On the Unification of Persistent Programming
and the World-Wide Web

Richard Connor, Keith Sibson and Paolo Manghi

Department of Computing Science,
University of Glasgow,
Glasgow G12 8QQ
{richard, sibsonkmanghi}@dcs.gla.ac.uk

Abstract. In its infancy, the World-Wide Web consisted ofvab of largely
static hypertext documents. As time progressés @volving into a domain
which supports almost arbitrary networked compaoteti Central to its
successful operation is the agreement of the HTM laitp standards, which
provide inter-node communication via the mediumstieamed files. Our
hypothesis is that, as application sophisticatiogréases, this file-based
interface will present the same limitations to pesgmers as the use of
traditional file and database system interfacesiwiprogramming languages.
Persistent programming systems were designed tcawve these problems in
traditional domains; our investigation is to reapile resulting research to the
new domain of the Web. The result of this showddlhe ability to pass typed
data layered on top of the existing standards,nraaner that is fully integrated
with them. A typed object protocol integrated wahkisting standards would
allow the Web to be used to host a global persistddress space, thus making
it a potential data repository for a generation d#tabase programming
languages.

1. Oveview

There are two fundamentally different approachethéointegration of databases and
the World-Wide Web. The first is the “embeddedathase” approach, where well-

behaved and regular segments of data available theriWeb are implemented using
various forms of database technology. These mted may be as simple as
accepting embedded SQL queries, or may be moréessibtthat the purpose of the

database is only to provide efficient and regularagye. In this case the existence of
the database metastructure can not be detectedtfamterface on the Web.

The alternative approach is to view the entire Vdsla database. At the current
state of the art, the data collection that is thebWWas only one thing in common with
a traditional database - it is large. To talk e WWeb as a single vast database is at
best premature: databases have other attributéshveine in fact more significant
than their size, such as an enforced semantic naukluarantees about the quality
and consistency of the data contained in them. VWWhkb has no such guarantees, and
never can in any general sense.

Nonetheless, this is the approach taken in thiempapVe seek to improve the
potential for the Web to be viewed as a single datection, significant subsets of
which can be treated as global databases. Theoagpris one of a database
programming language where the Web namespace ofsURLoverloaded as a
naming scheme for typed data which can be manigailay a strongly and largely
statically typed programming language. This lamguaan therefore act as a query
language over those parts of the Web whose dataelsbehaved, as well as
providing a system in which the production of sutdta can be made easier for a
programmer.

The approach proposed is to extend the semantics ddtabase programming
language (more accurately, a higher-order pergispeagramming language) to
include the Web within its semantic domain. Onéhef most notable features of such
languages is that they include passive data angrgmo fragments, in the form of
functions and procedures, in the same persistaatdtamain [AM95]. Therefore the
notion of Web data within this context includesHhegorder executable code. The
investigation described is an attempt to integsateh a system with the existing state
of the Web; in particular, there is no suggestibattempting to replace the Web, by
which term we include its host of evolving and egieg standards, with new
technology.

2. Introduction

The world-wide web is starting to see an increasethie sophistication of its
component documents and applications. Although dhigin of the Web was
relatively humble browsable text documents, the afsdynamic applications using
the same interfaces is becoming commonplace. Abeurof different models have
been developed to support this within the origipedtocols, including client-side
computation via scripts and applets, and server-smmputation via CGl and API
plugins.

Although these mechanisms allow arbitrary compaoietito be described within a
networked application, the medium by which dat&ramsferred among them is the
text file, as defined by the http protocol. Thisscarcely a limitation for the majority
of current applications, as the common model of patation is based on a client-
server interaction whereby the end result is todpce an HTML document to be
viewed by a browser. It is envisaged however thatsophistication of use increases,
the requirement for application components to passe complex data among
themselves will increase, and in this context &he tile will become a limitation.

The scenario of applications sharing typed datathéa medium of text files is
exactly that which prompted research into persisggaogramming systems, and the
main intention of the work described here is tpda that research in the domain of
the Web. This paper describes some initial ideasently under investigation in the
Hippo project at the University of Glasgow [Hip98yhich allow the layering of a
typed object protocol on top of the HTML and httarslards.

One further motivation, of a more pragmatic natuie,that the successful
unification of a persistent programming languagéhwie Web will inevitably have

the secondary effect of creating an open persissggtem. One of the most
interesting fundamental properties of the Web & dlatonomy of its users, and any
system which attempted to control this would noeréfiore meet the selected
challenge. A major fundamental drawback of orthadly persistent systems is that
they are closed-world, this aspect making them sesracceptable for much
commercial use. Integrating a persistent systerth wihe Web requires the
management of an essential set of compromises betavgure model of orthogonal
persistence and something that can be engineethohwhe shared semantic space of
the Web. Thus success in the investigation widoahddress the more general
problem of openness in persistent systems; howedveshould be admitted, a
fundamental incompatibility is not always the b&sirting point for an investigation!

