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Abstract.  In its infancy, the World-Wide Web consisted of a web of largely
static hypertext documents.  As time progresses it is evolving into a domain
which supports almost arbitrary networked computations.  Central to its
successful operation is the agreement of the HTML and http standards, which
provide inter-node communication via the medium of streamed files.  Our
hypothesis is that, as application sophistication increases, this file-based
interface will present the same limitations to programmers as the use of
traditional file and database system interfaces within programming languages.
Persistent programming systems were designed to overcome these problems in
traditional domains; our investigation is to reapply the resulting research to the
new domain of the Web.  The result of this should be the ability to pass typed
data layered on top of the existing standards, in a manner that is fully integrated
with them.  A typed object protocol integrated with existing standards would
allow the Web to be used to host a global persistent address space, thus making
it a potential data repository for a generation of database programming
languages.

1. Overview

There are two fundamentally different approaches to the integration of databases and
the World-Wide Web.  The first is the “embedded database” approach, where well-
behaved and regular segments of data available from the Web are implemented using
various forms of database technology.  These interfaces may be as simple as
accepting embedded SQL queries, or may be more subtle so that the purpose of the
database is only to provide efficient and regular storage.  In this case the existence of
the database metastructure can not be detected from its interface on the Web.

The alternative approach is to view the entire Web as a database.  At the current
state of the art, the data collection that is the Web has only one thing in common with
a traditional database - it is large.  To talk of the Web as a single vast database is at
best premature: databases have other attributes, which are in fact more significant
than their size, such as an enforced semantic model and guarantees about the quality
and consistency of the data contained in them.  The Web has no such guarantees, and
never can in any general sense.



Nonetheless, this is the approach taken in this paper.  We seek to improve the
potential for the Web to be viewed as a single data collection, significant subsets of
which can be treated as global databases.  The approach is one of a database
programming language where the Web namespace of URLs is overloaded as a
naming scheme for typed data which can be manipulated by a strongly and largely
statically typed programming language.  This language can therefore act as a query
language over those parts of the Web whose data is well-behaved, as well as
providing a system in which the production of such data can be made easier for a
programmer.

The approach proposed is to extend the semantics of a database programming
language (more accurately, a higher-order persistent programming language) to
include the Web within its semantic domain.  One of the most notable features of such
languages is that they include passive data and program fragments, in the form of
functions and procedures, in the same persistent data domain [AM95].  Therefore the
notion of Web data within this context includes higher-order executable code.  The
investigation described is an attempt to integrate such a system with the existing state
of the Web; in particular, there is no suggestion of attempting to replace the Web, by
which term we include its host of evolving and emerging standards, with new
technology.

2. Introduction

The world-wide web is starting to see an increase in the sophistication of its
component documents and applications.  Although the origin of the Web was
relatively humble browsable text documents, the use of dynamic applications using
the same interfaces is becoming commonplace.  A number of different models have
been developed to support this within the original protocols, including client-side
computation via scripts and applets, and server-side computation via CGI and API
plugins.

Although these mechanisms allow arbitrary computations to be described within a
networked application, the medium by which data is transferred among them is the
text file, as defined by the http protocol.  This is scarcely a limitation for the majority
of current applications, as the common model of computation is based on a client-
server interaction whereby the end result is to produce an HTML document to be
viewed by a browser.  It is envisaged however that, as sophistication of use increases,
the requirement for application components to pass more complex data among
themselves will increase, and in this context the text file will become a limitation.

The scenario of applications sharing typed data via the medium of text files is
exactly that which prompted research into persistent programming systems, and the
main intention of the work described here is to reapply that research in the domain of
the Web.  This paper describes some initial ideas, currently under investigation in the
Hippo project at the University of Glasgow [Hip98], which allow the layering of a
typed object protocol on top of the HTML and http standards.

