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ABSTRACT
We discuss the design of a quasi-statically typed language
for XML in which data may be associated with different
structures and different algebras in different scopes, whilst
preserving identity. In declarative scopes, data are trees and
may be queried with the full flexibility associated with XML
query algebras. In procedural scopes, data have more con-
ventional structures, such as records and sets, and can be
manipulated with the constructs normally found in main-
stream languages.

For its original form of structural polymorphism, the lan-
guage offers integrated support for the development of hybrid
applications over XML, where data change form to reflect
programming expectations and enable their enforcement.
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1. INTRODUCTION
To date, programming over XML is essentially program-

ming over labelled trees, according to the standard interpre-
tation of the format [6]. This can be done in a procedural
algebra, such as DOM’s [7], or in the declarative algebras of
dedicated query languages, XQuery’s before others [3].

Based on powerful path expressions, declarative algebras
offer unrivalled flexibility for retrieving and transforming the
data, in the spirit of query languages. They may also offer
computational completeness and, as in the case of XQuery,
an appropriate notion of static typing. On the other hand,
procedural algebras fit into a well known computational
model inclusive of update. Embedded in mainstream lan-
guages via language-specific bindings, they also promise full
integration with existing computational facilities (e.g. I/O,
user interfaces, legacy code), a large user base, as well as
proven and familiar development tools.

For their different qualities, the two approaches are com-
plementary and would integrate well within, say, the same
object-oriented language. In spite of their flexibility, how-
ever, labelled tree structures cannot be expected to be ad-
equate choices for all computational tasks. More familiar
programming abstractions - such as pairs, tuples, records,
sets, relations - may better reflect the required interpreta-
tion of the data. In fact, the view of XML as a universal
format for the exchange of data suggests that large part of
that data will originate in standard programming languages
and database systems. How many employees live within
programs and databases as labelled trees?

1.1 XML and Data Structures
Ignoring for a moment issues of efficiency, inadequate data

structures induce linguistic problems: soon programs be-
come harder to write, read, and thus maintain. As a simple
example, consider an employee record e materialised at the
receiver as a labelled tree. The relationship between the
employee and its name becomes one between two nodes and
their labels, whereas it was originally one between a record
and its field name. The sender accesses the name by writing
the expression:

e.name



whereas the receiver using, say, a DOM implementation
must resort to something like:

NodeList children = e.getChildNodes();

for (int j=0;j<children.getLength();j++) {

Node child = children.item(j);

if (child.getNodeType() == Node.ELEMENT_NODE) {

String tagName=((Element) child).getTagName();

if (tagName.equals("name")) ...

((characterData)

child.getFirstChild()).getData()...}}

Of course language specific APIs may better tune the al-
gebra to the particular host language (e.g. [12]). Similarly,
a stronger orientation towards data (as opposed to docu-
ments) may also help to ease the linguistic problem. It
should be clear, however, that the tree structure does not
directly reflect the data semantics required by the receiver
and, in this case, that originally intended by the sender.
When the receiver is statically typed, the problem is further
aggravated by a loss of safety: name was meta-data within
the record structure and has become data within the tree
structure. As such, it escapes the static knowledge of the
system and its correct use may not be detected before pro-
gram execution or, worse, not detected at all (e.g. when a
misspelled label accidentally identifies another).

Declarative algebras alleviate partly the problem by hid-
ing the tree structure under a navigational syntax, thereby
achieving succinct and clear programs. The choice of data
structures, however, extends its impact on semantics: as
the procedural XML programmer, the declarative one is still
forced to perceive employees as trees in spite of more intu-
itive models of the data.

It should also be noted that the problem here is not re-
lated to labelled trees, which remain the preferred structures
for a variety of computational tasks: document manipula-
tion, semistructured data management (cf. [10]), structural
queries, flexible browsing, etc. Similar problems would sur-
face with any structure imposed by the wire format and,
in general, with any incarnation of the one-size-fits-all ap-
proach to data modelling.