It must finally be stressed that this investigatismot an attempt to reinvent the
industrial standards of CORBA and DCOM. While thesiccessfully allow the
modeling of objects with internet interfaces, thaimadvantages of orthogonal
persistence stem from the seamless semantic mddehta that is shared across
program invocations within a single language. T@RBA and DCOM models have
quite a different agenda, in that they provide lage-independent interfaces,
allowing the objects provided to be implementedaby incorporated into programs
in arbitrary languages. The use of CORBA or DCOMeots requires translation
from an interface definition written in an Interéa®escription Language (IDL) into
the particular language being used. A major camsece of this is that the
descriptive power of the IDL is necessarily compised to maximise the set of
languages that can use the technology, as it mumstide something akin to a
common subset of their type systems. An IDL canmdfore provide at best a way of
describing structured scalar types, and referemgesther interfaces in the same
standard. In particular, an IDL could never hopesupport types representing values
such as function closures or abstract data typasss, although there is some overlap,
our investigation is into a quite different paradigf typed internet data.

4. Orthogonal persistence

3.1. Persistencefor Data-intensive applications

The concept of orthogonal persistence was idedtibig Atkinson [Atk78] whilst
working on systems where general purpose programmias required over data
stored in databases and file systems. The keydifen is that data stored in these
domains is available externally only in a flat filermat, which causes a serious
mismatch when it must be translated into a programgranguage type system. An
independent internal investigation by IBM revealledt in some application areas up
to 30% of source code was involved purely in tratish between the two domains.
Furthermore this code attracts high managemens castit must be changed in detail
depending upon the external environment in which @xecuted.

Considerable research has been devoted to thetigatgsn of persistence and its
application to the integration of database systeand programming languages
[ABC+83, AM95]. A number of persistent systems hdeen developed including

PS-algol [PS88], Napier88 [MBC+89], Galileo [ACO85[I Persistent Memory
System [Tha86] and Trellis/fOwl [SCW85]. Most difet object-oriented database
products now commercially available provide somemfoof persistent language
interface, and most recently Sun Microsystems dhers are involved in a number of
experiments in adding the concepts of persisteackava [AJDS97, GN98]. Whilst
many of the systems listed may not be perfect elesngf an academic definition of
persistence, they clearly borrow the essential eptsc albeit in a commercially
viable setting.

The benefits of orthogonal persistence have beesrifbed extensively in the
literature [AM95], and can be summarised as
L improving programming productivity from simpler semtics;
[removing ad hoc arrangements for data translatiol@ng term data storage; and
LI providing protection mechanisms over the whole mmment.
Figure 1 gives a simplified pictorial view of theaditional data-sharing scenario. In
this diagram, the rectangles represent programcatians, the circles inside them
being the executing code and the graphs repregetitendata manipulated by these
invocations.

L~

Fig. 1. Traditional file-sharing model of long-lived data

For data to be shared between invocations, eitbecwrently or after an elapsed
time, graphs of complex objects must be expliciligttened into some format
supported by the file system. These objects nhst be recreated in the domain of
the other invocation, which executes in its ownselb semantic domain. In simple
terms this increases the burden on the applicaimgrammer; however in a
sophisticated application domain there are grgatanlems also, such as the creation
of copies of the data and the inability to share daepresented by abstract data types.
Whilst these problems can be overcome through godinany computationally
complete system, the key observation is that thepbexity introduced by the

traditional domain is unnecessary, in that the catich solves these problems is
superfluous to the description of the problem ttagmammer is addressing.

Figure 2 shows the same scenario with a persigpptication domain. The
rectangle in this figure represents the persistgmtlication environment which,
unlike traditional program language environmentsg;ompasses all the data within
the domain of that programming system. The appaierplification is clear; the file
system and translation arrows have disappeardthsathe (semantically superfluous)
copy of the graph of objects. In a nutshell, tiés been achieved by extending the
boundary of the programming system semantics bettwidof shared and long-term
data.

Fig. 2. The persistent application environment

The most obvious advantage of persistence is tmatprogrammer is no longer
burdened with the requirement of writing code &itén and unflatten data structures
which have to be passed into a different semantir@yment in order for their long-
term storage to be effected. The flattening calé¢ime-consuming to write and
sensitive to maintain, as it typically relies upiie semantics of an external system
which is subject to change.

Although this was one of the initial motivationstbe work, this is now viewed as
relatively insignificant compared to the later adtezyes found through more
advanced research. Such code is relatively stfaigberd to write, and many modern
programming systems provide some support for tbegss; for instance the “pickle”
operator in Modula-3 [CDG+89] and the “persistenc&ipport in Metrowerks
Codewarrior [MW98]. Persistence starts to showtrile power in contexts where it
is difficult or impossible to write such code, suah high-level languages where
values significant to the semantics of a prograenrent necessarily denotable. Prime
examples of these constructs are first-class obssand abstract data types, and the

reader is referred to the literature to find exagspf the power of persistence in such
contexts [POS8, POS7, Con90].