One further motivation, of a more pragmatic nature, is that the successful
unification of a persistent programming language with the Web will inevitably have



the secondary effect of creating an open persistent system.  One of the most
interesting fundamental properties of the Web is the autonomy of its users, and any
system which attempted to control this would not therefore meet the selected
challenge.  A major fundamental drawback of orthogonally persistent systems is that
they are closed-world, this aspect making them seem unacceptable for much
commercial use.  Integrating a persistent system with the Web requires the
management of an essential set of compromises between a pure model of orthogonal
persistence and something that can be engineered within the shared semantic space of
the Web.  Thus success in the investigation will also address the more general
problem of openness in persistent systems; however, it should be admitted, a
fundamental incompatibility is not always the best starting point for an investigation!

It must finally be stressed that this investigation is not an attempt to reinvent the
industrial standards of CORBA and DCOM.  While these successfully allow the
modeling of objects with internet interfaces, the main advantages of orthogonal
persistence stem from the seamless semantic model of data that is shared across
program invocations within a single language.  The CORBA and DCOM models have
quite a different agenda, in that they provide language-independent interfaces,
allowing the objects provided to be implemented by and incorporated into programs
in arbitrary languages.  The use of CORBA or DCOM objects requires translation
from an interface definition written in an Interface Description Language (IDL) into
the particular language being used.  A major consequence  of this is that the
descriptive power of the IDL is necessarily compromised to maximise the set of
languages that can use the technology, as it must provide something akin to a
common subset of their type systems.  An IDL can therefore provide at best a way of
describing structured scalar types, and references to other interfaces in the same
standard.  In particular, an IDL could never hope to support types representing values
such as function closures or abstract data types.  Thus, although there is some overlap,
our investigation is into a quite different paradigm of typed internet data.

4. Orthogonal persistence

3.1. Persistence for Data-intensive applications

The concept of orthogonal persistence was identified by Atkinson [Atk78] whilst
working on systems where general purpose programming was required over data
stored in databases and file systems.  The key observation is that data stored in these
domains is available externally only in a flat file format, which causes a serious
mismatch when it must be translated into a programming language type system.  An
independent internal investigation by IBM revealed that in some application areas up
to 30% of source code was involved purely in translation between the two domains.
Furthermore this code attracts high management costs, as it must be changed in detail
depending upon the external environment in which it is executed.

Considerable research has been devoted to the investigation of persistence and its
application to the integration of database systems and programming languages
[ABC+83, AM95]. A number of persistent systems have been developed including



PS-algol [PS88], Napier88 [MBC+89], Galileo [ACO85], TI Persistent Memory
System [Tha86]  and Trellis/Owl [SCW85].  Most of the object-oriented database
products now commercially available provide some form of persistent language
interface, and most recently Sun Microsystems and others are involved in a number of
experiments in adding the concepts of persistence to Java [AJDS97, GN98].  Whilst
many of the systems listed may not be perfect examples of an academic definition of
persistence, they clearly borrow the essential concepts, albeit in a commercially
viable setting.

The benefits of orthogonal persistence have been described extensively in the
literature [AM95], and can be summarised as
� improving programming productivity from simpler semantics;
� removing ad hoc arrangements for data translation and long term data storage; and
� providing protection mechanisms over the whole environment.
Figure 1 gives a simplified pictorial view of the traditional data-sharing scenario.  In
this diagram, the rectangles represent program invocations, the circles inside them
being the executing code and the graphs representing the data manipulated by these
invocations.

Fig. 1. Traditional file-sharing model of long-lived data

For data to be shared between invocations, either concurrently or after an elapsed
time, graphs of complex objects must be explicitly flattened into some format
supported by the file system.  These objects must then be recreated in the domain of
the other invocation, which executes in its own closed semantic domain.  In simple
terms this increases the burden on the application programmer; however in a
sophisticated application domain there are greater problems also, such as the creation
of copies of the data and the inability to share data represented by abstract data types.
Whilst these problems can be overcome through coding in any computationally
complete system, the key observation is that the complexity introduced by the



traditional domain is unnecessary, in that the code which solves these problems is
superfluous to the description of the problem the programmer is addressing.

