
Types for Path Correctness of XML Queries
(Extended Abstract)

Dario Colazzo1, Giorgio Ghelli2, Paolo Manghi2, and Carlo Sartiani2

1 LRI - Université Paris Sud
2 Dipartimento di Informatica - Università di Pisa

Abstract. If a subexpression in a query will never contribute data to the
query answer, this should be regarded as an error. This principle has been
recently accepted into mainstream XML query languages, but was still waiting
for a complete treatment. We provide here a precise definition for this class of
errors, and define a type system that is sound and complete, in its search for
such errors, for a core language, under mild restrictions on the use of recursion
in type definitions.

1 Introduction

A type system for a query language usually fulfills two different aims: computing a
type for the query result (result analysis), and flagging parts of the query that do not
match the structure of the data (correctness analysis), such as the use of a field name
that is not present in the database schema. Result analysis and correctness analy-
sis are inseparable in traditional languages, where errors prevent result generation.
Query languages for semistructured data (SSD) and XML are different. They work
by traversing paths on the tree or graph representation of data, and by filtering the
result of path evaluations with predicates: when a path does not match the data in
the database, its evaluation returns an empty result, but no exception is raised. For
these languages, the type systems proposed up to now only analyze the result type,
disregarding, to a large extent, the navigation-correctness problem [3, 15, 2].

This situation is now changing. Although result analysis remains the most studied
issue, there is a growing interest on tools to statically identify those query fragments
that cannot contribute to the query result; this information has also been shown to
be useful for query optimization [12] and checking correctness of query reformulation
in p2p databases [10]. In our paper [6], we took some first steps in this direction by
presenting a notion of error, based on the intuition that a query is correct if it may
match some data.

Concurrently with our investigations (starting from the August 2003 Working
Draft), the W3C XML Query Working Group extended the type system of XQuery3

by stating that it is a static error for any expression other than the empty-sequence
expression to have the empty type [9].

Differently, in [7] we first provide a notion query correctness based on query dy-
namic semantics, and then provide type rules to statically check it. In this paper we
present and discuss the main results of that work.

We start by defining which error we are trying to prevent (Section 3), and then
we define a corresponding type system (Section 4). To keep the size of formal proofs
tolerable, we base our analysis on a tiny abstract language, µXQ, based on the UnQL,
Lorel, StruQL, XML-QL, Quilt, XQuery (and others) tradition [4, 1, 11, 3].

Along the lines of [6], the notion of correctness we present is existential, in the
sense that a piece of code is correct if there exists at least one valid instance of its
free variables such that an undesirable condition (result emptiness, in our case) is
avoided. This is in sharp contrast with the universal notions of correctness verified
by traditional type-systems, where a piece of code is correct if an undesired event
is avoided under every valid instantiation of its free variables. This quantification
3 XQuery is the standard query language for XML data developed by the W3C.

switch has deep consequences on the nature of the theory that one develops, as we
will discuss in the paper.

Once we have defined the errors, we describe the type rules and the type system
aimed to prevent them. These are based on a couple of technical tools, the collections
of locations of wrong subqueries and type-splitting (Section 4). We prove that, at the
price of a mild restriction on the use of recursion, this type system captures all and
only the navigation-errors in the query (soundness and completeness).

As showed in [10], the proposed type system can be soundly extended to a wider
language fragment comprising where clauses. Only a weaker form of completeness
holds for this extension.

2 µXQ

µXQ is a minimal query language manipulating forests of ordered trees. It has been
designed to be the minimal core of XQuery-like languages, hence it does not include
features such as the where clause, node identity, document order, and recursive func-
tions. µXQ term and query grammar is shown below. There f and t denote respectively
forests and trees, and l ranges over a set of labels L. Furthermore, b denotes a leaf
value of a base type B, forest concatenation ‘,’ is associative, and (), f = f, () = f .

A typical µXQ query consists of a binding section (let/for), where variables
are bound, and a return clause that builds the results. Variables can be either for-
variables or let-variables. for-variables (x, y, z) are bound to trees t (items) by a for
binder. let-variables (x, y, z) are bound to forests f by a let binder. This distinction
simplifies the formal treatment, but is not crucial to our approach.