3.2. Persistence and the Web

The observation here is that, as applications wheduire to process data from
around the Web become more sophisticated, theystalit to encounter the same
class of problems as those identified at the strt persistence research.
Communicating processes around the Web can adelmebsother directly, rather than
using the intermediary of a file systerhowever all current Web protocols are based
on the transfer of files around the network. Tdilges almost the same scenario as
sharing through file systems, except that the Egi@amespace ranges over a different
set of values. The scenario is as pictured inrei@ the Web processes may be able
to name each other, but are still required to parfthe translation code and, perhaps
more importantly, to keep semantically incongruocogies of the data associated with
each invocation.

Fig. 3. Sharing data among Web processes

The topic of investigation is therefore whether shene solution, that of extending the
boundary of data handled in the semantic domaim @rogramming language to

include that of all process invocations, is vialsieghe context of the Web. At the

start of persistence research it was clear that #pproach was semantically
preferable, but not that such systems were feasitagineer and use. In the context
of the Web, even the desired semantics of such @mangement are less

straightforward.

1 This is ignoring the fact that the naming servit¢he Web is essentially derived from file
system conventions. In this description we asstimeURLs name resources orthogonally
to their type, and may be used for example to ndate channels between processes.

The good news is that, if a useful semantic mogistg then much of the research
committed to persistent systems should be appkctblthe new domain. Many of
the engineering problems that have been successfolved in closed persistent
systems have clear parallels in the Web environmant the implementation
problems following a clear model might not be seagr The rest of this paper
categorises the classes of problem which occurhé gemantic integration, and
outlines some areas in which possible solutions besfound.

4. A modd for persistence and the Web

In its most general manifestation, orthogonal mtesice is a property of a
programming language whereby the treatment of datentirely orthogonal to its
lifetime. One model of this is to replace traditib file system access primitives by
two language meta-constructatern andextern. Given a valug, of typet, and a
global external namespace ranged oven,lihen

extern(n,x)

causes a conceptual link to the vaku®e be placed in the global namespace, such that
the call

intern(n,t)

results in the same value, formerly denotedkbyntern will fail dynamically if the
identifier n does not denote a binding of typia the external namespace. The crucial
property of this model is that the semantics of ¥h&le is unaffected, even when
concepts such as identity and mutability are instimantic model.

The observation that thatern andextern calls can take place in different program
invocations gives rise to the sharing of typed dataong programs in different
contexts. This single, shared namespace whichvallany program invocation to
access the same data roots is the key to orthogensiktence.

It should also be noted that the notationiutern and extern, although used
consistently since the inception of persistencears, is not necessarily helpful as it
gives the intuition of a hamespace external topitegramming system domain. In
reality these meta-functions give a mechanism wietbe data that hangs from the
namespace is internal to the semantics of the anagning system as a whole: thus
the namespace is not in any sense external, hatirshared internally by all program
invocations.

We have chosen the intern/extern model as a gagoint because it is the
simplest model which, by its addition to an arbitrprogramming language, provides
orthogonal persistence. In this sense it is a owdel, rather than a useful model for
programming persistent applications, where morepstupis generally considered
desirable. However we assert that if this modallma extended to an understandable
semantics in the domain of Web data, then otherenpoogrammer-friendly models
can also follow.

Our aim is then to apply this model of persistemcéhe domain of the internet,
and more specifically the Web. Three main cordlitave been identified:

Ll the Web and the persistence model each have tweimamespaces, which must
therefore be unified

L the Web and any programming language each haveaiei preconceptions about
the representation and structure of data, which egein be unified

[l the Web has an (implicit) data model whose semamntiecessarily allow the
description of remote, unreliable, and autonomoats;ddesirable programming
systems include notions such as static typing afdrential integrity, which
appear to be fundamentally at odds with this.

Each of this is now examined in turn.

4.1. Unification of the namespaces

The simplest way to achieve unification with theolmll persistent namespace
assumed by the intern/extern model involves comigiogn it by the use of two
different namespaces, that of a local file systachthat of URLs.extern is used with
the local file system namespace, and there arddmas ofintern, one using the local
file system namespace and one using the URL narmespa

In this way, the namespaces used by the proposstdnsyare in fact identical to
those used by the writers and readers of standaiMlHlocuments in the domain of
a web server. These are written into locatiorisr{imes) resolved in the context of
the local file system, and read as either locanfimes or URLS, depending on the
context and purpose of the reader. The authornoH&ML document needs to
understand both namespaces to allow the placenfeaything other than simple
relative resource names within the HTML code.