Figure 2 shows the same scenario with a persistent application domain.  The
rectangle in this figure represents the persistent application environment which,
unlike traditional program language environments, encompasses all the data within
the domain of that programming system.  The apparent simplification is clear; the file
system and translation arrows have disappeared, as has the (semantically superfluous)
copy of the graph of objects.  In a nutshell, this has been achieved by extending the
boundary of the programming system semantics beyond that of shared and long-term
data.

Fig. 2. The persistent application environment

The most obvious advantage of persistence is that the programmer is no longer
burdened with the requirement of writing code to flatten and unflatten data structures
which have to be passed into a different semantic environment in order for their long-
term storage to be effected.  The flattening code is time-consuming to write and
sensitive to maintain, as it typically relies upon the semantics of an external system
which is subject to change.

Although this was one of the initial motivations of the work, this is now viewed as
relatively insignificant compared to the later advantages found through more
advanced research. Such code is relatively straightforward to write, and many modern
programming systems provide some support for the process; for instance the “pickle”
operator in Modula-3 [CDG+89] and the “persistence” support in Metrowerks
Codewarrior [MW98].  Persistence starts to show its true power in contexts where it
is difficult or impossible to write such code, such as high-level languages where
values significant to the semantics of a program are not necessarily denotable.  Prime
examples of these constructs are first-class closures and abstract data types, and the



reader is referred to the literature to find examples of the power of persistence in such
contexts [POS8, POS7, Con90].

3.2. Persistence and the Web

The observation here is that, as applications which require to process data from
around the Web become more sophisticated, they will start to encounter the same
class of problems as those identified at the start of persistence research.
Communicating processes around the Web can address each other directly, rather than
using the intermediary of a file system1; however all current Web protocols are based
on the transfer of files around the network.  This gives almost the same scenario as
sharing through file systems, except that the logical namespace ranges over a different
set of values.  The scenario is as pictured in Figure 3; the Web processes may be able
to name each other, but are still required to perform the translation code and, perhaps
more importantly, to keep semantically incongruous copies of the data associated with
each invocation.

Fig. 3. Sharing data among Web processes

The topic of investigation is therefore whether the same solution, that of extending the
boundary of data handled in the semantic domain of a programming language to
include that of all process invocations, is viable in the context of the Web.  At the
start of persistence research it was clear that this approach was semantically
preferable, but not that such systems were feasible to engineer and use.  In the context
of the Web, even the desired semantics of such an arrangement are less
straightforward.
                                                          
1 This is ignoring the fact that the naming service of the Web is essentially derived from file

system conventions.  In this description we assume that URLs name resources orthogonally
to their type, and may be used for example to name data channels between processes.



The good news is that, if a useful semantic model exists, then much of the research
committed to persistent systems should be applicable to the new domain.  Many of
the engineering problems that have been successfully solved in closed persistent
systems have clear parallels in the Web environment, and the implementation
problems following a clear model might not be so great.  The rest of this paper
categorises the classes of problem which occur in the semantic integration, and
outlines some areas in which possible solutions may be found.

4. A model for persistence and the Web

In its most general manifestation, orthogonal persistence is a property of a
programming language whereby the treatment of data is entirely orthogonal to its
lifetime.  One model of this is to replace traditional file system access primitives by
two language meta-constructs, intern and extern.  Given a value x, of type t, and a
global external namespace ranged over by n, then

extern( n, x )

causes a conceptual link to the value x to be placed in the global namespace, such that
the call

intern( n, t )

results in the same value, formerly denoted by x.  intern will fail dynamically if the
identifier n does not denote a binding of type t in the external namespace.  The crucial
property of this model is that the semantics of the value is unaffected, even when
concepts such as identity and mutability are in the semantic model.

The observation that the intern and extern calls can take place in different program
invocations gives rise to the sharing of typed data among programs in different
contexts.  This single, shared namespace which allows any program invocation to
access the same data roots is the key to orthogonal persistence.