The example of the SAX programming model and algebra
is here appropriate [8]. With SAX, the XML data is a string
served to the programmer as a temporal sequence of tokens
and the induced programming model is based on callbacks
for parsing events. Compared with DOM, SAX makes it
easier to specify computations that interpret the data as the
text in which it is encoded (e.g. token counts, deep queries,
etc.). Nonetheless, it is easy to see that the linguistic and
safety problems associated with DOM computations surface
unsolved for SAX programmers.

1.2 A Language for Hybrid Applications
Motivated by the previous observations, we advocate the

importance of applications in which the same data are sub-
ject to different structural views and are manipulated ac-
cording to different algebras in order to facilitate different
programming tasks. For example, some components of such
hybrid applications, as we may call them, may benefit from
a tree view over the data and from the flexibility of a query
algebra. Other components may instead be safer and sim-
pler by, say, a view based on record and set abstractions and
their associated algebras.

In practice, hybrid applications are common and yet the
integration of their components is essentially unsupported.
XML programmers must associate components with differ-
ent tools and computational environments (e.g. a main-
stream programming language and a query engine) and share
data between them through the the file system or the net-
work. This forces interactions between components to be
‘off-line’ (i.e. planned in advance of execution) and strictly
sequential (a component’s output becomes another’s input).
Lack of integration becomes also lack of efficiency, due to the
unnecessary operations of input/output and parsing of the
data. Updates occur only at the file level while sharing be-
tween components require ad-hoc conversions between data
structures which are prone to errors and always irrelevant
to application semantics. Overall, the XML programmer is
entirely responsible for understanding and maintaining the
mapping between the application design and its scattered
implementation.

In our research, we explore the possibility of writing hy-
brid applications within the context of a single programming
language, where the imposition of structure over the data is
transparent and entirely under the programmer’s control. In
this paper, in particular, we experiment with two different
interpretations of the data and associate them with differ-
ent scopes in the program. In declarative scopes, the data
are labelled trees and can be manipulated with a simple
query algebra based on XPath expressions [2]. In procedural
scopes, the structure of the data is a recursive composition of
records and sets and can be manipulated with conventional
algebras. In the latter case, programmers may also count on
a selection of the basic types and programming constructs
found in most procedural languages.

Programs can then be partitioned according to the view
which is syntactically in scope, with data changing form
upon entering and exiting scopes whilst preserving identity.
The passage to a declarative scope is straightforward, for the
data can always be interpreted as a labelled tree. Different
is the opposite case, when more constrained structures must
be projected over trees with the possibility of failure.

We solve these problems by resorting to a quasi-statically
typed language and interpreting structural projections as
type assertions attached to program variables. Noticeably,
type assertions are verified dynamically, when variables are
bound to trees, and yet their scope within the program can
be statically typechecked. Accordingly, the approach ex-
tends the practice of dynamic typing within otherwise stat-
ically typed programming languages (cf. [1]). In particular,
it admits data which is completely untyped and yet suffi-
ciently self-describing to allow type-checking.

The rest of the paper is organised as follows. Section 2
introduces our model for type projections while Section 3
discusses the language design by way of example. Finally,
Section 5 draws some conclusions and outlines further work.

2. TYPE PROJECTIONS
We have successfully investigated the problem of type pro-

jections over labelled tree data in SNAQue, an architecture
for binding quasi-statically typed programming languages
to XML data which emanate from outside their context.
SNAQue is formally defined in [4], while an implementation
specific to the Java language is discussed in [9], where it is



also thoroughly compared with related approaches, such as
JAXB [11].

With SNAQue, the programmer projects a type over an
XML file in an attempt to materialise the content of the
latter as a value of the former, and thus derive the benefits
discussed in Section 1. This requires parsing the file into a
temporary tree structure and establishing whether the tree
is an encoding of a value of the projected type, according
to a pre-defined mapping between language values and la-
belled trees. If this is the case, the value is materialised from
the tree and may be subject to application-specific program-
ming, otherwise an indication of failure is returned to the
programmer.