The use of these namespaces to share data betnggrarp invocations requires
knowledge of the implicit mapping between themr &mample, the local filename

/users/staff/richard/public_html/fred.html
and the URL
http://www.dcs.gla.ac.uk/~richard/fred.html

might map to the same physical file, but this i$ marmally specified by any formal
arrangement. This mapping must for the moment irelmayond the semantics of the
persistent system, and the programmer’s knowledgé must be assumed. Once
again, the situation is identical with the humaarissview of the namespaces.

Having simply established the namespaces, theifaugbe storage and retrieval of
persistent data looks simple. To give a concretangle, the following code creates
a new object of clagzerson and stores it in an external namespace withirdtmain
of anhttp server:

fred= new person(“Frederick”, 31)

ext ern(“/users/staff/richard/public_html/fred.html”,
fred)

This object may subsequently be retrieved by a tenapplication executing the
following code, and the identifiehisFred is typed locally aperson.

thisFred =

i nt er nURL(
“http://www.dcs.gla.ac.uk/richard/fred.html”,
person)

If the data is not accessible, or has some othper, theinternURL operation fails and
the binding is not made.

Readers unfamiliar with orthogonal persistence nay this point become
suspicious about the simplicity of this code, arakenguesses about the semantics of
these statements. It is important to note thatdéfaition of orthogonal persistence
requires that the values associated with the bgsdired andthisFred in the example
are semantically indistinguishable; preserving tldsa serious implementation
problem, but one that is now known to be tractablélote also that another
definitional feature of orthogonal persistencehist tvalues of any type in the semantic
domain are allowed the full range of persistendé&hough the typeperson might be
relatively straightforward to handle, the operasianiern andextern are available on
values of any type, including for example functiotissures and abstract data types.

However our task currently is to provide a cleamastic model for persistence
and the Web. Although such a model is clearly ofuse if it is not possible to
implement, we do not discuss issues of implemenntdtirther in this context.

One unfortunate effect of the two-namespace madtl iose the nice property of
context-free name resolution within the persistggtem, as the resolution of local
filenames depends upon the physical location inclwhihe application is executing.
One of the major perceived advantages of closeddwmrsistent systems is that the
semantics of an application is entirely indepenaérits physical context, depending
only on how the persistent store is populated.

This model relies upon a single global namespabéhnis believed by many to be
impossible to engineer, and some compromise isssacgin a system which extends
beyond a local context. It is perhaps ironic thet URL model provides precisely
this, but in reality this is only viable becausetlod update restrictions that exist with
it. An alternative approach, for example using theL namespace as a parameter to
extern, could provide context-free name resolution, & significant behaviour of
the application would nonetheless necessarily d&p@on protection issues based on
the context of execution. It is pleasing at lehst the intern namespace is a single
global model, a feature which has so far evadedetigineers of closed persistent
systems.

One final point that must be stressed is thatadnily the concept of namespace that
has been discussed in this section. With many Webfile system protocols, URL
naming directly corresponds to the presence of iphlyfiles which contain the data
being referenced; this is not necessarily the tatige system we are describing. The
names describe only entry points into a generagplgraf persistent data, and not
necessarily the physical location of a file in whihe data is stored. Ultimately, of
course, resource names are interpreted accorditigetavhim of the http server that
happens to be listening at the specified sockeyjelier, to keep within the initial
brief, it would be helpful to assume a standardesearrangement.

4.2. Representing persistent values

To give the most useful unification of persistendgéh the Web it is a requirement

that documents created to represent persistenévare not only transmitted via the
standard protocols, but can also make sense outls&eontext of the persistent
system. It is a major feature of the internet, andoubtedly one of the reasons for its
success, that documents are in open standard foramat may be interpreted by a
choice of viewers. We therefore avoid the choiteneenting a new document

standard which would require all users of persistiata to adopt our technology.

That choice leaves the further question of how bestse existing and emerging
standards to represent persistent values. Therecamrently a plethora of new
standards emerging which allow better specificabbnVeb resources than simple
HTML. For example the W3C [W3C] standard XML, iangunction with a DTD and
XLL, could be used to describe a way of laying xt files to capture the semantics
of values in any particular type system. Such ppr@ach would seem unexciting,
however; although in principle such resources wddde-usable by other systems,
they would effectively be closed outside the peéesisenvironment as a very high
degree of interpretation would be required to alltveir semantics to emerge.
Claiming that a system using such protocols wowddolpen would be similar to
claiming any other system is open if viewed atléwel of its base implementation.

The Resource Description Framework [RDF] allows @ssociation of meta-data,
loosely comparable to programming language typéth, Web resources. Even if a
high-level type system could be modeled, however,granularity of the abstraction
would appear to be too coarse-grained for use pemistent Web system. The
fundamental cost of remote resource fetching iseg@ly believed to be in the
connection cost, rather than bandwidth limitatiand it would appear that the fine-
grained value model of persistent programming wontit map well to every
persistent value being represented as a sepaeteurce. The model also suffers
from the same problem of interpretation identifigith the XML approach.