It should also be noted that the notation of intern and extern, although used
consistently since the inception of persistence research, is not necessarily helpful as it
gives the intuition of a namespace external to the programming system domain.  In
reality these meta-functions give a mechanism whereby the data that hangs from the
namespace is internal to the semantics of the programming system as a whole: thus
the namespace is not in any sense external, but in fact shared internally by all program
invocations.

We have chosen the intern/extern model as a starting point because it is the
simplest model which, by its addition to an arbitrary programming language, provides
orthogonal persistence.  In this sense it is a core model, rather than a useful model for
programming persistent applications, where more support is generally considered
desirable.  However we assert that if this model can be extended to an understandable
semantics in the domain of Web data, then other more programmer-friendly models
can also follow.

Our aim is then to apply this model of persistence in the domain of the internet,
and more specifically the Web.  Three main conflicts have been identified:



� the Web and the persistence model each have their own namespaces, which must
therefore be unified

� the Web and any programming language each have their own preconceptions about
the representation and structure of data, which must again be unified

� the Web has an (implicit) data model whose semantics necessarily allow the
description of remote, unreliable, and autonomous data; desirable programming
systems include notions such as static typing and referential integrity, which
appear to be fundamentally at odds with this.

Each of this is now examined in turn.

4.1. Unification of the namespaces

The simplest way to achieve unification with the global persistent namespace
assumed by the intern/extern model involves compromising it by the use of two
different namespaces, that of a local file system and that of URLs.  extern is used with
the local file system namespace, and there are two forms of intern, one using the local
file system namespace and one using the URL namespace.

In this way, the namespaces used by the proposed system are in fact identical to
those used by the writers and readers of standard HTML documents in the domain of
a web server.  These are written into locations (filenames) resolved in the context of
the local file system, and read as either local filenames or URLs, depending on the
context and purpose of the reader.  The author of an HTML document needs to
understand both namespaces to allow the placement of anything other than simple
relative resource names within the HTML code.

The use of these namespaces to share data between program invocations requires
knowledge of the implicit mapping between them.  For example, the local filename

/users/staff/richard/public_html/fred.html

and the URL

http://www.dcs.gla.ac.uk/~richard/fred.html

might map to the same physical file, but this is not normally specified by any formal
arrangement.  This mapping must for the moment remain beyond the semantics of the
persistent system, and the programmer’s knowledge of it must be assumed.  Once
again, the situation is identical with the human user’s view of the namespaces.

Having simply established the namespaces, their use for the storage and retrieval of
persistent data looks simple.  To give a concrete example, the following code creates
a new object of class person and stores it in an external namespace within the domain
of an http server:

fred = new person( “Frederick”, 31 )

extern( “/users/staff/richard/public_html/fred.html”,
fred )

This object may subsequently be retrieved by a remote application executing the
following code, and the identifier thisFred is typed locally as person.



thisFred =
internURL(

“http://www.dcs.gla.ac.uk/richard/fred.html”,
person )

If the data is not accessible, or has some other type, the internURL operation fails and
the binding is not made.

Readers unfamiliar with orthogonal persistence may at this point become
suspicious about the simplicity of this code, and make guesses about the semantics of
these statements.  It is important to note that the definition of orthogonal persistence
requires that the values associated with the bindings fred and thisFred in the example
are semantically indistinguishable; preserving this is a serious implementation
problem, but one that is now known to be tractable.  Note also that another
definitional feature of orthogonal persistence is that values of any type in the semantic
domain are allowed the full range of persistence.  Although the type person might be
relatively straightforward to handle, the operations intern and extern are available on
values of any type, including for example functions, closures and abstract data types.

However our task currently is to provide a clean semantic model for persistence
and the Web.  Although such a model is clearly of no use if it is not possible to
implement, we do not discuss issues of implementation further in this context.

One unfortunate effect of the two-namespace model is to lose the nice property of
context-free name resolution within the persistent system, as the resolution of local
filenames depends upon the physical location in which the application is executing.
One of the major perceived advantages of closed-world persistent systems is that the
semantics of an application is entirely independent of its physical context, depending
only on how the persistent store is populated.