For generality, we have studied type projections in the
context of a canonical language defined around a value no-
tation, a type language, and a relationship of typing be-
tween the two. In particular, we have chosen a selection
of structural types commonly found in existing procedural
languages: built from a set of atomic types, they include in-
clude record, collection, and untagged union types, possibly
recursively defined. Specifically, a type T is one of a finite
set of atomic types Bi, a record type [l1 : T1, . . . , ln : Tn], a
collection type coll(T ), a union type T1 + T2, or a recursive
type µX.T , where X is a type variable and the operator µ
binds occurrences of X in T 1.

Canonical values mirror the available types. A value v is
an atomic value bk ∈ Bk, a record value [l1 = v1, . . . , ln =
vn], a collection value {v1, . . . , vn}, or the empty collection
{}. The typing relation is inductively defined in a standard
fashion. An atomic value bk has the corresponding type
Bk, while a record [l1 = v1, . . . , ln = vn] has the type [l1 :
T1, . . . , ln : Tn] only if each vi has type Ti. A collection
{v1, v2, . . . , vn} has the type coll(T ) only if all the vi have
type T , while the empty collection has the type coll(T ) for
all T . A value v has type T1 + T2 if v has type T1 or type
T2 and, finally, v has type µX.T if v has the type obtained
by substituting µX.T for all the bound occurrences of X in
T .

For parsing purposes, we have considered a tree inter-
pretation of XML data which abstracts over the document-
oriented features of the format (e.g. ordering, processing
instructions, etc.) and concentrates on the data-oriented
features (e.g. naming and nesting)2. Figure 1 gives a vi-
sual example of the tree interpretation of a sample XML
document.

The tree encoding of values is illustrated by way of exam-
ple in Figure 2, which shows the tree corresponding to the
record,

v=[a=1,b={"two,"three"},c=[d="four",e=5],f={}].

Essentially, atomic values are encoded as leaf nodes, while
the encoding of record and collection values is built on that
of their fields and elements, respectively. Since language
values are anonymous, however, it is not immediately clear
what labels should be used at the root nodes. For atomic
values this is a textual encoding of the values themselves,

1Recursive types do not need to appear such theoreti-
cal guise within program, but can be derived from self-
referencing type declarations.
2In practice, element attributes may be parsed as subele-
ments.

XML ... The An ...

TheBible

name

store

BooksRus authorauthor author title

book

title

book book

fname sname

title

Peter ...John ...

LeeStan

<store>
  <name> BooksRus </name>

<book>
     <author> John Backus </author>
     <author> Peter Naur </author>
     <title>XML Does Not Care </title>

  </book>
<book>

<fname> Stan </fname>
<sname> Lee </sname>

</store>

<book>
  </book>

  </book>

     <author>

</author>
     <title> The Annotated Spiderman </title>

     <title> The Bible </title>

Figure 1: XML Parsing.

but for records and collections our choice is that the label
may only be provided by the context.

In Figure 2, a context for the entire v is missing and
this explains the omitted label at the root node. Differ-
ent is the case for, say, the root of the tree that encodes
[d="four",e=5], which is labelled with the field name c of
v3. Finally, observe the encodings of the values in the col-
lection {"two,"three"} – which take their label from the
record field b – and the encoding of the value of field f –
which extends the previous rule to the extreme case of the
empty collection.

In terms of type projections, the implications of the en-
coding scheme are essentially two: 1) tags of root elements
such as store in Figure 1 are irrelevant, and 2) collec-
tion types may only be successfully projected within record
types, where they never fail. For example, the projection of
type Store over the data in Figure 1, where:

Store = [name:string,

book:coll([title:string,

author:coll(Author)])]
Author = string+[fname:string,sname:string]

would result in the language value store, where:

store = [name="BookRus",

book={book1,book2,book3}]

3In previous work, we adopted a more convenient tree model
where labels are on edges rather than nodes. We have here
maintained labels on nodes to rely later on standard query
semantics (see Section 3).