Forests f ::= () | t | f, f Trees t ::= b | l[f]

Queries Q ::= () | b | l[Q] | Q, Q | x | x | x child :: l | x dos :: l

| for x in Q return Q | let x ::= Q return Q

In the examples we will also use XPath-like clauses Q/l and Q//l, defined as:

Q / l
M
= for x in Q return x child :: l Q // l

M
= for x in Q return x dos :: l

The semantics JQKρ of a query Q w.r.t. a substitution ρ is defined in Table 2.1; ρ
maps every for-variable x free in Q to a tree, and every free let-variable x to a forest.
Jlet x ::= Q1 return Q2Kρ evaluates Q2 in ρ extended with the binding x 7→ JQ1Kρ.∏

t∈trees(f) A(t), where trees(f) returns the sequence of trees of f , is defined as the
forest A(t1), . . . , A(tn) if f = t1, . . . , tn, hence is () when f = (). childr(t) returns
the list of all children of a tree l[f] (it is () over B), dos(f) returns the list of all
descendants-or-self of all trees in a forest f . f :: l selects all trees in f whose root is
labeled l.

We will need the operation (Q)|β , which, for any query Q and location β, locates
the corresponding subquery. The location β is just a path of 0’s and 1’s, and the
function (Q)|β follows β in a walk down the syntax tree of Q; some main cases of the
definition are below:

(Q)|ε
M
= Q (l[Q])|0.β

M
= (Q)|β

(let x ::= Q0 return Q1)|i.β
M
= (Qi)|β i∈{0, 1}

(Q)|β
M
=⊥ otherwise

We also define Locs(Q) = {β | (Q)|β 6=⊥}.

3 Query Correctness

We start our investigation with the definition of a notion of navigation-correctness
that only depends on the language semantics, namely, on the semantics of a subquery
to be empty, rather than on its type to be empty.

Table 2.1. µXQ semantics

JbKρ
M
= b JxKρ

M
= ρ(x)

J()Kρ
M
= () JQ1, Q2Kρ

M
= JQ1Kρ, JQ2Kρ

JxKρ
M
= ρ(x) Jl[Q]Kρ

M
= l[JQKρ]

Jx child :: lKρ
M
= childr(JxKρ) :: l Jlet x ::= Q1 return Q2Kρ

M
= JQ2Kρ,x7→JQ1Kρ

Jx dos :: lKρ
M
= dos(JxKρ) :: l Jfor x in Q1 return Q2Kρ

M
=

∏
t∈trees(JQ1Kρ)JQ2Kρ,x7→t

dos(b)
M
= () childr(b)

M
= () b :: l

M
= ()

dos(l[f])
M
= l[f], dos(f) childr(l[f])

M
= f l[f] :: l

M
= l[f]

dos(())
M
= () () :: l

M
= ()

dos(f, f ′)
M
= dos(f), dos(f ′) (f, f ′) :: l

M
= f :: l, f ′ :: l

m[f] :: l
M
= () m 6= l

Our notion is pragmatically acceptable, i.e. it is quite strict (stricter variants would
rule out some common jargon) but it is not too strict (every non-correct query really
has a problem). The next sections will show how this notion is technically acceptable,
in the sense that it is possible to design a type system that matches it very precisely.

Assume the existence of two variables $contacts and $mobilecontacts (we use
here $ to identify variables) with types:

$contacts : (data[phone[...] | mobile[...]]) + $mobilecontacts : (data[mobile[...]])+

where | is a union type operator (i.e., either-or), and + indicates an arbitrary, non-
empty, repetition, and consider the following queries:

Q1 : $contacts/fone Q2 : $contacts/phone, $contacts/mobile
Q3 : $contacts/phone Q4 : $contacts/fone, $contacts/mobile
Q5 : for $c in $contacts Q6 : for $c in ($contacts, $mobilecontacts)

return ($c/phone, $c/mobile) return ($c/phone, $c/mobile)