This model relies upon a single global namespace, which is believed by many to be
impossible to engineer, and some compromise is necessary in a system which extends
beyond a local context.  It is perhaps ironic that the URL model provides precisely
this, but in reality this is only viable because of the update restrictions that exist with
it.  An alternative approach, for example using the URL namespace as a parameter to
extern, could provide context-free name resolution, but the significant behaviour of
the application would nonetheless necessarily depend upon protection issues based on
the context of execution.  It is pleasing at least that the intern namespace is a single
global model, a feature which has so far evaded the engineers of closed persistent
systems.

One final point that must be stressed is that it is only the concept of namespace that
has been discussed in this section.  With many Web and file system protocols, URL
naming directly corresponds to the presence of physical files which contain the data
being referenced; this is not necessarily the case in the system we are describing.  The
names describe only entry points into a general graph of persistent data, and not
necessarily the physical location of a file in which the data is stored.  Ultimately, of
course, resource names are interpreted according to the whim of the http server that
happens to be listening at the specified socket; however, to keep within the initial
brief, it would be helpful to assume a standard server arrangement.



4.2. Representing persistent values

To give the most useful unification of persistence with the Web it is a requirement
that documents created to represent persistent values are not only transmitted via the
standard protocols, but can also make sense outside the context of the persistent
system.  It is a major feature of the internet, and undoubtedly one of the reasons for its
success, that documents are in open standard formats and may be interpreted by a
choice of viewers.  We therefore avoid the choice of inventing a new document
standard which would require all users of persistent data to adopt our technology.

That choice leaves the further question of how best to use existing and emerging
standards to represent persistent values.  There are currently a plethora of new
standards emerging which allow better specification of Web resources than simple
HTML.  For example the W3C [W3C] standard XML, in conjunction with a DTD and
XLL, could be used to describe a way of laying out text files to capture the semantics
of values in any particular type system.  Such an approach would seem unexciting,
however; although in principle such resources would be re-usable by other systems,
they would effectively be closed outside the persistent environment as a very high
degree of interpretation would be required to allow their semantics to emerge.
Claiming that a system using such protocols would be open would be similar to
claiming any other system is open if viewed at the level of its base implementation.

The Resource Description Framework [RDF] allows the association of meta-data,
loosely comparable to programming language types, with Web resources.  Even if a
high-level type system could be modeled, however, the granularity of the abstraction
would appear to be too coarse-grained for use in a persistent Web system.  The
fundamental cost of remote resource fetching is generally believed to be in the
connection cost, rather than bandwidth limitation, and it would appear that the fine-
grained value model of persistent programming would not map well to every
persistent value being represented as a separate  resource.  The model also suffers
from the same problem of interpretation identified with the XML approach.

Another emerging standard of particular interest is that of semi-structured data.
This data format emerged, amongst other uses, as a data interchange format, and some
recent research has concentrated on the derivation of structure and semantics from
this common level description [NAM98, NUW+97].  It may turn out to be possible to
store persistent data in a semi-structured arrangement automatically derived from the
static language typing, in such a way that its type-safe re-introduction can be
automated [CS98c].  The beauty of this approach is that the semi-structured data is
effectively self-describing, and its interpretation does not depend upon understanding
a meta-level description.  Therefore it could be used by any other application system
capable of understanding semi-structured data.  If this approach is tractable, it may
also be possible to safely import semi-structured data with a different derivation into a
typed persistent computation.  However there are some fundamental research issues to
be solved before this approach can be deemed tractable.

For the moment, it was decided to take a purely pragmatic approach simply to test
the concept in an open and highly available manner.  Entry points to persistent data
are represented as HTML files, in a way that can be usefully interpreted by Web
browsers as well as by a persistent program.  This is achieved by creating HTML
documents that contain persistent data formatted in a human-readable manner,



according to their type, via a simple set of rules.  This allows programs to
communicate with each other directly using typed data, and also allows this data to be
understood by a human using a standard browser.  It also provides the simplest of
mechanisms for an applications builder to place the results of programs on the Web.