[a = 1,  b = {"two","three"},  c = [d = "four", e = 5],  f = {}]

four

b ba c

ed1

5

threetwo

....

Figure 2: Encoding example.

book1 =[title="XML Does Not Care",

author={"John Backus","Peter Naur"}]
book2 =[title="The Annotated Spiderman",

author={[fname="Stan",sname="Lee"]}]
book3 =[title="The Bible",

authors={}]

3. PROGRAMS AND QUERIES
Essentially, this work originates from the hypothesis of

moving SNAQue bindings and tree data within the language,
rather than at its boundary with the file system. At this
early stage of investigation, our aim is not to present a com-
plete language, rather to explore design options. In particu-
lar, we use a pseudo-syntax to illustrate a possible extension
of the canonical language with value operators (primitive op-
erators, record and collection algebras, etc.), standard pro-
cedural constructs (e.g. type declarations, static scoping, as-
signments, functional abstractions, control structures, etc.),
and library support (e.g. facilities for access to relational
data). As a first example, the following function addBook

augments a collection of books:

type Book = [isbn:string,price:number]

fun void addBook(Book book, coll(Book) booklist){

for b in booklist

if (b.isbn = book.isbn) remove b from booklist

add book to booklist

}

The code should be self-explaining. In line with the as-
sumption that data preserves identity across scopes, addBook
is applied under by-reference semantics. The new type void

has the conventional meaning while the operators for-in,
add-to, and remove-from form the bulk of the collection
algebra. Type assertions are statically enforced and, though
the issue will not arise, type equivalence may be assumed to
be structural to match the nature of type projections.

We then introduce XML in the language in the form of
tree values and combine it with a query algebra built on
XPath expressions into a second form of functional abstrac-
tion. For example, the following query findBooks takes an
XML representation of an online bookshop’s catalog and re-
turns the ISBN number and price of all the books scattered
in the data:

query findBooks(catalog) {

for book in catalog//book

union catalog/reviews/entry

return {

<book>

book/isbn

book/price

</book>}

}

The query semantics is standard, and in any case its de-
tails have little relevance in this context, where the focus
is on the integration of programming paradigms. Accord-
ingly, we assume the reader’s familiarity with XPath and
FLWR-like expressions and point out only that the query
processor embeds the sequence of book elements produced
by the return clause in a system-defined ROOT element, so as
to return well-formed XML, and thus trees, to the invoking
scope.

This brings us to query invocations, which represent the
boundaries between procedural and declarative scopes and
thus the points of polymorphic behaviour of data. Specifi-
cally, actual parameters are encoded as trees before binding
to formal variables while return values may be implicitly
projected over via assignments to typed variables. This is
illustrated by the next example, where two trees enter the
same procedural scope. One is parsed from a local file (via
the primitive operation read) but exits the scope immedi-
ately as the actual parameter of an invocation of findBooks.
The other returns from the query and remains in scope with
a record form before being written back to file (via the prim-
itive operation write):

type BookList [book:coll(Book)]

...

BookList books := findBooks(read("catalog.xml"))

...

write(books,"books.xml")

The example captures the essence of the language, for
it shows that assignments may entail type projections, im-
plicitly. Here, the type BookList is projected over the tree
output of findBooks with the intention of binding the re-
sulting record to the variable books. The model outlined in
Section 2 and the body of findBooks ensure that the pro-
jection is successful. Had it not been, an error would be
returned to the programmer, such as a null value (of type
void) or some kind of exception.

As a larger example, consider the case of a simple hy-
brid application that selects the cheapest price for a list of
books (cf. Figure 3). Assume that the list is scattered in a
relational database and comprises the recommended books
for the courses offered by a university department. Suppose
also that two functions getRecBooks and updateRecBooks

are available for accessing the course database and, respec-
tively, retrieve and update the list of recommended books.
Finally, assume that information on a list of online stores is
locally available in an XML file "stores.xml".