Q1 is wrong, since it cannot match the data, while Q2 is correct, since it per-
fectly matches the schema, i.e. the query surely matches data conforming to the given
schema. Such queries lead to the simplest definition of correctness: a query is correct
if it always finds some data, for every substitution of its free variables that is valid, i.e.
coherent with the known structural information. Q3, however, shows that this view is
over-restrictive: the query is completely reasonable, but it may not match any data,
in case we only have mobiles in the current database instance. This query is typical
enough to convince us that, in this context, we have to opt for an existential notion of
correctness: a query is correct if there exists a valid schema instance that is matched
by the query. This is the notion we studied in [6], under the name ‘weak correctness’.

Q4 is troublesome. It is clearly wrong, since the first path cannot match the data,
however the whole query can return a non-empty result, hence the whole query does
match some valid schema instance, and is hence ‘weak-correct’.

The point is that the non-matching subquery does not generate, according to µXQ
semantics, a ‘no-match-found error’ which propagates up from $contacts/fone to the
whole result. Moreover, we would not want such behavior, otherwise the subqueries
of the good query Q2 would raise and propagate that error as well, for example when
no $mobile is in the database. In a programming language with error propagation
we can say that something goes wrong iff the whole program returns ‘error’. Here,
instead, we have to talk about the result of every subquery. We hence arrive at the
following notion of correctness (where non-() means ‘syntactically different from ()’):

Definition 1. Foreach-Exist (FE) Query Correctness: A query Q is correct w.r.t. a
set of valid substitutions R if, for each non-() subquery Q′ in Q, there exists ρ ∈ R
such that, when Q is evaluated under ρ, Q′ evaluates to a non-empty sequence.

As desired, under this characterization, Q2 and Q3 above are correct, while Q1

and Q4 are not. Query Q6, which corresponds to a typical XQuery jargon, is correct as
well, if we apply the existential quantification to the bindings of the variables bound
by for: at least one binding for $c exists (under a valid substitution for $contacts
and $mobilecontacts) that makes $c/phone productive. Q5 is correct a fortiori.

Once one accepts that correctness, in this context, has to be existentially quantified
on substitutions and universally on subqueries, there is still space to consider a last
variation, the exists-foreach version, where the quantification order is exchanged:

Remark 1. Exist-Foreach (EF) Query Correctness: A query Q is correct w.r.t. a set
of valid substitutions R if there exists ρ ∈ R such that, for each non-() subquery Q′

in Q, when Q is evaluated under ρ, Q′ evaluates to a non-empty sequence.

While FE-correctness only requires that each subquery makes sense w.r.t. a dif-
ferent substitution, this stricter version requires the existence of at least one database
that exploits every subquery. This variation is equivalent to FE-correctness on queries
Q1-Q4, but it differs on queries Q5-Q6. In these queries, there exists no single sub-
stitution for $c that makes both $c/phone and $c/mobile productive at the same
time. Since Q5 and Q6 are sensible queries, and correspond to XQuery usage patterns,
we conclude that the exist-foreach version of correctness would be too strict for our
purposes.

So, we have shown that our notion rules out some wrong queries and that its most
natural immediate strengthening is too strict. Hence, we have shown that our notion
is ‘maximally strict’.

We have now to show that our notion is arguably not too strict, since it only flags
queries that really have a problem. This is simple: by definition, if a query Q is not
FE-correct, a non-() subquery Q′ exists, such that for all ρ∈R, Q′ evaluates to an
empty sequence. Hence, we have a non-() piece of code that is equivalent to (), and
warning the programmer makes obviously sense.