Another emerging standard of particular interesthist of semi-structured data.
This data format emerged, amongst other usesdatad@nterchange format, and some
recent research has concentrated on the derivafi@tructure and semantics from
this common level description [NAM98, NUW+97]. nitay turn out to be possible to
store persistent data in a semi-structured arraageautomatically derived from the
static language typing, in such a way that its igafe re-introduction can be
automated [CS98c]. The beauty of this approadhas the semi-structured data is
effectively self-describing, and its interpretatidoes not depend upon understanding
a meta-level description. Therefore it could beduby any other application system
capable of understanding semi-structured datathidf approach is tractable, it may
also be possible to safely import semi-structuratd dvith a different derivation into a
typed persistent computation. However there angesiindamental research issues to
be solved before this approach can be deemedlitacta

For the moment, it was decided to take a purelgmigic approach simply to test
the concept in an open and highly available manrgrtry points to persistent data
are represented as HTML files, in a way that carusefully interpreted by Web
browsers as well as by a persistent program. iBhachieved by creating HTML
documents that contain persistent data formattech ihuman-readable manner,

according to their type, via a simple set of ruleslhis allows programs to
communicate with each other directly using typethdand also allows this data to be
understood by a human using a standard browsealsdt provides the simplest of
mechanisms for an applications builder to placedsalts of programs on the Web.

The necessary non-human-readable content, such has canonical type
representations required for run-time structuradéoking, are placed immediately
before the data in HTML comment fields. This imf@tion can then be used when a
persistent binding is specified using iatern statement, and the HTML code which
represents the data can be properly interpretedrdiog to its type. This
arrangement also allows other strategies to be unsedses where the efficiency of
the parsing might be an issue, for example a corhrfieid might contain a
compressed format of the same data, or informationhow to fetch it from a
different physical location.

The rules required to translate from typed valwesuman-readable versions are
relatively straightforward to describe for mostégp The reverse mapping is less so,
but given that this can be guided by the embedgpé tepresentation it presents no
real technical problems. Types such as closurdsabstract types present more of a
challenge; however previous research on hyper-progring [KCC+92] can be used
to solve many of the problems very neatly, by pdow a model of closure that bears
a textual representation. The issues of protedti@bstract data types should also be
noted, although it seems unlikely that there igidget solution. This is maybe one of
the fundamental type system compromises that wiletto be made.

Figure 4 gives an example of the HTML generatedthwy execution of the
following program fragment:

fred = new person(“fred”, 31)
ext er n(“/users/staff/richard/public_html/fred.html”,
fred)

<HTML>
<HEAD>

</HEAD>

<BODY>

<I--HIPPO TYPE ANNOTATION
tO=str(age*name#int*string)

-—->

<TABLE BORDER="2">

<TR><TD COLSPAN=2>Structure of type Person</TD></TR>
<TR><TD>name</TD><TD>age</TD></TR>
<TR><TD>Fred</TD><TD>23</TD></TR>
</TABLE></BODY>

</HTML>

Fig. 4. Example HTML generation

An important point to notice is that such files ddx generated only at the execution
of a call toextern. The semantics of these calls is to generate emigy points into
arbitrary graphs of data, rather than having ttiecef storing a flattened closure as
in a non-persistent system; what is outlined abtherefore, is not a data storage
paradigm, but only a way of representing entry fsirData storage may be handled
in a relatively traditional manner by a persistehject storage mechanism, provided
that the illusion is somehow preserved of the sdata being accessed either from a
local persistent system, from a remote persistgstem, or from a Web browser.
Furthermore, accesses in the last two categormddigenerate the same text streams
through the http protocol.

The problems left to handle are those of objechtitle (including the correct
semantics of mutable objects), and the representafireferences to other objects.

Object identity can not be equated with URL eqyalihe latter including aliases
that are in general undetectable. Instead, howewrigue identities can be
manufactured by the persistent run-time systernis asmmon in any case, and stored
along with type information as an invisible fiel®n intern, the identity information
can be handled by the persistent store layer ohdime system to avoid duplication.
The fact that the identity is not observable to HTbtowsers is actually desirable, as
it fits with that apparent semantic model. Presgycorrect update semantics poses a
further problem, which will be dealt with in thextesection as the proposed solution
is based upon a typing mechanism. Given this canhéndled, however, this
approach gives a level of flexibility in that sertiaally identical values can safely
have multiple representations, in more than ongefiiex

There is an easy conceptual solution to the prolwémepresenting references in
the dual format. It is necessary for them to hgresented as URLs in a textual view

of the data, to allow human browsing of the graptolgects accessible from the
persistent entry point. Given this, all that iguied is to generate a new text file to
represent each reachable persistent object, gereeratique local filename for it, and
plug a corresponding URL into the textual descoiptof the referring object. The
disadvantage of this approach, as mentioned befgrethat transmitting each
persistent object with a separate http request sdenbe an inappropriate level of
granularity. A solution to this exists howevertire use of HTML anchors, which
allow arbitrary numbers of objects to be transrditite a single stream. Rather than
pre-calculate these multi-object files, it is pb#sito embed unresolved references as
CGI calls based on the identity of the referredeobj allowing them to be
dynamically generated. Given that we can solveptfudlem of the same semantic
values appearing in multiple text files, this meubm can be used strategically in
conjunction with established techniques such aseabbglustering to send an
appropriate set of values through each connection.