The necessary non-human-readable content, such as the canonical type
representations required for run-time structural checking, are placed immediately
before the data in HTML comment fields.  This information can then be used when a
persistent binding is specified using an intern statement, and the HTML code which
represents the data can be properly interpreted according to its type.  This
arrangement also allows other strategies to be used in cases where the efficiency of
the parsing might be an issue, for example a comment field might contain a
compressed format of the same data, or information on how to fetch it from a
different physical location.

The rules required to translate from typed values to human-readable versions are
relatively straightforward to describe for most types.  The reverse mapping is less so,
but given that this can be guided by the embedded type representation it presents no
real technical problems.  Types such as closures and abstract types present more of a
challenge; however previous research on hyper-programming [KCC+92] can be used
to solve many of the problems very neatly, by providing a model of closure that bears
a textual representation.  The issues of protection in abstract data types should also be
noted, although it seems unlikely that there is a perfect solution.  This is maybe one of
the fundamental type system compromises that will have to be made.

Figure 4 gives an example of the HTML generated by the execution of the
following program fragment:

fred = new person( “fred”, 31 )
extern( “/users/staff/richard/public_html/fred.html”,

fred )



<HTML>
<HEAD>
...
</HEAD>
<BODY>
<!--HIPPO TYPE ANNOTATION
t0=str(age*name#int*string)
-->
<TABLE BORDER="2">
<TR><TD COLSPAN=2>Structure of type Person</TD></TR>
<TR><TD>name</TD><TD>age</TD></TR>
<TR><TD>Fred</TD><TD>23</TD></TR>
</TABLE></BODY>
</HTML>

Fig. 4. Example HTML generation

An important point to notice is that such files need be generated only at the execution
of a call to extern.  The semantics of these calls is to generate only entry points into
arbitrary graphs of data, rather than having the effect of storing a flattened closure as
in a non-persistent system; what is outlined above, therefore, is not a data storage
paradigm, but only a way of representing entry points.  Data storage may be handled
in a relatively traditional manner by a persistent object storage mechanism, provided
that the illusion is somehow preserved of the same data being accessed either from a
local persistent system, from a remote persistent system, or from a Web browser.
Furthermore, accesses in the last two categories should generate the same text streams
through the http protocol.

The problems left to handle are those of object identity (including the correct
semantics of mutable objects), and the representation of references to other objects.

Object identity can not be equated with URL equality, the latter including aliases
that are in general undetectable.  Instead, however, unique identities can be
manufactured by the persistent run-time system, as is common in any case, and stored
along with type information as an invisible field.  On intern, the identity information
can be handled by the persistent store layer of a run-time system to avoid duplication.
The fact that the identity is not observable to HTML browsers is actually desirable, as
it fits with that apparent semantic model.  Preserving correct update semantics poses a
further problem, which will be dealt with in the next section as the proposed solution
is based upon a typing mechanism.  Given this can be handled, however, this
approach gives a level of flexibility in that semantically identical values can safely
have multiple representations, in more than one text file.

There is an easy conceptual solution to the problem of representing references in
the dual format.  It is necessary for them to be represented as URLs in a textual view



of the data, to allow human browsing of the graph of objects accessible from the
persistent entry point.  Given this, all that is required is to generate a new text file to
represent each reachable persistent object, generate a unique local filename for it, and
plug a corresponding URL into the textual description of the referring object.  The
disadvantage of this approach, as mentioned before, is that transmitting each
persistent object with a separate http request seems to be an inappropriate level of
granularity.  A solution to this exists however in the use of HTML anchors, which
allow arbitrary numbers of objects to be transmitted in a single stream.  Rather than
pre-calculate these multi-object files, it is possible to embed unresolved references as
CGI calls based on the identity of the referred object, allowing them to be
dynamically generated.  Given that we can solve the problem of the same semantic
values appearing in multiple text files, this mechanism can be used strategically in
conjunction with established techniques such as object clustering to send an
appropriate set of values through each connection.