To formalize FE-correctness we define Ext(ρ, Q, β), the set of all valid substitu-
tions that will be used to evaluate the subquery (Q)|β when Q is evaluated under ρ.
These substitutions correspond to ρ extended with the bindings introduced by each
traversed let or for:

Ext(ρ, Q, ε)
M
= {ρ}

Ext(ρ, let x ::= Q0 return Q1, 1.β)
M
= Ext((ρ, x 7→JQ0Kρ), Q1, β)

Ext(ρ, for x in Q0 return Q1, 1.β)
M
=

⋃
t∈trees(JQ0Kρ) Ext((ρ, x 7→ t), Q1, β)

otherwise: (Q)|i 6= ⊥ ⇒ Ext(ρ, Q, i.β)
M
= Ext(ρ, (Q)|i, β)

Ext(ρ, Q, β) is not just a singleton since each subquery in the scope of a for x in Q0

is evaluated once for each tree in JQ0Kρ. Since JQ0Kρ may be the empty forest,
Ext(ρ, Q, β) may be empty as well.

We then define the set CriticalLocs(Q) of the locations of Q where we will look
for pieces of wrong code.

CriticalLocs(Q)
M
= {β | ((Q)|β = (x child :: l) ∨ (Q)|β = (x dos :: l))} ∪
{β.0 | (Q)|β = for x in Q0 return Q1}

CriticalLocs(Q) does not coincide with Locs(Q) because, at least, all locations that
reach a subquery that is () must not be tested for non-emptiness. In general, after a
brief and complete analysis, one realizes that only errors located in subqueries from
which the programmer explicitly started a child/dos navigation or a for iteration
should be considered.

We can now formalize FE-correctness. A non-() subquery (Q)|β is correct if there
exist ρ ∈ R and ρ′ ∈ Ext(β, Q, ρ) such that J(Q)|βKρ′ 6= (). Indeed, if such a substi-
tution cannot be found, (Q)|β is useless to the whole query, and is hence incorrect.

Definition 2. FE correctness of Q w.r.t. R: Let R be a set of substitutions for the
free variables of a query Q. Q has an error at location β∈CriticalLocs(Q) iff:

∀ρ∈R. ∀ρ′∈Ext(ρ, Q, β). J(Q)|βKρ′ = ()

(Observe that Ext(ρ, Q, β) = ∅ implies that Q has an error at β.) Q is correct w.r.t.
R iff Q has no error w.r.t. R.

4 Type System

Types and Judgments We adopt, essentially, XDuce’s type language [13]. Types
and type environments are defined as follows:

Types T ::= () | B | (T, T) | (T | T) | l[T] | T∗ | X

Environments E ::= () | X =T, E

The type () contains only the empty forest (), while B represents atomic types
(String, Int, ...). The type sequence (T, T ′) represents the set of forests f, f ′, where
f and f ′ belong to T and T ′, respectively. The union type T | T ′ denotes the set of
forest f , where f is either of type T or T ′. The element type l[T] denotes the set of
trees l[f] where f is of type T . Finally, the Kleene Star type T∗ represents the set of
forests f1, . . . , fn, where n ≥ 0 and each fi is of type T .

A type environment E is a sequence of type definitions of the form X = T where
no type variable is bound to two types. We restrict to environments where only l[]-
guarded vertical recursion is allowed, as in X = l[X | ()]. For example, we forbid
equations like X = X | () and X = X, Y . The lack of horizontal recursion is counter-
balanced by the presence of the Kleene star operator ∗. This restriction is canonical,
and makes the type language as expressive as regular tree languages [14, 8], hence
expressive enough to capture the essence of DTD and XML Schema [14, 17, 16].

An environment E is well-formed only if it is l[]-guarded and defines type with
non-empty semantics, i.e. empty-type definitions like X = l[X] are not allowed.

Type semantics JT KE is standard and interprets a type T as the set of all forests
with that type.

Type checking In the full version [7], we provide a set of complex algorithmic type
rules capable of checking FE-correctness of a µXQ’s query Q. The rules are based
on the following judgments, where Γ is a variable environment that assigns Q’s free
variables to types:

Judgments J ::= E; Γ `β Q : (T ; S) | E; Γ `β x in T → Q : (T ; S)

A variable environment Γ is well-formed, w.r.t. an environment E, if no variable is
defined twice, if every type is well-formed in E, and if every for-variable x is associated
to a tree type (l[T ′] or B).

