structure-concept〉 | ∃〈structure-role〉.〈node-concept〉 |
〈node-concept〉 u 〈node-concept〉 |
〈node-concept〉 t 〈node-concept〉

〈extent-concept〉 ::= ∃HasImage.〈image-query〉 | ∃HasText.〈text-query〉
〈structure-concept〉 ::= Root | Leaf

〈structure-role〉 ::= HasChild | HasParent | HasDes | HasAncestor

A document query is a combination, via the conjunction and disjunction construc-
tors7, of document-concepts, each of which references, via the role HN, any node of
the document structure, on which a condition is then stated by a node-concept.
In its simplest form, a node-concept is a condition on the basic constituents of
the document (extent-concept), stating what kind of components is being ad-
dressed (i.e. a text layout or an image layout, indicated respectively by the
HasText and HasImage ALC roles) and followed by a query of the appropriate
kind. Otherwise, a node-concept may contain any u-/t-combination of naviga-
tional conditions, which are couched in terms of structural symbols. Each such
navigational conditions may or may not involve an extent-concept.

7 The reason why we do not allow to use the negation constructor here is analogous
to the one that, in the relational calculus for DBs, justifies the restriction to safe
queries. See e.g. [1, page 97].



6.2 Image Queries

The syntax of image queries is given by the following BNF rules:

〈image-query〉 ::= 〈image-concept〉 | 〈image-query〉 u 〈image-query〉 |
〈image-query〉 t 〈image-query〉

〈image-concept〉 ::= ∃SI.{〈layout-name〉} |
∃About.〈content-concept〉 |
∃HAIR.〈region-concept〉 |
∃HIR.〈bound-region-concept〉

〈region-concept〉 ::= ∃HC.〈colour-concept〉 | ∃HS.〈shape-concept〉 |
∃Rep.〈content-concept〉 |
〈region-concept〉 u 〈region-concept〉 |
〈region-concept〉 t 〈region-concept〉

〈bound-region-concept〉 ::= ∃Rep.〈content-concept〉 |
〈bound-region-concept〉 u 〈region-concept〉 |
〈bound-region-concept〉 t 〈region-concept〉

〈colour-concept〉 ::= {〈colour-name〉} | ∃SC.{〈colour-name〉}
〈shape-name〉 ::= {〈shape-name〉} | ∃SS.{〈shape-name〉}

Note that a layout-name, a colour-name and a shape-name are not concepts,
but individual constants. Image queries are thus not concepts of ALC, but of
the DL ALCO, extending ALC with the “singleton” constructor “{}”, which
given an individual constant i returns a concept {i}. The singleton construc-
tor is necessary in queries because it allows the reference to specific individual
constants. This added expressive power has no impact on the complexity of the
image retrieval problem, as we will discuss in the full paper.

An image query is a combination, via the conjunction and disjunction con-
structors, of so-called image-concepts, each of which may have one of four forms
(following the order of the syntax):

1. a global similarity match request (“concrete visual query”);
2. a query on some content-related object described by content-concept, which

is any ALCO concept built with the symbols used for situation descriptions;
3. a query on an atomic region, which is required to satisfy the property ex-

pressed by the embedded region-concept;
4. a query on a region. In this case, the embedded concept is the same as a

region-concept, but it must include a Rep clause; this prevents the specifica-
tion of queries involving arbitrary regions, of which there are an exponential
number.

A region-concept gives conditions on a region, and is built as an u/t-combination
of three basic conditions: one concerns the colour of the region, which must be the
same as, or similar to, a specified colour (colour-concept); another analogously



concerns the shape of a region (shape-concept); the third involves the real-world
entity represented by a region, and is a content-concept.