4.3. A type system for Web-based persistence

Even given that standard HTML documents can be used to represent typed data, there
are still two problems with persistent applications which operate over such data.
These are due to fundamental mismatches between the semantics of programming
languages and the normal model of Web usage:
� referential integrity, normally guaranteed within a programming system, can not be

expected in general in this domain
� many programming models include update, with locations contained within

arbitrary data structures; however, most data provided on the web is read-only, and
not allowed to be updated in an arbitrary manner by users other than its provider

We conclude with brief descriptions of type system mechanisms we have introduced
to combat these problems.

4.3.1. Typing for referential integrity
A great deal of research in persistent programming systems has concentrated on the
subject of dynamic binding, often referred to as flexible, incremental binding.  The
binding of code to persistent data, captured above through the intern operation,
requires a check both on the existence and the type of the data referred to.  The
consensus model to emerge is that the existence of the data does not require to be
individually checked, and can be folded into the same language mechanism as the
type check.  This is safe, as a failed type check prevents any further execution on the
value referred to, although not general, as the programmer can not distinguish
between the two classes of failure.  However experience with persistent programming
has not shown any convincing requirement to do this.  In the new domain of the
internet our initial assumption is that any dynamic unavailability of data is best
exposed to the programmer of a persistent application as a dynamic type error.  It
should be noted that the fundamental differences in the context may turn out to
invalidate this assumption.

The problem is easily solved by resorting to a type system where the each use of an
object is dynamically checked.  This was the approach taken in the first persistent



programming language, PS-algol [ABC+83].  However further work on persistent
languages showed that a much better solution could be achieved, with the addition of
explicit dynamic typing constructs to an otherwise statically checked system
[MBC+89, Con90].

The semantics of internURL includes a dynamic check on the availability and type
of the data, and this provides a failure point in the case where the data is unavailable
or of the wrong type.  The problem is that after such a check has succeeded, the data
is integrated with the ongoing typed computation in a context where further dynamic
checks are not normally desirable.  The only way to ensure the soundness of the type
system is to make a locally cached copy of any data integrated in this manner.2

It is impossible in general to cache the transitive closure of data fetched from a
particular entry point in the persistent graph, as this could itself form a global web of
data.  We have therefore designed a type system which distinguishes between data
which is known to be available and that which may be dynamically unavailable.  It is
important to note that this does not by itself solve the problems of closure and
referential integrity, but is proposed merely as a platform on which to conduct
experiments with the relationship.  Any final solution must include some element of
compromise between purity of semantics and a pragmatic approach to the
downloading of data files, so at the moment we strive only to have at least some
definition of data movement within the programming language domain.

The type constructor refR (remote reference) is added to an otherwise standard
type system to denote the type of data which is not guaranteed to be available.  refR( t
) is, in general, a supertype of t, and a dynamic coercion is required to use the
denotation as type t.  The semantics of this type are similar to that of that of the type
any in Napier88 [MBC+89] and dynamic in [Car85, ACP+95], except that an
indication of the value’s expected type is included with its static denotation.  The
typing of a denotation as refr( t ) gives no guarantee whatsoever about the type of the
value referred to, and in this sense contains no static type information whatever.
However a value of such a type has the specialisation operation to t defined over it,
and before type-specific computation can take place the type must undergo an explicit
dynamic check.  If the check succeeds then the value is cached at that time and can be
subsequently relied upon during the computation.

Although the typing ref( t ) does not carry a guarantee, it is however the case that
where the link to the data is dynamically available, and where the data has not been
interfered with by any other autonomous system, then the dynamic specialisation will
succeed.  In this sense the t can be regarded as a static hint to the real type of the data,
and the programmer may have some useful model about the probability of success.