In E; Γ `β Q : (T ; S), the type T is the result type of Q, and defines an
upper bound for the actual set of values for Q; the role of S and β will be discussed
shortly. To analyze for x in Q1 return Q2, we compute a type T1 for Q1 and use
the judgment E; Γ `β x in T1 → Q2 : (T2;) to compute the type of Q2 through
a case-analysis on the type T1.

Our typing judgments also return an error set S, which contains a set of locations
with shape β.α, such that, for each α, the subquery of Q at α is not FE-correct.
Observe that this is a sharp departure from the traditional approach, where the result
of error-checking is just a boolean. We believe booleans are not enough, in a system
that combines case-analysis with subquery quantification. Consider, for example, the
following queries over $contacts : (data[phone[...]] | data[mobile[...]])+.

Q5 : for $c in $contacts Q7 : for $c in $contacts
return ($c/phone, $c/mobile) return ($c/fone, $c/mobile)

Because of universal quantification on subqueries (Definition 2), a query (Q, Q′) is FE-
incorrect iff either Q or Q′ is. Because of existential quantification on substitutions,
a query for y in x return Q is FE-incorrect iff Q is incorrect for every binding of

y. Hence, a case-analysis-based type checking algorithm would compute the error-
checking function ErrΓ (Q) as follows:

Err$c:(T1|T2)(Q7) =
∧

T∈{T1,T2}(Err$c:T ($c/fone) ∨ Err$c:T ($c/mobile))

As expected, Q7 is deemed wrong because for every Ti at least one of $c/fone and
$c/mobile is wrong. Unfortunately, the correct query Q5 is deemed wrong as well:
since each of the subcases data[phone[...]] and data[mobile[...]] makes one of the
subqueries incorrect, the external conjunction returns true.

Err$c:(T1|T2)(Q5) =
∧

T∈{T1,T2}(Err$c:T ($c/phone) ∨ Err$c:T ($c/mobile))

The problem cannot be solved by playing with the boolean operators, since they
exactly correspond to the quantifications in the definition of FE-correctness. However,
we can generalize booleans to sets of locations, and use the following equations, where
ErrLeaf(Q) returns the location of Q when Q is wrong.

Err$c:(T1|T2)(Q5) =
⋂

T∈{T1,T2} ({ErrLeaf$c:T ($c/phone)} ∪ {ErrLeaf$c:T ($c/mobile)})

Err$c:(T1|T2)(Q7) =
⋂

T∈{T1,T2} ({ErrLeaf$c:T ($c/fone)} ∪ {ErrLeaf$c:T ($c/mobile)})

This time Err(Q5) is the intersection of two different singletons of locations, hence
is empty. This corresponds to the fact that no subquery is always returning an empty
result, hence no subquery is incorrect. However, Err(Q7) is the intersection of two sets
that both contain the location of $c/fone. This signifies that, for every well-typed
substitution for $c, the subquery $c/fone is always empty, hence the subquery is
incorrect.

Our type rules follow the idea just described above. Hence, each time a case
analysis is performed over a union type, different error sets Si are computed, and
their intersection is returned as output. The resulting system is quite precise, as we
discuss in the following.

Soundness of Error and Type Checking In the full paper, we provide two possible
type systems. The first version enjoys the canonical ‘soundness’ property: inferred
types are upper bounds for the set of all possible results.

Definition 3. R(E,Γ): For any well-formed type environment E and Γ well-formed
in E, we define the set of valid substitutions as

R(E,Γ) = {ρ | χ 7→f ∈ ρ ⇒ (χ : T ∈ Γ ∧ f ∈ JT KE)}

where χ is either a for-variable or a let-variable.

Theorem 1 (Upper Bound).

E; Γ `β Q : (U ;) ∧ ρ∈R(E,Γ) ⇒ JQKρ ∈ JUKE

The next property one expects is some form of ‘well typed terms never go wrong’
property, that specifies that every run-time error is detected by the type system.
Nonetheless, in this context we believe that one should first look for the opposite
implication ‘we will never bother you with a false alarm’. We expect that a type
system based on our proposal would be used as an auxiliary tool in a programming
environment based on a commercial language, and that the programmer would be
allowed to ignore its error messages. As a consequence, most programmers would just
ignore all the error messages, if there is the doubt that they do not correspond to
real errors, but are just a figment of the type rules.