4.3. A typesystem for Web-based persistence

Even given that standard HTML documents can be teseepresent typed data, there

are still two problems with persistent applicatiomkich operate over such data.

These are due to fundamental mismatches betweesethantics of programming

languages and the normal model of Web usage:

LI referential integrity, normally guaranteed withip@gramming system, can not be
expected in general in this domain

[l many programming models include update, with laceti contained within
arbitrary data structures; however, most data gexvion the web is read-only, and
not allowed to be updated in an arbitrary manneussrs other than its provider

We conclude with brief descriptions of type systerachanisms we have introduced

to combat these problems.

43.1. Typingfor referential integrity
A great deal of research in persistent programrmsiygiems has concentrated on the
subject of dynamic binding, often referred to aifble, incremental binding. The
binding of code to persistent data, captured akthweugh theintern operation,
requires a check both on the existence and the ¢yptbe data referred to. The
consensus model to emerge is that the existenteeoflata does not require to be
individually checked, and can be folded into thenedanguage mechanism as the
type check. This is safe, as a failed type cheekgnts any further execution on the
value referred to, although not general, as thegmaromer can not distinguish
between the two classes of failure. However expeg with persistent programming
has not shown any convincing requirement to do. this the new domain of the
internet our initial assumption is that any dynamigavailability of data is best
exposed to the programmer of a persistent appicadis a dynamic type error. It
should be noted that the fundamental differenceshé context may turn out to
invalidate this assumption.

The problem is easily solved by resorting to a typstem where the each use of an
object is dynamically checked. This was the apghmo@ken in the first persistent

programming language, PS-algol [ABC+83]. HowewvertHfer work on persistent
languages showed that a much better solution deeilaichieved, with the addition of
explicit dynamic typing constructs to an otherwisttically checked system
[MBC+89, Con90Q].

The semantics dhternURL includes a dynamic check on the availability ayyukt
of the data, and this provides a failure pointhie tase where the data is unavailable
or of the wrong type. The problem is that aftectsa check has succeeded, the data
is integrated with the ongoing typed computatiomioontext where further dynamic
checks are not normally desirable. The only wagrsure the soundness of the type
system is to make a locally cached copy of any dggrated in this mannér.

It is impossible in general to cache the transitil@sure of data fetched from a
particular entry point in the persistent graphthas could itself form a global web of
data. We have therefore designed a type systerohwdigtinguishes between data
which is known to be available and that which maydgnamically unavailable. It is
important to note that this does not by itself sothe problems of closure and
referential integrity, but is proposed merely aplatform on which to conduct
experiments with the relationship. Any final sabat must include some element of
compromise between purity of semantics and a pragmapproach to the
downloading of data files, so at the moment wevstanly to have at least some
definition of data movement within the programmiagguage domain.

The type constructorefR (remote reference) is added to an otherwise stdnda
type system to denote the type of data which igynatanteed to be availableefR(t
) is, in general, a supertype gf and a dynamic coercion is required to use the
denotation as type The semantics of this type are similar to tHahat of the type
any in Napier88 [MBC+89] anddynamic in [Car85, ACP+95], except that an
indication of the value’'s expected type is includeith its static denotation. The
typing of a denotation a®fr(t) gives no guarantee whatsoever about the typleeof
value referred to, and in this sense contains aticstype information whatever.
However a value of such a type has the speciaisatperation tda defined over it,
and before type-specific computation can take plaegype must undergo an explicit
dynamic check. If the check succeeds then theeviglgached at that time and can be
subsequently relied upon during the computation.

Although the typingef(t) does not carry a guarantee, it is however tise that
where the link to the data is dynamically availalaled where the data has not been
interfered with by any other autonomous systenm the dynamic specialisation will
succeed. In this sense thean be regarded as a static hint to the realdfpee data,
and the programmer may have some useful model dbeyirobability of success.