The application is very simple and the reader should com-
pare it with the solutions currently available. First, the list
of recommended books is retrieved from the database as a
collection value recList. Book prices in recList are then



type Store = [name:string,catURL:string]

type StoreList = [store:coll(Store)]

// database access

fun coll(Book) geRecBooks() {...}

fun void updateRecBooks (coll(Book) rl) {...}

query getLowerPrices(list, catalog) {

for b1 in list, b2 in catalog//book

where b1/isbn = b2/isbn and b2/price < b1/price

return {

<book>

b2/isbn

b2/price

</book>

}

val coll(Book) recList := getRecBooks()

for b in recList

b.price := MAX_PRICE

val StoreList stores :=

getStores(read("stores.xml"))

for s in stores.store {

val BookList catalog =

getLowerPrices(recList,read(s.catURL))

for b in catalog.book

addBook(b,recList)

}

updateRecBooks(recList)

Figure 3: A Simple Hybrid Application

initialised to some large constant to ensure that an update
will actually take place.

Similarly, the store list is read from"stores.xml" and as-
signed to variable stores. This entails the projection of type
StoreList, which asserts that, for each store, the file con-
tains a name and the URL of a corresponding XML catalog.
Assuming the assertion to be correct, the catalog of each
store is fetched from its URL (with an overloaded version
of read) and passed to a query getLowerPrices. The latter
receives also the recList, after its value has been encoded
as a tree upon entering the declarative scope. This offers an
example of a conventional language value that changes its
form to be queried.

In particular, the query filters the books in the catalog
which are recommended and currently offered at a lower
price. When returned to the procedural scope within the
record value of catalog, the new offers are reflected in the
collection recList with repeated invocations of the func-
tion addBook defined above. After all the catalogs have
been so processed, recList is eventually written back to
the database.

4. CONCLUSIONS
We have discussed the design of a language for hybrid

applications over XML. This requires a form of structural

polymorphism whereby data assume the form of a tree or
that of more conventional language values in order to ade-
quately support programming expectations. By associating
a query algebra to the tree view and an imperative alge-
bra to the procedural view of the data, the language offers
the best of declarative and procedural approaches to XML
programmers.

At this stage of investigation, our interest is in exper-
imenting with design options. Due to the novelty of the
approach, it is not yet clear what language features would
best support hybrid applications. Here, we can only hint at
two lines of further development.

Our first concern is for partial type projections, whereby
types are allowed to match subsets of the data. This is
already a feature of SNAQue, where it allows bindings to dis-
ciplined subsets of particularly semistructured data, mini-
mality of specifications, and program resilience to irrelevant
changes in the external data (cf. [9]).

Not only do the latter reasons reveal the strong anal-
ogy between partial projections and conventional notions
of record subtyping, and thus suggest they should coexist in
the language. They also introduce similar problems of up-
date which are well-known in the literature (cf. [5]). Among
the available solutions, we consider the static advantages of
bounded universal quantification for record subtyping and
investigate novel schemes for partial type projections which
exploit their inherent dynamicity.

Finally, we plan to extend type projections to graphs, and
thus face the problems raised by the presence of cycles and
sharing in the data. The first concern the termination of
algorithms and appear to push the formalisation into a co-
inductive framework. The second are exactly those asso-
ciated with partial projections and will require a uniform
solution.

5. REFERENCES
[1] M. Abadi, L. Cardelli, B.C. Pierce, and D. Plotkin.

Dynamic Typing in a Statically-typed Language.
ACM Transactions on Programming Languages and
Systems, 13(2):237–268, 1991.

[2] Anders Berglund, Scott Boag, Don Chamberlin,
Mary F. Fernandez, Michael Kay, Jonathan Robie,
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