Hence we believe that, in this context, the essential ‘soundness’ property of error-
checking is that expressed by Theorem 2, which goes the other way around with
respect to the standard ‘progress+subject reduction’ combination.

Theorem 2 (Soundness of Existential Error-Checking).

E; Γ `β Q : (U ; S) ∧ β.α ∈ S ⇒ Q has an error at α w.r.t. R(E,Γ)

Completeness of Error Checking Our first type system is not complete as it is
not precise enough to detect all possible FE-errors. To illustrate, consider the type
Y = c[a[] | b[]] and the query:

Q8 = for $x in $y/a return $y/b

where $y is of type Y . Q8 returns a sequence of $y/b iff $y has a child a, and returns
() otherwise. The query is FE-incorrect, as there is no substitution that makes the
subquery $y/b yield a not-empty result: if $y is of type c[a[]] then $y/b cannot return
any tree, and if $y is of type c[b[]] then $y/a is empty, hence $y/b will not be evaluated
at all. Nevertheless, our provisional type system validates the query as correct. This
is because the two uses of $y are deemed acceptable by exploiting two separate,
and incompatible, branches of the union type of $y. More specifically, during type-
checking, every free variable is substituted with the whole type that the variable is
assigned to by the environment. For the same reason, the type inferred for this query,
Z = b[] | (), is different from the optimal type “()”.

We solve these problems by refining our first type system with a type splitting
strategy: when a variable with a union type is introduced, the rules perform a case-
analysis on the different cases of the union, even when the union type operator is
hidden inside the type (as in Y = c[a[] | b[]]).

Thus, the type splitting approach is based on enumerating the branches of the
union types of typed variables (splitting the type), performing an independent analysis
for each branch, and combining the results. Once more, the key technical tool that
allows the correct result recombination is the collection of error indications as set of
locations, in the way showed in previous examples.

More specifically, the amount of splitting is governed by a function SplitE(T),
which rewrites T to a set {T1, . . . , Tn} such that T1 | . . . | Tn is equivalent to T .
Essentially, SplitE(T) rewrites T in order to make | be the outermost type operator.
For example, type c[a[] | b[]] is split into {c[a[]], c[b[]]}, and the query Q8 presented
above is analyzed once with y : c[a[]] and once with y : c[b[]]. The subquery (Q8)|1 is
(correctly) flagged as wrong, since the location 1 is in the error set of both runs of
the analysis.

By splitting a type more and more finely, a more precise type analysis can be
obtained, at the price of a more expensive type-checking process, since the rest of the
query is checked once for every addend generated by splitting.

The definition of SplitE(T) is non-trivial because of recursive type variables. Our
key result is the fact that splitting can be stopped in front of ∗-types (SplitE(T∗) =
{T∗}), and still the type system enjoys the completeness properties formalized by
Theorem 3. A more complex type system, where unfolding depends on the query, may
be worth studying. However, we claim that our solution, based on a mild restriction
on the use of recursion, is acceptable in practice. We restrict to environments E for
which recursion is guarded by a ∗ type constructor. Under this restriction, error-
completeness is obtained by unfolding recursion until ∗ is met, and “pulling out” only
the union type constructors that are found outside the ∗.

Theorem 3 (Completeness of Error-Checking).

E; Γ `β Q : (; S) ⇒ (Q has an error at α w.r.t. R(E,Γ) ⇒ β.α ∈ S)

We believe that the existence of a non trivial core language, like µXQ, where the
analysis is complete is an important result, because it formally measures the quality of
the match between our notion of error and our type system. Moreover, completeness is
a guarantee of good precision for possible, more realistic, extensions of µXQ exploiting
our type-checking technique.

We conclude by observing that, tough based on case analysis over union types,
complexity of our sound and complete type-checking algorithm is acceptable in a wide
class of cases (see [7, 5] for details).

5 Conclusions and Future Work

We have presented a type system that performs both result analysis and navigation-
correctness analysis for a minimal query language for tree-shaped data.