The reference type mechanism allows the programiimergrain yet implicit
control over the point at which data is fetchedr &le

thi sFred = internURL(
“http://www.dcs.gla.ac.uk/richard/fred.html”,
ref Rl person))

2 For the purposes of this description we ignoreissees of cache coherency, although this
does present a major problem. Our current thinisrtg handle this at a different level from
the programming model which we describe here. pPtevention of remote update, as
described later, greatly alleviates the generdblpro.

causes an association to be made between thefigetttisFred and the URL, but
does not cause the data to be fetched and cachedeas this statement

t hi sFred =i nter nURL(
“http://www.dcs.gla.ac.uk/richard/fred.html”,
person)

causes the data to be fetched also. In a lesal tekample,

i nt er nURL(
n

s'tructure(x: int;y: refR(person)))

allows the programmer to specify the fetch of tlp-level structure, but not
necessarily its closure. The subtyping relation&l@tweerperson andrefR(person)
allows the type check to succeed only when therdeasiginally placed at that
binding contained a person or any subtype of persiérthe closure is fetched for
pragmatic reasons, such as the object clusteriiegreel to earlier, any later dynamic
checks can be elided.

Although this construct gives the potential for ggiions which perform arbitrary
dynamic typing, and which may therefore fail at gigint with a type error, it is
nonetheless possible to adopt a coding style wakréynamic checks are factored
out at the start of a application. This can gillettee desirable properties of static
typing whilst retaining the required flexibility ¢fpe-safe remote binding.

It is our final hope, at this point completely wstixd, that such a typing strategy
might be integrated with remote object batchingtstyy, as hinted at above, in a way
which is able to allow robust distributed applioat with clear semantics.

4.3.2. Typingfor remote update

Update causes a final problem in the context oémsiptent language operating over
data available from the internet. There is oney emdution, which is to claim that
traditional query languages are essentially detil@aand any such language used to
guery the internet should be a declarative subtehe general persistent system.
While this solves the problem of programs specigyipdates to remote data that they
do not own, we prefer if possible to handle thebjgm without losing the ability to
update data that is owned locally.

There are two problems with this model in the cehtes described so far. The
first is that multiple file representations of offfe that contain mutable locations may
potentially lead to inconsistent views of a setlafa. The second is that unprotected
remote update is not generally acceptable in theezd of the internet, and some
protection is required to prevent this from beipgdfied within computations.

A location type is used to control the problem ehgralised network update. The
Hippo language has an explicit type constructog(t), which must be used to
denote a mutable location. Furthermore, the systentains a subtyping rule that
states for any typé loc(t) is a subtype of that type. This is a fairlynstard
subtyping arrangement where mutability is explcitiped (see for example [Car89]).

A corollory of such typing is that, for any typewhich contains location types,
there exists another tymewhich does not contain location types, and of Whic a
subtype. A denotation typed ashas the operational ability to dereference any

locations contained in any value typed;ahowever, the same value typedsadoes
not allow any update operation to its locations.e Veéfer tos as the immutable
supertype of.

When remote data is typed at iatern command, the dynamic test for success is
that the statically asserted type is an immutabpegype of the type associated with
the physical data. This gives that static knowéetitat it is impossible to specify a
well-typed computation that causes an update taraoca value which is not locally
resident.

This mechanism does not solve the generalised gmolblf cache coherency over
the programming system, although it may make its@erably more tractable. In
particular a fundamental attribute of the subtyjmeétion model is that values which
are not typed as locations may nonetheless chapgside-effect, and this is the
required semantics in this case. Two possibiliies under investigation, details of
which are beyond the scope of this paper; one isuitdl a re-fetch model into the
refR type scheme, and the other is to impose a cawseistency model over the
networked persistent processes. The latter okethekilst obviously more complex,
may turn out to fit neatly with other aspects ofgitent Web computation that are
not discussed here [CS98b].

5. Conclusions and futurework

This paper gives only an introduction to the kepaapts used in the Hippo language
in terms of its intention to integrate an orthodgbnaersistent programming system
with the World-Wide Web. The overall task is gerathan those problems and
outline solutions presented here, and further médron about the project is available
from the Web site and other recent publications [CS98a, CS98b].shibuld be
stressed that this is a position paper from aryesslge of the project, and whilst the
ideas contained in this paper are believed to lmistp they are not immune to
change.

The methodology underlying the project is stromgjlected towards implementing
robust programming systems that can be used tagroiVeb-based applications, to
therefore achieve maximum feedback as to usefuigdes To this purpose
programming systems are available to researchessmight be interested in writing
applications in the domain; please contact theaatfor details.

6. Acknowledgements

Richard Connor is supported by an EPSRC Advancededeh Fellowship
B/94/AF/1921, and Keith Sibson by an EPSRC studémts Some of the work
described is based on earlier work supported byREP8rant GR/K79222. Paolo
Manghi holds a Marie Curie TMR award.

3 http://www.hippo.org.uk/

We would also particularly and sincerely like tak an anonymous referee who
made many helpful comments on unclear areas anpokes assumptions in the
original text.

7. References

[ABC+83] Atkinson, M.P., Bailey, P.J., Chisholm, K.Zockshott, W.P. & Morrison, R. “An
Approach to Persistent Programming”. Computer Jall26, 4 (1983) pp 360-365.

[ACO85] Albano, A., Cardelli, L. & Orsini, R. “Gallo: a Strongly Typed, Interactive
Conceptual Language” ACM Transactions on DatabasteSis 10, 2 (1985) pp
230-260.