Let us reconsider the example introduced in Section 4. The images about
the Don Giovanni are retrieved by the query ∃About.{DonGiovanni}. Those
showing the singer Kiri are described by ∃HIR.∃Rep.{kiri}. Turning to vi-
sual queries, the request to retrieve the images similar to a given one, named
this, is expressed by ∃SI.{this}, and can be easily combined with any concep-
tual query, e.g. yielding ∃SI.{this} t ∃About.{DonGiovanni}, which would
retrieve the images that are either similar to the given one or are about Don
Giovanni. As for abstract visual queries, the images in which there is a blue
region whose contour has a shape similar to a given curve s are retrieved by
∃HAIR.(∃HC.{blue} u ∃HS.∃SS.{s}). Finally, the user interested in retrieving
the images in which Kiri plays Zerlina and wears a blue-ish dress, can use the
query ∃HIR.∃Rep.({Kiri}u∃Plays.{Zerlina})u(∃HC.∃SC.{blue}).

6.3 Text Queries

The syntax of text queries is given by the following BNF rules:

〈text-query〉 ::= 〈text-concept〉 | 〈text-query〉 u 〈text-query〉 |
〈text-query〉 t 〈text-query〉

〈text-concept〉 ::= ∃ISyST.〈text-pattern〉 | ∃ISeST.{〈text-layout-name〉} |
∃HTR.∃Rep.〈content-concept〉 | ∃HATR.∃Rep.〈content-concept〉 |
∃About.〈content-concept〉

A text query is a combination, via the conjunction and disjunction constructors,
of so-called text-concepts, each of which may have one of four forms (following
the order of the syntax):

1. an exact match query, in which text-pattern can be a single text fragment
(full-text search), a regular expression or a complex structural query;

2. a similarity match request;
3. a query on a content object related to a segment of text via some Rep asser-

tion;
4. a query on some content-related object related to a whole text via an About

assertion.

7 Retrieval

The behaviour of our query language is specified by formally defining the notion
of a document base and of document retrieval. We model a document base
as a collection including an image base, a text base, and additional knowledge
concerning how the individual images and texts belonging to them are structured
into more complex aggregates.



7.1 Document Bases and Document Retrieval

An image layout base is a 4-tuple ILB = 〈IL, νI , ΣIC , ΣID〉 where IL is a
set of image layouts, νI is a naming function associating ALC individual con-
stants to the image layouts and grounded image regions in IL, ΣIC is the set
of content descriptions associated with the layouts in IL, and ΣID is the do-
main knowledge bases for the images in ILB. A text layout base is a 4-tuple
TLB = 〈TL, νT , ΣTC , ΣTD〉, defined in a completely analogous way. A docu-
ment base DLB is a similarly defined pair DLB = 〈DL, νD〉. A document base
is therefore a triple DB = 〈ILB, TLB, DLB〉.

In response to a query C addressed to a document base DB, each document
νD(d) = d = 〈wn, R〉 is attributed a degree of relevance m determined in the
following way. Let O be the set of the n image and text layouts that are leaves of
d and are uniquely identified by the ALC individual constants a1, . . . , an. Let ∆
be the Cartesian product σ(a1)× . . .×σ(an), where σ is as defined in Section 4.
For each tuple τi = 〈δi1 , . . . , δin

〉 ∈ ∆ calculate

ni = Maxdeg((ΣTD ∪ΣID ∪
⋃

1≤j≤n

δij ), Q(d))

where Maxdeg is the same as the Maxdeg function discussed in Section 2 except
for the fact that it is not calculated with respect to all fuzzy interpretations I, but
with respect to only those fuzzy interpretations that are image, text, content and
document interpretations (as defined in Sections 3.1, 3.2, 4 and 5, respectively).
The value ni can be interpreted as the degree of relevance of d were it calculated
on a specific choice of content representations of the images and texts in O. The
degree of relevance of d is then simply obtained by taking the maximum over all
such choices, i.e. m = maxτi∈∆{ni}.