We have first given a precise definition of navigation-errors, and discussed its mer-
its in relation with some possible alternatives. We introduced a first type system,
which is sound and quite precise. We then introduced a more expensive type sys-
tem that, when applied to schemas that satisfy a mild restriction on the alternation
between ∗ and recursion, performs a correct and complete error-checking. This type
system validates the claim that our notion of navigation-error is both meaningful for
the programmer and amenable to machine-checking.

We defined the notions of universal and existential correctness, as well as a frame-
work that can be used to check both families of errors.

We are currently investigating how to check correctness of backward axes.

References

1. S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener. The Lorel Query Lan-
guage for Semistuctured Data. Journal of Digital Libraries, 1(1), pages 68–88, April
1997.

2. N. Alon, T. Milo, F. Neven, D. Suciu, and V. Vianu. XML with Data Values: Typecheck-
ing Revisited. In Proceedings of the Twentieth Symposium on Principles of Database
Systems, May 21-23, 2001, Santa Barbara, California, USA, 2001.

3. S. Boag, D. Chamberlin, M. F. Fernandez, D. Florescu, J. Robie, and J. Siméon. XQuery
1.0: An XML Query Language. Technical report, World Wide Web Consortium, May
2003. W3C Working Draft.

4. P. Buneman, S. Davidson, and D. Suciu. Programming constructs for unstructured data.
In Proceedings of 5th International Workshop on Database Programming Languages,
Gubbio, Italy, September 1995.

5. D. Colazzo. Path Correctness for XML Queries: Characterization and Static Type Check-
ing. PhD thesis, Dipartimento di Informatica, Università di Pisa, 2004.

6. D. Colazzo, G. Ghelli, P. Manghi, and C. Sartiani. Types For Correctness of Queries
Over Semistructured Data. In Proceedings of the Fifth International Workshop on the
Web and Databases (WebDB 2002), Madison, Wisconsin, June 6-7, 2002, 2002.

7. D. Colazzo, G. Ghelli, P. Manghi, and C. Sartiani. Types For Path Correctness of XML
Queries. In Proceedings of 7th ACM International Conference on Functional Program-
ming (ICFP), Snowbird, Utah, USA, 2004.

8. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and
M. Tommasi. Tree Automata Techniques and Applications. Available on:
http://www.grappa.univ-lille3.fr/tata, 1997. release October, 1rst 2002.

9. D. Draper, P. Fankhauser, M. Fernandez, A. Malhotra, K. Rose, M. Rys, J. Siméon, and
P. Wadler. XQuery 1.0 and XPath 2.0 Formal Semantics. Technical report, World Wide
Web Consortium, Aug. 2003. W3C Working Draft.

10. D. Colazzo and C. Sartiani. Typechecking queries for maintaining schema mappings in
xml p2p databases. In Proceedings of PLAN-X 2005, 2005.

11. M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A query language for a Web-site
management system. SIGMOD Record (ACM Special Interest Group on Management of
Data), 26(3):4–11, September 1997.

12. R. Guerra, J. Jeuring, and D. Swierstra. Generic validation of xpath data bindings. In
Proceedings of PLAN-X 2005, 2005.

13. H. Hosoya and B. C. Pierce. XDuce: An XML Processing Language, 1999. Preliminary
Report.

14. D. Lee, M. Mani, and M. Murata. Reasoning about XML Schema Languages using
Formal Language Theory. Technical report, IBM Almaden Research, 2000. Technical
Report - IBM Almaden Research.

15. T. Milo, D. Suciu, and V. Vianu. Typechecking for XML Transformers. In Proceedings
of the Nineteenth Symposium on Principles of database systems. ACM Press, 2000.

16. H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML Schema Part 1:
Structures. Technical report, World Wide Web Consortium, May 2002. W3C Recom-
mendation.

17. F. Yergeau, T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler. Extensible
Markup Language (XML) 1.0 (Third Edition). Technical report, World Wide Web
Consortium, Feb 2004. W3C Recommendation.