[ACP+91] Martin Abadi, Luca Cardelli, Benjamin C.eRie, and Gordon D. Plotkin.
“Dynamic typing in a statically-typed language” ACMTransactions on
Programming Languages and Systems, 13(2):237-26d, ¥991

[ACP+95] Martin Abadi, Luca Cardelli, Benjamin C.eRie, and Didier Rémy “Dynamic
typing in polymorphic languages” Journal of FunotbProgramming, 5(1):111-
130, January 1995

[AJDS97] M.P. Atkinson, M. Jordan, L. Daynées andSpence “Design Issues for Persistent
Java: a Type-Safe, Object-Oriented, OrthogonallsiBent Systemfn Persistent
Object Systems - Principles and Practice, Connor and Nettles (Eds), Morgan
Kaufmann, 1997 pp 33-47.

[AM95] M.P Atkinson and R MorrisorOrthogonally Persistent Object Systems VLDB
Journal 4, 3 pp 319 - 401

[Atk78] Atkinson, M.P. “Programming Languages andtdlmses”. In Proc. 4th IEEE
International Conference on Very Large Databas@gg)Lpp 408-419.

[Car85] Cardelli, L. “Amber”. AT&T Bell Labs, MurrayHill Technical Report AT7T
(1985).

[Car89] L. Cardelli "Typeful Programming" DEC SRC chmical Report No. 45 (May
1989)

[CDG+89] Luca Cardelli, James Donahue, Lucille Ghaas, Mick Jordan, Bill Kalsow, and
Greg Nelson. Modula-3 report (revised). ResearchoRe52, Digital Equipment
Corporation Systems Research Center, 1989.

[Con90] Richard Connor “Types and Polymorphism insient Programming Systems”
PhD Thesis, University of St Andrews, 1990.

[CS98a] Richard Connor and Keith Sibson “Paradigros Global Computation - an
Overview of the Hippo Project” Proc. Workshop ontehmet Programming
Languages, in conjunction with the |EEE Computerci&y International
Conference on Computer Languages 1998 (to appear).

[CS98b] Richard Connor and Keith Sibson “HCL - théppd Core Langauge’Proc.
Workshop on Internet Programming Languages, in wuanjon with the IEEE
Computer Society International Conference on Complianguages 1998 (to
appear).

[CS98c] Richard Connor and Fabio Simeoni “SSSubsulatyping system for abstracting
over semi-structured data.” Submitted for pubiarat

[GN98] Garthwaite A. and Nettles S. “Transactions Java” in Proc. 1998 International
Conference of Programming Languages, May 1998 gp716

[Hip98] The Hippo Project Homepadettp://www.hippo.org.uk/

[KCC+92] Kirby G.N.C., Connor R.C.H., Cutts Q.l., & A., Farkas A. & Morrison R.
"Persistent Hyper-Programs" Proc. 5th Internatiafialkshop on Persistent Object

Systems, San Miniato, Italy, September 1992Pénsistent Object Systems, San
Miniato 1992, Springer-Verlag, pp 86 - 106.

[MBC+89] Morrison, R., Brown, A.L., Connor, R.C.H. Rearle, A. “The Napier88 Reference

IMWOS]

Manual”. University of St Andrews Technical RepBRRR-77-89 (1989).
Metrowerks Codewarrior, http://www.metrowstkom/

[NAM98] Nestorov S., Abiteboul S. and Motwani R Eadting Schema from Semistructured

Data Proc SIGMOD’98, SIGMOD Record 27, 2, June 189895 - 306

[NUW+97]Nestorov S., Ullman J., Wiener J and ChédwalS. Representative Objects:

[POS7]
[POS8]
[PS88]

[RDF]
[SCW85]

[Thasé]

[W3C]

Concise Representations of Semistructured, HieigachData Proc ICDE,
Birmingham, UK 1997, pp 79 - 90

Persistent Object Systems, Tarascon 1994 Atkinson M., Maier D. and Benzaken V.
(Eds), Springer-Verlag Workshops in Computer SaeA®95.

Persistent Object Systems - Principles and Practice, Connor R. and Nettles S.
(Eds), Morgan Kaufmann, 1997

“PS-algol Reference Manual, 4th edition”. nsities of Glasgow and St Andrews
Technical Report PPRR-12-88 (1988).

http://www.w3c.org/RDF/

Schaffert, C., Cooper, T. & Wilpot, C. “Tlisl Object-Based Environment
Language Reference Manual”. DEC Technical Repd2t(2985).

Thatte, S.M. “Persistent Memory: A Storagectiitecture for Object Oriented
Database Systems”. In Proc. ACM/IEEE Internatiokdbrkshop on Object-
Oriented Database Systems, Pacific Grove, Calidoft®86) pp 148-159.
http://www.w3c.org/