The reference type mechanism allows the programmer fine-grain yet implicit
control over the point at which data is fetched.  For example

thisFred = internURL(
“http://www.dcs.gla.ac.uk/richard/fred.html”,
refR( person ) )

                                                          
2 For the purposes of this description we ignore the issues of cache coherency, although this

does present a major problem.  Our current thinking is to handle this at a different level from
the programming model which we describe here.  The prevention of remote update, as
described later, greatly alleviates the general problem.



causes an association to be made between the identifier thisFred and the URL, but
does not cause the data to be fetched and cached, whereas this statement

thisFred = internURL(
“http://www.dcs.gla.ac.uk/richard/fred.html”,
person )

causes the data to be fetched also.  In a less trivial example,

internURL(
n,
structure( x : int; y : refR( person ) ) )

allows the programmer to specify the fetch of the top-level structure, but not
necessarily its closure.  The subtyping relationship between person and refR( person )
allows the type check to succeed only when the record originally placed at that
binding contained a person or any subtype of person.  If the closure is fetched for
pragmatic reasons, such as the object clustering referred to earlier, any later dynamic
checks can be elided.

Although this construct gives the potential for applications which perform arbitrary
dynamic typing, and which may therefore fail at any point with a type error, it is
nonetheless possible to adopt a coding style where all dynamic checks are factored
out at the start of a application.  This can give all the desirable properties of static
typing whilst retaining the required flexibility of type-safe remote binding.

It is our final hope, at this point completely untested, that such a typing strategy
might be integrated with remote object batching strategy, as hinted at above, in a way
which is able to allow robust distributed applications with clear semantics.

4.3.2. Typing for remote update
Update causes a final problem in the context of a persistent language operating over
data available from the internet.  There is one easy solution, which is to claim that
traditional query languages are essentially declarative, and any such language used to
query the internet should be a declarative subset of the general persistent system.
While this solves the problem of programs specifying updates to remote data that they
do not own, we prefer if possible to handle the problem without losing the ability to
update data that is owned locally.

There are two problems with this model in the context as described so far.  The
first is that multiple file representations of objects that contain mutable locations may
potentially lead to inconsistent views of a set of data.  The second is that unprotected
remote update is not generally acceptable in the context of the internet, and some
protection is required to prevent this from being specified within computations.

A location type is used to control the problem of generalised network update.   The
Hippo language has an explicit type constructor, loc( t ), which must be used to
denote a mutable location.  Furthermore, the system contains a subtyping rule that
states for any type t, loc( t ) is a subtype of that type.  This is a fairly standard
subtyping arrangement where mutability is explicitly typed (see for example [Car89]).

A corollory of such typing is that, for any type t which contains location types,
there exists another type s which does not contain location types, and of which t is a
subtype.  A denotation typed as s has the operational ability to dereference any



locations contained in any value typed at t; however, the same value typed as s does
not allow any update operation to its locations.  We refer to s as the immutable
supertype of t.

When remote data is typed at an intern command, the dynamic test for success is
that the statically asserted type is an immutable supertype of the type associated with
the physical data.  This gives that static knowledge that it is impossible to specify a
well-typed computation that causes an update to occur to a value which is not locally
resident.

This mechanism does not solve the generalised problem of cache coherency over
the programming system, although it may make it considerably more tractable.  In
particular a fundamental attribute of the subtyped location model is that values which
are not typed as locations may nonetheless change by side-effect, and this is the
required semantics in this case.  Two possibilities are under investigation, details of
which are beyond the scope of this paper; one is to build a re-fetch model into the
refR type scheme, and the other is to impose a causal consistency model over the
networked persistent processes.  The latter of these, whilst obviously more complex,
may turn out to fit neatly with other aspects of persistent Web computation that are
not discussed here [CS98b].

5. Conclusions and future work

This paper gives only an introduction to the key concepts used in the Hippo language
in terms of its intention to integrate an orthogonally persistent programming system
with the World-Wide Web.  The overall task is greater than those problems and
outline solutions presented here, and further information about the project is available
from the Web site3 and other recent publications [CS98a, CS98b].  It should be
stressed that this is a position paper from an early stage of the project, and whilst the
ideas contained in this paper are believed to be robust, they are not immune to
change.

The methodology underlying the project is strongly directed towards implementing
robust programming systems that can be used to program Web-based applications, to
therefore achieve maximum feedback as to useful design.  To this purpose
programming systems are available to researchers who might be interested in writing
applications in the domain; please contact the authors for details.
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