As an example, let us consider a document base DB in which the TLB and
ILB components are empty and ILB is such that its IL component contains two
image layouts named i and j, its ΣIC component consists of the two content de-
scriptions {〈Ego(i), 1〉, 〈About(i, o), 0.8〉, 〈DonGiovanni(o), 1〉} and {〈Ego(j), 1〉,
〈About(j, o), 0.7〉, 〈WestSideStory(o), 1〉}, and its ΣID component consists of
the axioms:

〈DonGiovanni v EuropeanOp, 1〉, 〈WestSideStory v AmericanOp, 1〉,
〈EuropeanOp v Op u (∃CondBy.European), 0.9〉, and
〈AmericanOp v Op u (∃CondBy.European), 0.8〉.

Suppose we are interested in documents containing images about operas con-
ducted by a European director. To this end, we can use the query:

∃HN.∃HasImage.∃About.(Op u ∃CondBy.European).

It can be verified that the degree of relevance attributed to i is 0.8, whereas that
of j is 0.7.



7.2 Implementation of the Model

We close with some implementation considerations. In order to effectively per-
form document retrieval as prescribed by the model defined so far, we envisage
a MRS consisting of the following modules:

1. a matching engine for each of the SPSs representing similarity (SI, SC and
SS for images; ISyST and ISeST for text). To this end, each such engine will
make use of the feature vectors for the layouts in the document base, stored
in a matching database;

2. a fuzzy ALC theorem prover, which will handle the semantic information
processing, collecting the assertions contained in the ΣIC , ΣID, ΣTC and
ΣTD components of the document base and using them in reasoning about
document content;

3. a query processor, responsible of decomposing each query into abstract, con-
crete, and conceptual sub-queries, assigning the evaluation of each sub-query
to the appropriate component, and then properly combining the results in
order to obtain the final ranked list of images. For its operation, the query
processor will use a database, called the document structure database, con-
taining a specification of the semantics of selectors as well as naming func-
tions.

The details of these components are outside the scope of this paper. We only
remark, at this point, that they are well within reach of the current technology. In
particular, we have developed a theorem prover for a significant extension of the
DL we use here based on a sound and complete tableaux calculus; this theorem
prover is currently being prototyped for subsequent experimental evaluation.

8 Conclusions

We have presented a model for structured documents with images and texts. The
model makes two important contributions. First, at single-medium level, it makes
full and proper use of semantics and knowledge in dealing with the retrieval of
images and text, while offering, at the same time, the similarity-based kind of
retrieval that is undoubtedly the most significant contribution of the research
carried out in these two areas during the last decade. More importantly, all
these forms of retrieval coexist in a well-founded framework, which combines
in a neat way the different techniques, notably digital signal processing and
semantic information processing, required to deal with the various aspects of
the model. Secondly, at the multimedia level, the model addresses the retrieval
of structural aggregates of images and texts, casting the single medium models
in a framework informed by the same, few principles. At present, to the best
of our knowledge, no other model offering the same functionalities as the one
presented here, exists.

The breadth in scope of the model and the space limitations of the paper
have determined a concise treatment, mainly devoted to outline the model’s



basic traits. No doubt many aspects have been treated in a sketchy way, others
have been neglected tout court, and equally valid alternatives to the proposed
solutions have not been discussed. We refer the interested reader to the full paper
for more detailed solutions and discussion.

Since the representations handled by the model have a clean semantics, fur-
ther extensions to the model are possible. For instance, image retrieval by spatial
similarity can be added: at the form level, effective spatial similarity algorithms
(e.g. [8]) can be embedded in the model via procedural attachment, while sig-
nificant spatial relationships can be included in content descriptions by drawing
from the many formalisms developed within the qualitative spatial reasoning
research community [6]. Analogously, the model can be enhanced with the treat-
ment of texture-based similarity image retrieval.

We believe that the presented model can open the way to a novel approach
to the modelling of multimedia information, leading to the development of re-
trieval systems able to cope in a formally neat and practically adequate way
with documents including text, graphics and images. More research is needed
to attack delay-sensitive media, such as audio and video, but we think that the
present model constitutes a good starting point.
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