
POLITECNICO DI MILANO

Dipartimento di Elettronica e Informazione

Models for SIMD� MIMD and
Hybrid Parallel Architectures

Realizzazione di modelli di varie architetture di
calcolatori paralleli �di tipo SIMD� MIMD e ibridi� e loro

validazione sperimentale

Claudio Gennaro

Advisor� Prof� Giuseppe Serazzi

Ph�D� Thesis � ��������� � Dottorato di Ricerca in Ingegneria Informatica e Automatica

POLITECNICO DI MILANO

Dottorato di Ricerca in Ingegneria Informatica e Automatica

Realizzazione di modelli di varie

architetture di calcolatori paralleli �di

tipo SIMD� MIMD e ibridi� e loro

validazione sperimentale

Tesi di Dottorato di�

Claudio Gennaro

Relatore�
Prof� Giuseppe Serazzi

Tutore�
Prof� Giuseppe Serazzi

Coordinatore del Dottorato�
Prof� Carlo Ghezzi

XI ciclo

Sommario
I supercomputer massivamente paralleli sono utilizzati sempre pi�u fre�

quentemente per soddisfare le esigenze di calcolo ad alte prestazioni sia
nel mondo della ricerca sia in quello dell�industria� Le prime architetture
parallele apparse sul mercato erano di tipo vettoriale� architetture in cui i
processori erano in grado di eseguire in modo parallelo una stessa operazio�
ne sui diversi elementi di un vettore� Volendo sfruttare in modo massiccio il
grado di parallelismo di un�applicazione� �e apparsa evidente la necessit�a di
realizzare architetture parallele di tipo general�purpose� costituite da un ele�
vato numero di processori dotati di memoria locale e interconnessi mediante
un�opportuna rete di comunicazione� Allo stato attuale il calcolo parallelo
viene realizzato attraverso macchine specializzate per il supercalcolo MIMD
�Multiple Instruction Multiple Data� o SIMD �Single Instruction Multiple
Data� oppure attraverso reti di workstation� Una nuova famiglia di super�
computer� oggetto di ricerca presso l�ENEA� �e composta da sistemi paralleli
ibridi� In queste architetture un sistema di supercalcolo MIMD utilizza un
computer di tipo SIMD come un insieme di coprocessori per le operazioni
di calcolo a virgola mobile pi�u complesse� In questo modo si accoppia la
	essibilit�a dei sistemi MIMD nel trattare diversi problemi� con la poten�
za di calcolo dei sistemi SIMD� In questo lavoro di ricerca si propone un
approccio sistematico per l�analisi modellistica del comportamento di ap�
plicazioni parallele� in termini di andamento delle richieste di elaborazione�
delle comunicazioni e delle operazioni di I
O� prendendo in considerazione
le architetture del tipo MIMD� ibride e cluster di workstation� Dal punto
di vista del software si utilizza un modello tipico della maggior parte delle
applicazioni parallele� Il comportamento di tali programmi �e� infatti� sche�
matizzabile come una sequenza fasi� ognuna delle quali consiste in singoli
burst di computazione seguiti da singoli burst di I
O� A sua volta i burst
di computazione possono essere ulteriormente scomposti in burst di calcolo
�in cui sono coinvolte solo operazioni di calcolo dei singoli processori� e bur�
st di comunicazione �in cui viene coinvolta la rete di interconnessione dei
processori�� Le comunicazioni tra i processori rappresentano senz�altro un
aspetto rilevante nel determinare le prestazioni dei sistemi paralleli� Il mo�
dello proposto consente di tener conto di tre elementi importanti presenti
nelle comunicazioni�

� le dimensioni dello spazio dei dati utilizzati dall�applicazione� in que�
sto modo si pu�o determinare come scalano le comunicazioni con il
numero di processori�

� il livello di contesa sulla rete� che dipende sia dal tipo di hardware di
comunicazione �maglia� memoria comune� albero� etc�� sia dal tipo di
algoritmo parallelo�

�

� il numero di processori che si sincronizzano durante le comunicazioni�
Pu�o variare da uno �comunicazioni asincrone� no al numero massimo
di processori impiegati dall�applicazione�

L�I
O nei sistemi paralleli costituisce il secondo fattore limitante nelle
prestazioni di applicazioni di supercalcolo� Nei sistemi MIMD e nei clu�
ster di workstation viene preso in considerazioni l�I
O verso dispositivi di
memoria di massa� Nei sistemi ibridi diventa importante l�I
O utilizzato
per la comunicazione fra il sottosistema MIMD e il sottosistema SIMD� Lo
studio di quest�ultimo tipo di I
O �e importante in quanto la comunicazione
fra MIMD e SIMD pu�o diventare il collo di bottiglia di un�applicazione
parallela che voglia sfruttare a pieno la potenza della tecnologia ibrida� I
modelli proposti permettono di ottenere speedup teorici in termini del nu�
mero di dischi disponibili o del numero di nodi SIMD della macchina reale�
Sono stati previsti due tipi di congurazione di I
O�

� sottosistema centralizzato� in cui l�I
O �e gestito da un singolo no�
do della macchina parallela attraverso un canale di comunicazione
connesso ad un disco RAID o a una board SIMD�

� sottosistema distribuito� in questo caso gruppi di nodi della macchina
parallela condividono un canale di I
O tipicamente connesso ad un
disco�

Oltre al tipo di congurazione dell�hardware di I
O� sono stati presi in
considerazione anche le diverse modalit�a di I
O delle applicazioni parallele�

� I
O sincroni� tutti i processori coinvolti dall�applicazione e�ettua�
no contemporaneamente trasferimenti attraverso l�I
O� Si pensi ad
esempio� nel caso di I
O verso unit�a di massa� al checkpoint per
visualizzazione e analisi dei dati�

� I
O asincroni� i processori e�ettuano I
O in momenti diversi� Si pensi
al caso della computazione out of core� in cui ogni processore salva
i dati in modo indipendente dagli altri allo scopo di liberare spazio
nella memoria RAM locale�

Allo scopo di validare i modelli proposti in questa ricerca� due tipi di
approcci sono stati utilizzati� In una prima fase �e stata realizzata una
versione parallela dell�algoritmo MVA per la soluzione di reti di code parti�
colarmente complesse� Essendo note le caratteristiche di tale applicazione
�e stato possibile stimare i parametri da introdurre nel modello� Lo speedup
ottenuto dal modello �e stato inne confrontato con quello sperimentale� In
una seconda fase sono stati utilizzati gli speedup di alcune applicazioni pa�
rallele forniti dalla Scalable I
O Initiative� Poich�e i parametri utilizzati dal

modello corrispondono a caratteristiche misurabili di un programma paral�
lelo� �e possibile� attraverso tecniche di approssimazione ai minimi quadrati
fra lo speedup osservato e quello ottenuto dal modello� inferire i parametri
del programma�

POLITECNICO DI MILANO

Dottorato di Ricerca in Ingegneria Informatica e Automatica

Models for SIMD� MIMD and

Hybrid Parallel Architectures

Ph�D� Thesis of�

Claudio Gennaro

Advisor�
Prof� Giuseppe Serazzi

Tutor�
Prof� Giuseppe Serazzi

Supervisor of the Ph�D� Program�
Prof� Carlo Ghezzi

XI ciclo

To Floriana

Acknowledgments

I would like to thank my supervisor Prof� Giuseppe Serazzi for the inspira�
tion� guidance� friendship o�ered throughout my studies�

I feel a special gratitude towards Peter King and Paolo Cremonesi for
their important contribution to the work presented in this thesis�

My family and friends contributed greatly to my work with their unend�
ing encouragement� In particular� I thank my mother for listening and my
girlfriend Floriana for her love and care�

My thanks to my friends� Francesca Alonzo� Fabio Casati� Laura Ca�
stan�o� Gianfranco Castriotta� Angela Discenza� Pier Luca Lanzi� Maristella
Matera� Fabio Violante� They kept my spirits high�

During my stay in Edinburgh in Scotland� I appreciated Mario Anto�
nioletti and Armen Avedisijan for being very friendly and helpful�

The Italian Agency for New technology� Energy and the Environment
�ENEA	 greatly acknowledged for its
nancial support�

Contents

� Introduction �

� Parallel architectures �

��� Single Instruction Multiple Data architectures � � � � � � � � �

��� Multiple Instruction Multiple Data architectures � � � � � � �

��� Hybrid architectures ��

��� Clusters of workstations ��

��� I
O in the parallel machines � � � � � � � � � � � � � � � � � � ��

� Queueing network models ��

��� Introduction ��

��� Solution Techniques ��

����� Open model solution technique � � � � � � � � � � � � ��

����� Closed model solution technique� the Mean Value
Analysis algorithm ��

� Integrate models ��

��� Parallel program behavior ��

��� Speedup models ��

��� Computation burst model ��

����� Introduction ��

����� Communication transfer time � � � � � � � � � � � � � ��

����� Communication startup time � � � � � � � � � � � � � ��

����� Dimensions of data space � � � � � � � � � � � � � � � ��

����� Synchronization level � � � � � � � � � � � � � � � � � � ��

����� Network contention level � � � � � � � � � � � � � � � � ��

����� The model ��

��� I
O models ��

��� Model parameter summary � � � � � � � � � � � � � � � � � � ��

i

ii CONTENTS

� Model analysis ��
��� The optimistic cases ��
��� BUS�SIO Model ��

����� Asymptotic analysis � � � � � � � � � � � � � � � � � � ��
��� BUS�AIO model ��

����� Asymptotic analysis � � � � � � � � � � � � � � � � � � ��
��� CLU�SIO model ��
��� CLU�AIO model ��

����� Asymptotic analysis � � � � � � � � � � � � � � � � � � ��
��� Case studies ��

����� Hybrid MIMD�SIMD machine � � � � � � � � � � � � ��
����� BUS�AIO vs CLU�AIO � � � � � � � � � � � � � � � � ��

� Program Behavior Results ��
��� Parallel MVA algorithm ��

����� The algorithm ��
����� The implementation � � � � � � � � � � � � � � � � � � ��
����� Performance prediction of the algorithm � � � � � � � ��
����� Experimental results � � � � � � � � � � � � � � � � � � ��
����� Interpretation of the results � � � � � � � � � � � � � � ��
����� Improving the performance of the program � � � � � ��
����� Model validation ��

��� Speedup surfaces of applications with intensive I
O � � � � � ��

� Conclusion �	

A Non
recursive MVA formula ��

B Fork�join queueing network response time ��

Chapter �

Introduction

The purpose of massively parallel machines is to solve problems in vari�
ous scientic
engineering domains that would have unacceptable process�
ing times if solved with a traditional single processor machine� The perfor�
mance analysis has emerged as a key area of research in the eld of parallel
architectures� ever since the rst high performance machines appeared on
the market� This appeared ever more true as the trend of the high per�
formance computer moved from using vector and array processors to using
multiprocessor architectures� Many factors in	uence the performance of
parallel applications� Hardware or software components� or both can be in�
volved� Examples are� processor speed� processor communication network�
I
O architecture� sequential code� communication network contention and
synchronization protocols� data partitioning� etc�

The rst e�ort to model the performance of parallel programs is due
to Amdahl and the well known homonymous law that relates the num�
ber of processors to the bound of the speedup which may be expected by
parallel processing ���� This bound has proved useful in shaping our un�
derstanding of parallel system because it strikes a useful balance between
simplicity and precision� Several amendments and extensions to Amdahl�s
law have been proposed� each appropriate for di�erent purposes� Gustafson
et al� ���� ��� ��� introduce the concept of scaled speedup as a measure of
how well an algorithm scales when the number of processors is multiplied
by k� Flat et al� ���� investigate the impact of synchronization and com�
munication overhead on the performance of parallel processors� Eager et
al� ���� studied speedup versus e�ciency� Wu et al� ���� propose a formal
denition of scalability and discuss scalability of cluster systems� Finally�
Rosti et al� ���� extends Amdahl�s law to three�dimensional space to in�
clude processors and disks� However� these studies are limited by the fact
that the speedup formulations do not include any explicit parameters that

�

� CHAPTER �� INTRODUCTION

reference the communication and I
O overhead or the type of hardware
used for executing the parallel application�

Other approaches use task graph models in order to represent the inter�
task precedence relations within a program� the task execution times� and
the times necessary to transfer data or other information from one task to
other during execution� In the case of program control structures that can
be represented by �series�parallel� task graphs� such as the fork�join struc�
ture� methodology to predict the best speedup which can be obtained with
such program has been developed� In particular� when the task execution
times are deterministic� Co�man et al� ��� used critical path analysis to
nd the program completion time� If the task execution times are stochas�
tic and the number of processors is innite� the probability distribution
time can be determined by a straightforward but in general very costly
computation ���� ��� General acyclic random graph models are presented
in ���� ��� ���� Gelenbe ���� generalizes the task graph models so that it
is possible to take into account the e�ect of communication times between
the tasks�

For more realistic cases where the number of processors is smaller than
the number of tasks in a program� a queueing network approach can be
used� Approximate models are presented in ��� ��� ��� and an exact model
is proposed by Baccelli et al� ����

Task graphs� as general acyclic graphs� allow the description of sequen�
tial or parallel execution� synchronization� and spawning of task� Never�
theless� the multiprocessor systems considered have a generic architecture
with a nite number of processors sharing a central memory�

This work proposes a new model for parallel systems with distributed
computational and I
O resources when executing parallel applications char�
acterized by cyclic computation bursts and intensive I
O bursts� By means
of queuing network techniques� the analysis of the model leads to the de�
nition of a generic model that allows simulation of the behaviour of several
parallel architectures�

Traditionally� speedup is dened as the ratio of the elapsed time when
executing a program on a single processor to the execution time when p
processors are available� We extend this denition to include the number
d of I�O nodes� Because parallel program execution can be partitioned
into two distinct phases� denoted as computation burst and I
O burst� we
consider the p processors devoted to the execution of the computation burst
and the d I
O nodes� to the corresponding I
O burst� An I
O node can
represent a disk or a SIMD processor according to the parallel machine
modeled� For instance consider a hybrid architecture in which a moderate
number of processors ������� are arranged in a MIMD way and some �even
all� of them are �boosted� by massively parallel SIMD arrays� used for the

�

most intensive number�crunching tasks� The clusters of SIMD processors
is connected to the MIMD node through a high speed I
O channel� In
this scenario� several questions may arise� such as� how does the program
speedup scale with the number of SIMD processors How much does the
I
O channel impact to performance of the program Is there any advantage
in using the SIMD processors or it is better to use only the MIMD processors
to perform the number�crunching tasks The approach we propose in this
thesis is� to the best author�s knowledge� the rst attempt to address these
kinds of issues�

The purpose of this thesis is to develop analytical performance models
that captures the behavior of numerous applications running on a di�erent
parallel architectures� The idea of our approach is to use queueing network
models� This type of model has the advantage of providing a �white�
box� view of the system to study� Because the parameters of our model
correspond to measurable program characteristics� we can use the model
in order to estimate the execution times for di�erent number of processors
and
or I
O nodes�

� CHAPTER �� INTRODUCTION

Chapter �

Parallel architectures

Computational parallelism essentially consists of using more processors
�computational nodes� which cooperate through an interconnection net�
work for the solution of a computational problem�

Any computer� sequential or parallel� executes instructions on data� A
widely used way for classifying computer architectures is Flynn�s taxonomy�
which considers instruction stream and data stream�

�� SISD� Single Instruction� Single Data�

�� MISD� Multiple Instruction� Single Data�

�� SIMD� Single Instruction� Multiple Data�

�� MIMD� Multiple Instruction� Multiple Data�

For example� a conventional sequential computer would be classied as
Single Instruction Single Data �SISD� as the processor executes at each
step one instruction on one piece of data� We list the main types of parallel
architectures in Figure ���� We do not talk about MISD architectues since
they are rarely used in computing�

��� Single Instruction Multiple Data architectures

A parallel machine of this class consists of N identical processors �see Fig�
ure ����� Each processor has a local memory in which it keeps the data
which it will work on� In SIMD machines� all processors simultaneously
execute the same instruction� issued by the controller processor� on their
local data� The processors can communicate with each other in order to
perform shifts and other array operations� This approach can reduce both
hardware and software complexity but is appropriate only for specialized

�

� CHAPTER �� PARALLEL ARCHITECTURES

C o m p u t e r

S h a r e d
M e m o r y

D i s t r i b u t e d
M e m o r y

V i r t u a l
D i s t r i b u t e d

M e m o r y

Single
Ins t ruc t ion

Mult ip le
Ins t ruc t ion

S I M D S I S D M I S D M I M D

Figure ���� Flynn�s taxonomy�

problems characterized by a high degree of regularity� for example� image
processing and certain numerical simulations� If the loads on the processors
are not balanced� performance is poor �because execution is synchronized
at each step� with everything waiting for the slowest processor�� Exam�
ples of SIMD computers are the ICL Distributed Array Processor �DAP��
the Thinking Machine Corporation�s CM����� the MasPar MP and the
Quadrics of QWS�

Quadrics is a high�performance machine capable of facing major com�
puting challenges in several applied elds� Quadrics has a �D architecture
based on a cubic lattice of nodes� Each node �i�e�� one processor plus its
own memory� is connected to the six nearest nodes� The nodes situated
at the extremity of the lattice are linked in a ring shape to those on the
opposite side� obtaining� in fact� a �D torus�

The processing element on which Quadrics is based is a proprietary
	oating�point processor� called MAD �multiply and add device�� specically
designed to perform very e�ciently the so�called �normal operation�� i�e��
a combined multiply�add operation �a� b� c�� The processor can deliver
two 	oating�point operations per cycle� It contains a register le of ���
registers� Each MAD has � to �� MB memory� The architecture of Quadrics
can theoretically span from � to ����� nodes� In practice� the maximum
conguration is given by ����� nodes� ��� G	ops �billions of 	oating�point
operations per second� of peak power and �� GB of memory�

As for the evolution of Quadrics technology� the Italian National In�
stitute for Nuclear Physics �INFN� is now developing the next�generation
supercomputer� named APEmille �with local addressing capability� double

���� MULTIPLE INSTRUCTIONMULTIPLE DATA ARCHITECTURES�

Control ler

Hos t

Array of processors

Figure ���� An example of a SIMD architecture�

precision� real and complex numbers� integer and logical operations� � oper�
ations per cycle� up to ��� Tera	ops � trillions of 	oating point operations
per second � of peak power��

��� Multiple Instruction Multiple Data architec�
tures

This class of computers is the most general and the most powerful of the
Flynn�s paradigm� MIMD means that each processor can execute a sep�
arate stream of instructions on its own local data� Within this class of
architectures a common method of subdividing them is on the relationship
between processors and memory� This type of subdivision leads to three
main types of MIMD architectures� Shared Memory� Distributed Memory
and Virtual Distributed Memory�

In the shared memory architecture� shown in Figure ���� all processors

� CHAPTER �� PARALLEL ARCHITECTURES

B U S

C e n t r a l M e m o r y

P r o c e s s o r s

Figure ���� An example of a Shared Memory architecture�

access to a common memory� typically via a bus or a hierarchy of buses�
The processors communicate with one another by one processor writing
data into a location in memory and another processor reading the data�
With this type of communication the time to access any data is the same�
as all communications goes through the bus�

The advantage of this type of architecture is that it is easy to program
as there are no explicit communications between processors with communi�
cations handled via the global memory� Access to this memory store can be
controlled using techniques developed from multi�tasking computers� e�g��
semaphores�

However� the shared memory architecture does not scale well� The main
problem occurs when a number of processors attempt to access the global
memory store at the same time� leading to a bottleneck� One method
of avoiding this memory access con	ict is subdividing the memory into
multiple memory modules� each connected to the processors via a high
performance switching network� However� this approach tends to simply
shift the problem to the communication network�

Examples of computers with shared memory architecture are the SGI
PowerChallenge� Sequent Balance and Symmetry�

The distributed memory architecture �see Figure ���� get around the
drawbacks of the shared memory architecture by giving each processor its
own memory� A processor can only access the memory which is attached
directly to it� If a processor needs data which is contained in the memory
of a remote processor� then it must send a message to the remote processor
asking it to send it the data� Clearly access to local memory can occur
much faster than access to data on a remote processor� In addition to this�

���� MULTIPLE INSTRUCTIONMULTIPLE DATA ARCHITECTURES�

the further the physical distance to the remote processor� the longer it can
take to access remote data� This non�uniform access time can be a�ected by
the way the processors are connected� While connecting each processor to
every other one is a possibility for a small number of processors� it quickly
becomes impractical as the number of connections rises� One solution to
the problem of connecting the processors together is to connect a processor
to a small subset of its neighbors� Each of the neighbors in the communica�
tion subset would be connected to a di�erent subset of processors� allowing
for messages to be sent from one processor to another via a number of in�
termediate processors� There are several ways this can be done� one option
would be to use switching chips which allow the user to adapt the topology
of the machine to their own particular needs� Another popular possibility
is to connect the processors in a hypercube arrangement� This has the
advantage of not radically increased number of connections as the num�
ber of processors is increased� while o�ering a number of di�erent message
routing paths� Also� there are many parallel algorithms and software for
hypercubes� Distributed memory machines have been built using all the
methods described�

Rather than connecting processors together directly� current practice is
to connect the processors to a network of routing chips� The same topology
issues apply in this case but the processors no longer play any part in the
message forwarding� As there can be a di�erent number of processors and
routing chips this allows greater freedom when constructing the network�

While this architecture has the drawback of requiring explicit commu�
nications� it is inherently far more scalable than the shared memory ar�
chitecture which is limited by bottlenecks in accessing its global memory�
Machines which have a distributed memory architecture include the Meiko
Computing Surfaces�

The above classications are in a sense idealized architectures� Often
actual machines are mixtures of the di�erent types of architectures� An
example of this is the so called virtual shared memory architecture� which
should be di�erentiated from the true shared memory machines mentioned
earlier� Like the distributed memory machines� each processor has some
local memory� but direct access can be made to remote memory by use
of a global address space� This remote access is possible because of the
incorporation of support circuitry which deals with the communication in�
dependently of the remote processor� This o�ers the possibility of very
fast communications through the use of sophisticated hardware �though of
course not as fast as local memory access� but with increasing communica�
tion overhead as the transferring distance of the messages travel increases�

An example of a Virtual Shared Memory machine is the Cray Research
T�D and T�E�

�� CHAPTER �� PARALLEL ARCHITECTURES

In terconnect ion Network

Processor
Local

M e m o r y

Figure ���� An example of a Distributed Memory architecture�

��� Hybrid architectures

The world of parallel computing is moving along two directions� the rst
depending on existing software constraints �i�e�� the huge amount of legacy
codes incorporating even millions of year�persons for their development�
maintenance� and up�dating� over decades�� the second� on ambitious goals
like those called �grand challenges�� where signicant scientic results can
be achieved only over a computing power threshold in the range of �� to
���� Giga	ops� In the rst case� the need to be able to run �experienced�
codes at increasing speeds without signicantly modifying them� urges the
use of shared memory based platforms that allow up to ����� processors to
reach speedups with a satisfactory scalability� In the second case� massive
parallelism is the only reasonable solution� with the consequent price to
be paid in terms of revision of codes� models� algorithms� etc�� in order to
�map� each particular problem onto the available computational architec�
ture�

In the frequent cases in which most of the computational weight of a
code is conned in one �or a few� kernel�s�� often composed of a few state�
ments� a tradeo� can be reached between the desire of not modifying and
or
customizing the code to specic platforms� and the possibility of achieving

���� HYBRID ARCHITECTURES ��

Partition of SIMD
processors

Memory

CPU

Disk

MIMD communication network

Disk

Memory

CPU

S
IM

D
 c

om
m

.
ne

tw
or

k

Partition of SIMD
processors

Figure ���� Architecture of two processing elements in a hybrid parallel
computer�

more signicant speedups by means of massively parallel platforms� The
solution can be represented by a hybrid architecture where a moderate
number of processors ������� are arranged in a MIMD way� while some
other �even all� are �boosted� by massively parallel SIMD arrays� charged
with the hugest number�crunching tasks�

Some computational problems� such as transaction processing� are dom�
inated by integer operations and I
O� Some other� such as matrix problems
or Monte Carlo simulations� are both highly parallel and synchronous� In
such cases� maximum performance can be achieved by conguring the sys�
tem with a moderate number of super�scalar processors� each processor
with its own I
O system and a large array of simple SIMD processors� As
illustrated in Figure ���� SIMD processors are partitioned into clusters and
each cluster is connected to the MIMD node through a high speed I
O
channel �����

In order to take advantage of both the 	exibility of a MIMD architec�
ture and the scalability of a massively parallel SIMD architecture� the Na�
tional Agency for New Technology� Energy� and Environment �ENEA� has
recently set up a joint�venture with Finmeccanica�s Quadrics Supercom�
puters World Ltd� �QSW� aimed to the development of the rst prototype
�named PQE�� of the new supercomputer� PQE� �see Figure ���� is real�
ized by complementing the Casaccia�s Quadrics modules with an ��nodes
Meiko CS���

A new project� named PQE����� is adopting innovative software tech�
nologies and composite MPP architectures for peta	ops computing �����
Three Italian research agencies and one industrial company � The Na�
tional Research Council �CNR�� ENEA� INFN� and QSW � are involved
in the PQE���� project� The denition of the hardware of PQE���� is
strongly in	uenced by following architectural models� coarse�grain symme�

�� CHAPTER �� PARALLEL ARCHITECTURES

Quadrics board

Disk
SCSI

controller

Distributor

HIPPI

PQE1 node

Memory

CPU

Figure ���� Architecture of a PQE� node�

try multiprocessor �SMP� and uniform memory access �UMA�� medium�
grain nonuniform memory access �NUMA� or cache�coherent�NUMA� ne�
grain SIMD� and ne�grain PIM �processors�in�memory or active mem�
ory��

��� Clusters of workstations

A cluster of workstations is a collection of distinct and independent high�
performance workstations that are interconnected through a local area
network� This conguration can be considered as a powerful bridge be�
tween computing on a single workstation and computing on supercomput�
ers� Cluster technology takes advantages of high scalability� simple and
	exible architecture� high performance�price ratio and small risk of invest�
ment�

While typically more loosely coupled than the �single box� parallel ar�
chitectures described above� clusters can provide an invaluable route for
producing parallel code� Furthermore� they o�er the opportunity for users
without resources to buy massively parallel machines to gain some of the
benets of parallelism on machines available locally� The rapidly reduction
of the cost of high performance workstations
PCs makes this technology
ever more available� Moreover� new concepts for the integration of individ�
ual workstations through Local Area Networks are emerging� High speed
interconnection networks and optimized protocol system architectures are
the most important objectives of current research in this eld of study�

���� I�O IN THE PARALLEL MACHINES ��

��� I�O in the parallel machines

I
O hardware parallelism essentially consists of using more disks and one
or more controllers� and distribute data across the disks� Among many
possible way of distributing data across multiple disks� striping is the most
popular�

In a striped le system� a le is interleaved across the disks� Striping
usually implies that the array of disks shares a common bus and is controlled
by a single controller� Simple disk striping has performance limitations
beyond ve disks due to increasing overhead of managing I
O parallelism
serially via a single controller ����� In fact� modern disks have a SCSI
connection and state�of�the�art controllers are capable of driving SCSI
buses at no more then �� Mbytes
sec�

A more e�cient and 	exible parallel disk architecture is constituted by a
set of independent disks� each disk with a separate controller and connected
to a distinct processor of the parallel machine� The individual devices in
a parallel independent disk system could themselves be an array of disks�
Usually� processors with disks are not loaded with computational tasks�
but they are dedicated to the handling of I
O activities� In ���� a tracing
study of all le related activity on the Intel iPSC
���� at the NASA Ames
Research Center and the Thinking Machines CM�� at the National Center
for Supercomputing Applications� found that le size I
O was dominated
by writes� In ��� a study of I
O characteristics of four parallel applications
on a IBM SP� using Vesta parallel le system found that I
O requests had
a strong temporal and spatial locality�

The I
O represents today the limiting performance factor of large scale
scientic computations that deal with large quantities of data� The impact
of the I
O contention in parallel machines is becoming ever more important
as the computational power of processors and the throughput of communi�
cation networks are increasing� High performance communication network
and parallel le systems are needed to satisfy the data exchange require�
ments of current parallel scientic applications� The e�cient design of such
systems depends on a comprehensive understanding of the performance be�
havior of typical scientic applications�

Over the past two decades� advances in computer technology have led
toward faster computational machines� Today high performance computers
�HPC� can perform computations at giga	op rates� Much of this computa�
tional capacity has been mainly addressed toward large�scale mathematical
modeling and simulation of various physical� chemical and biological phe�
nomena� Many computational intensive applications are among a set of
scientic Grand Challenges� an annual list rst initiated a decade ago by
Kenneth Wilson winner of the Nobel physic prize �����

�� CHAPTER �� PARALLEL ARCHITECTURES

Application I�O storage I�O bandwidth

��D Earth observing � Tbytes � Tbyte
day

Particle algorithms in � Tbyte ��� Mbyte
second
cosmology and astrophysics

Radio synthesis imaging �� Gbytes ��� Mbyte
second

Computational quantum materials � Gbytes ��� Mbyte
second

High�performance aircraft simulation � Gbytes ��� Mbyte
second

Computational 	uid and � Tbyte �� Mbyte
second
combustion dynamics �for visualization�

Figure ���� I
O requirements for Grand Challenge applications

Aside from requiring signicant amount of processing time� these ap�
plications often deal with enormous quantities of data that must be ex�
changed among working processors and
or with I
O devices� Current high�
performance applications involve � Gigabyte to � terabytes of data per run�
Table � summarizes the I
O requirements for some Grand Challenge appli�
cations ����� Such applications� whose bottlenecks is the I
O and not the
computation� are said to be I
O bound� As a single processor and a single
disk are unable to sustain the requirements of current Grand Challenge
applications� a logical solution is to use more processors and more disks� In
a parallel system with p processors and d disks� it is theoretically possible
to achieve p times the computational rate of a single processor and to de�
liver d times the data of a single disk to an application� However� network
and system software� as well as applications bottlenecks� greatly reduce the
computational and I
O speedup�

Real parallel applications can exploit I
O for di�erent purposes �����

� Checkpoints� Periodic checkpointing of long�run computation state
is essential in order to reduce the cost of system failures� On large
parallel computers� state can be large �many Gigabytes��

� Simulation data� Scientic and engineering simulations that compute
the time evolution of physical systems periodically save system state
for subsequent visualization or analysis� Some simulations can gen�
erate very large amounts of data � hundreds of Gigabytes or more in
a single run�

� Out�of�core computation� Some programs must operate on data
structures that are larger than available �core� memory� In prin�
ciple� a virtual memory system can perform the necessary paging of

���� I�O IN THE PARALLEL MACHINES ��

data to and from disk� In practice� not all parallel computers provide
virtual memory�

� Data retrieval� Many applications involve the analysis of large amounts
of data �e�g�� data from weather satellites may be searched for tem�
perature values�� These data analysis applications are particularly
demanding from an I
O point of view� because little computation is
performed on each datum retrieved from disk�

�� CHAPTER �� PARALLEL ARCHITECTURES

Chapter �

Queueing network models

In this section an abstraction technique from computer systems to queueing
network models is presented� The parameters that dene a model are given
and the techniques used to determine exact performance estimates for the
models are discussed�

��� Introduction

Queueing networks have been widely used to model and analyze the per�
formance of complex systems involving service� Examples of such systems
include communication systems� computer networks transaction systems�
manufacturing systems and vehicular tra�c� A study of such systems is
necessary to evaluate their performance in terms of achievable throughputs
and delays experienced� Such studies are also required to locate bottle�
necks� identifying and removing the bottleneck may result in signicant
improvements in the performance of the system� These studies will also
help in designing a system with optimum investments in resources in terms
of number of servers� bu�er space etc�

A queueing network is a set of interconnected queues� Customers� after
receiving service at a queue� will move to another queue �or out of the
network� with some probability� The service time for a customer at a
queue is chosen independently for each visit to the queue� according to
a service time distribution� In a queueing network� multiple classes of
customers can exist simultaneously� Each class can have a di�erent service
time distribution at each of the queues in the network�

When applying queueing networks to computer system� the stations
represent the various system resources �e�g� CPUs� channels� disks� etc��
while the customers represent jobs in the system�

Queueing network models are dened by servers� customer classes� and

��

�� CHAPTER �� QUEUEING NETWORK MODELS

a description of how the classes use the servers� A customer class contains
one or more customers that have independent yet statistically identical
behaviour� A customer class can also be referred to as a group� If there is a
xed number of customers of the class in the model at all times� it is called a
closed class� Closed class customers alternate between queueing for various
resources and being in a queue for idle customers� The idle time is referred
to as a think time because computer system users often initiate some system
function� receive a result� then think about the result before making another
request for work� Idle periods can be of duration zero� A model consisting
only of closed classes is a closed model� If customers are better described
as arriving at some rate� satisfying their service requirements� and then
leaving the system� the class is called an open class� The arrival of an open
class customer is an invocation of its corresponding program� A model
consisting only of open classes is an open model� If both open and closed
classes are present� the model is called a mixed model�

Overall system performance can be evaluated by using parameters �ser�
vice time�visit ratio� system load� of the system and its components to
calculate performance measures� such as response time� throughput� and
utilization� Analysis of the devices can determine their throughputs when
they are operating at ���! of capacity� This is described as the saturation
point of the device� The device with the lowest throughput at saturation
will limit the throughput of the entire system� thus creating a bottleneck�
When the system attempts to process jobs faster than the bottleneck de�
vice� system response time increases�

��� Solution Techniques

Many queueing networks do not have closed form analytic solutions and
cannot be evaluated other than by Monte Carlo simulation� Simulations
are expensive to perform� and the results which are calculated are only
known to fall within certain condence intervals� Queuing analysts found
closed form solutions for increasingly complex queueing networks through
the ����s� and in ���� the discovery of the class of separable or product
form queueing networks was announced� This class of networks represents
the most complex queueing networks that can be e�ectively evaluated an�
alytically today�

����� Open model solution technique

Since for the open queueing network the system throughput is given as an
input� solutions can be obtained simply� Let C be the number of customer
classes of a given open queueing network� We denote the vector of arrival

���� SOLUTION TECHNIQUES ��

rates for each class by
��
� " ���� ��� � � � � �C�� Let Dc�k denote the given

service service time of the class c at center k� The response time of the
queueing center k for the class c� Rc�k� is given by�

Rc�k "
Dc�k

��
CX
j��

Uj�k�
��
� �

� �����

where Uc�k is the utilization of the center k of the class c� given by Dc�k�c� It
is possible to prove ��� that ����� is always valid for PS and LCFS queueing
discipline� For FCFS� ����� is valid if all classes have the same service time�

����� Closed model solution technique� the Mean Value

Analysis algorithm

Queueing networks in which customers circulate between service centers
have the potential to be extremely di�cult to analyze because of the inter�
dependency of the di�erent service centers� Jackson ���� showed that open
networks with all services exponentially distributed and arrivals Poisson
could be analyzed as if the service centers were independentM�M�� queues�
Baskett et al� ��� were able to extend this analysis to a more general frame�
work� allowing non exponential services in some instances� and also di�erent
classes of customers with their own routing behaviour� They showed the
probability of the network being in a state

��
N " �N�� N�� � � � � NK�� when

there are K service centers� is of the form�

Pr�
��
N � "

�

G

MY
i��

fi�ni�� �����

If the network is open� the factor G is �� and the service centers are es�
sentially independent of one another� only interacting through the routing
of customers to other centers after service� When the network is closed�
however� the factor G� which ensures that the probabilities are normalized�
introduces a dependency between the service centers� The fact that it is
known that center �� say� has � customers present� alters the probability
of there being � customers at other centers� Obvious approaches to calcu�
lating G� for example by summing over all possible states� soon run into
practical problems because of the number of states involved� not to say
numerical di�culties such as round o��

Algorithms to numerically evaluate these networks have been the sub�
ject of much interest� Buzen ��� developed the rst algorithm� known as
the convolution algorithm� This algorithm nds the normalization constant

�� CHAPTER �� QUEUEING NETWORK MODELS

G for a network of K centers and N customers using a simple recurrence
relating G�M�N� to G�M � �� N� and G�M�N � ��� Other performance
metrics� such as mean queue lengths� center utilizations� etc� are found
using G� Although very e�cient� the convolution algorithm is not very
intuitive� and its computations can be a�ected by over	ow or under	ow
for large networks� Reiser and Lavenberg ���� developed a new algorithm�
Mean Value Analysis �MVA�� that uses only meaningful metrics of network
performance in its calculation� Essentially� the performance of the net�
work when N customers are present is evaluated using the performance of
the network when there are N � � customers� Metrics� such as utilization
and mean queue length� are produced as a side e�ect� The normalization
constant is not calculated� MVA is of similar complexity to convolution�

Mean value analysis operates by relating the performance of the net�
work when n customers are present to the performance when n � � are
present� Since the performance when there are � customers is known triv�
ially� calculation proceed using increasing populations� from � to N � When
the population is N � and there are K stations� the complexity of the al�
gorithm is O�KN�� If there are C classes of customer� then the perfor�
mance when the population vector is ��n " �N�� N�� � � � � NC� is calculated
using the performance at populations ��n " �N���� N�� � � � � NC�� �N�� N��
�� � � � � NC�� � � � � �N�� N�� � � � � NC���� Given a nal population for which we
wish to calculate the performance� the calculations needed give a precedence
relationship between the di�erent populations� The population � precedes
all other populations� and the other populations must be calculated� The
order of calculation is not totally determined� since the precedence rela�
tionship is only a partial ordering�

In order to describe more formally the MVA algorithm we use the fol�
lowing notations�

� C� number of customer classes�

� K� number of service centers�

� Nc� population of the class c�

� Qk�
��n �� queueing length of the center k for the population ��n "

�n�� n�� � � � � nC��

� Dc�k� service demand of the class c at center k�

� Uc�k� utilization of the class c at center k�

� Rc�k� response time of the class c at center k�

� Xc� throughput of the class c�

���� SOLUTION TECHNIQUES ��

for k�"� do Qk�
��
� ��"��

for n�"� do
CX
c��

Nc

for each ��n � �n�� n�� � � � � nC � � such that
CX
c��

nc " n do

begin

for c�"� to C do

for k�"� to K do Rc�k �" Dc�k �� �Qk�mc���n ����

for c�"� to C do Xc �"
nc

Zc �
KX
k��

Rc�k

�

for k�"� to K do Qk�
��n � �"

CX
c��

XcRc�k�

end�

Figure ���� MVA solution algorithm�

� Zc� think time of the terminal of class c �the sum of all class c delays��

� mc���n �� population��n with one class c customer removed� i�e�� �n�� n�� � � � � nc�
�� � � � � nC��

The exact MVA solution algorithm ����� in psuedo�code� is shown in Fig�
ure ���� When this algorithm terminates� the values of Rc�k� Xc and Qk are
available�

In chapter � we will show a parallel version of algorithm MVA� and will
study its performance�

�� CHAPTER �� QUEUEING NETWORK MODELS

Chapter �

Integrate models

In parallel architectures� several processors work simultaneously and coop�
erate to the execution of a single task� In this way� the computing per�
formance can be signicantly increased compared to a sequential single�
processor architecture� Performance predictions for parallel programs on
multiprocessor systems are therefore of crucial importance for both software
and hardware designers�

In this chapter we formulate a general model of program behavior that
captures the computation and I
O characteristics of a parallel application�
or a class of parallel applications�� We then derive a simple mathemat�
ical analysis of the model� and dene performance metrics based on this
analysis� The multiprocessor system under consideration has a generic
structure� as the one illustrated in Figure ���� We assume a xed num�
ber of �homogeneous� processors and a xed number of �homogeneous�
I
O nodes� Computational nodes and I
O nodes are connected to each
other via a communication network� Through this model we can study
the in	uence on the speedup of communication aspects �synchronizations�
link contentions� scaling factors� and of I
O issues �synchronizations� data
managing before I
O� time spent sending the data to the I
O nodes��

We consider two distinct hardware congurations of I
O systems�

� BUS� I
O nodes are connected via a single bus to the system �Fig�
ure ���a��

� CLU� cluster of processors that shares a common I
O node �Fig�
ure ���b��

The BUS case is a centralized architecture in which a single I
O node� or
a pool of I
O nodes� are connected via a �single� path to the processors�

�Throughout the discussion we consider a monoprogrammed multiprocessor system�
i�e�� there is always only one program is execution�

��

�� CHAPTER �� INTEGRATE MODELS

In t e rconnec t ion Ne twork

Processo r s

I /O nodes

Figure ���� General purpose parallel machine�

I /O nodesProcesso r s

a) b)

Clus te r o f p rocessors

Figure ���� I
O congurations considered� a� BUS� b� CLU�

���� PARALLEL PROGRAM BEHAVIOR ��

Processors accessing the I
O nodes must send
receive data to
from the
gateway processor that manages the I
O nodes� Several components could
become the bottleneck of the I
O� By increasing the number of I
O nodes
we expect that the performance of the I
O improve� however any further
increase of the number of I
O nodes besides a certain limit will saturate
the bus or the gateway processor and do not produce any increase in the
throughput�

In the CLU case� a pool of processors shares an I
O node� When the
number of I
O nodes is equal to the number of processors we have one I
O
node for one processor�

��� Parallel program behavior

Studies on I
O characterization of scientic applications ���� �� ��� ���
showed that I
O behavior is rather regular and cyclic along time� The I
O
properties of many parallel programs result in execution behavior that can
be naturally partitioned into disjoint intervals� each of which consists of a
single I
O burst followed by a single computation burst �see Figure �����

� Computation burst� is partitioned into disjoint sub�intervals each one
consisting of a single burst of CPU activity �pure calculation opera�
tions� followed by a single burst of communication �inter�processors
data exchange��

� I�O burst� I
O read
write operations�

We use the term phase to refer to each such interval composed of an I
O
burst followed by a computation burst�

��� Speedup models

In this section we develop a performance model for a program executed on
a system composed of a single processor and I
O node� We use this model
as a reference model� Let pI�O be the probability of an I
O burst at the
end of a CPU burst� we have that the global computation burst is com�
posed by ��pI�O CPU bursts� Where the average time of the computation
burst is given by Sp� The reason for this representation will be claried
when we will introduce the communication overhead� Figure ��� depicts
the closed queueing network corresponding to the reference model� A sin�
gle job� representing the program in execution� circulates in the queueing
network� The average response time of the circulating job can be expressed

�� CHAPTER �� INTEGRATE MODELS

���
���
���
���

��������������������
��������������������
��������������������
��������������������

����������������
����������������
����������������
����������������

T i m e
phase 1

�����
�����
�����
�����

����
����
����
����

���
���
���
���

�����
�����
�����
�����

����
����
����
����

���
���
���
���

������
������
������
������

���
���
���
���

�����
�����
�����
�����

������
������
������
������

��
��
��
��

�����
�����
�����
�����

�����
�����
�����
�����

������
������
������
������

�����
�����
�����
�����

����
����
����
����

���
���
���
���

�������
�������
�������
�������

��
��
��
��

����
����
����
����

�����
�����
�����
�����

������
������
������
������

����
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

����
����
����
����

���
���
���
���

���
���
���
���

�����
�����
�����
�����

�����
�����
�����
�����

���
���
���
���

����
����
����
����

phase 2

…

Computa t ion bu r s t

I /O burs t

CPU bu r s t C o m m u n i c a t i o n b u r s t

���������
���������

���������
���������

���������
���������
���������
������������������
���������
���������
���������

Figure ���� An example of program behavior�

S p S d

p I /O

Figure ���� Queueing network model of a program executed on a single
processor and I
O node�

���� SPEEDUP MODELS ��

as��

T� " N

�
Sp
pI�O

� Sd

�
� �����

where N represents the average number of phases of the program� Note
that the term Sp�pI�O�Sd is the response time of the queuing network� i�e��
the average execution time of one phase of the program� Throughout the
thesis we will use T� as a reference time� in order to evaluate the speedup
behavior of di�erent parallel programs and architectures�

Suppose we have a parallel program executed on a parallel machine with
p processors and d I
O nodes� We decompose its average execution time
T �p� d� into two terms�

T �p� d� " N�Tcomp�p� d� � TI�O�p� d��� �����

where Tcomp�p� d� and TI�O�p� d� represent the average time of the compu�
tation burst and I
O burst� respectively� The normalized values of these
two times �comp�p� d� and �I�O�p� d� are dened as follows�

�comp�p� d� "
Tcomp�p� d�
Sp
pI�O

� Sd

and

�I�O�p� d� "
TI�O�p� d�

Sp
pI�O

� Sd

�

Throughout the discussion� we indicate the normalized times by small
Greek letters� From ����� we can formulate the speedup� law s�p� d� of
parallel programs that represents a generalization of Amdahl�s law ���� ex�
tended to a system with multiple I
O nodes�

s�p� d� "
T�

T �p� d�
"

Sp
pI�O

� Sd

Tcomp�p� d� � TI�O�p� d�
"

�

�comp�p� d� � �I�O�p� d�
�����

In order to normalize the times which characterize our queueing network
models� we use the time Sp�pI�O �Sd �i�e�� the time required by one phase
of the program executed on single processor and I
O node�� Let �CPU

�With response time we will refer to the average time required by a job to perform a
cycle through the network�

�Our de	nition of speedup should be called relative speedup� However� throughout
this thesis we will refer to it dropping the word
relative��

�� CHAPTER �� INTEGRATE MODELS

and �comm be the respective �normalized� global durations of the CPU and
communication bursts ��comp " �CPU � �comm�� The speedup s can be
expressed as�

s�p� d� "
�

�CPU �p� d� � �comm�p� d� � �I�O�p� d�
� �����

The advantage of using normalized times is that we can evaluate the
speedup of a program by simply calculating the inverse of its execution
time� Indeed� in this way we consider the average execution time of the
same program� on a single processor and I
O node� equal to ��

Figure ��� depicts the generic queueing network used for modeling the
parallel program behavior described in the previous section� The blocks
represent the �sub�models� corresponding to the bursts of the program
phases� A single job� representing the running program� circulates in the
queueing network� According to the type of I
O used by parallel programs�
we can have�

� SIO �Synchronous I
O�� all processors allocated to the program per�
form I
O bursts always at the same time �e�g�� checkpoint and simu�
lation data��

� AIO �Asynchronous I
O�� the processors allocated to the program
perform I
O bursts at di�erent instants of time �e�g�� out�of�core��

We model the SIO cases using a pair of fork�join stations� A single job
represents the I
O activity� When this job is collected by the fork sta�
tion it is replaced with a certain number of jobs which correspond to the
computation burst activities� On the contrary� when all jobs� representing
the computation burst activities� are collected by the join station� they are
replaced by a single job that corresponds to the I
O burst activity�

In the case of AIO models the jobs representing the computation burst
activities perform I
O bursts independently� Hence� as shown in Figure ����
the fork
join pair are removed from the computation burst block of the AIO
model�

��� Computation burst model

����� Introduction

Among di�erent interconnection networks� two extreme situations can be
identied� a fully interconnected system and a single bus system� In the for�
mer case� no contention arises in any communication operation� messages
exchanged between pairs of processors experience a simple delay regardless

���� COMPUTATION BURST MODEL ��

I /O burs t

C o m p u t a t i o n
burs t

CPU burs t

C o m m u n i c .
burst

I/Op
CPU burs t

C o m m u n i c .
burst

I/Op

JoinF o r k

A I OS I O

Figure ���� Structure of the queueing network used for modeling parallel
programs�

of the network usage� In the latter case� when two or more messages are ex�
changed simultaneously� there is always contention for the use of the shared
bus� Di�erent interconnection networks� as for example meshes or trees�
represent tradeo�s between the communication performance and the scala�
bility of the machine� Moreover� it is clear that the impact of the communi�
cation depends also on the software� For instance� a pipeline implemented
on a parallel machine can be realized in such a way that the communication
does not su�er from contention for the communication network� However�
little can be done in order to avoid that the processors waste time during
the communication while they wait for their receiver
sender partners� Even
when the balance of the work among the processors is perfect� there can be
a little di�erence of computation time �e�g�� due to the processor caches�
that puts the processors out of phase�

A common programming paradigm in scientic applications� when ex�
ecuted on distributed memory architectures� involves the decomposition
of the problem domain� Data decomposition is often used as a method
for obtaining some degree of parallelism that is usually easy to manage
and typically matches the problem structure closely� This decomposition
is translated into a data�domain mapping over the set of computational
nodes� Each node applies a sequence of similar operations to all or most el�

�� CHAPTER �� INTEGRATE MODELS

ements of the local portion of the distributed data structure� Such parallel
applications generally use several N�dimensional arrays that are distributed
in a block fashion among processors� Main advantage of this approach is
the simplicity �thus� the rapidity� of the code development� main drawback
is the concurrency of communications and I
O operations which causes the
interconnection network and
or the I
O system to become the bottleneck
of the system�

In the following sections� we formulate a general model of a parallel
program that attempts to address these issues� In sections ����� and �����
we dene the model parameters which represent the communication times�
In sections ������ ����� and ����� we present the model parameters that
take into account the communication scaling factor� the network contention
and the synchronization during the processor communications� Finally�
section ����� presents the queueing network that models the computation
burst activity�

����� Communication transfer time

The main parameter of the communication is the transfer time �r� It rep�
resents the time that the processor� of the target parallel machine� spends
to transfer a certain amount of data point to point to another processor of
the same machine� Often� this time is referred in literature as the ratio of
the number N of bytes of the data to transfer by the bandwidth Tb of the
communication network� expressed in byte
sec� Since �r is a normalized
time� it corresponds to the percentage of total communication time with
respect to the program execution time on a single processor and I
O node�

����� Communication startup time

We must also consider a parameter that models the communication startup
time� which is practically present in all networks� We use the parameter �r�
�a real number � �� in order to represent the normalized communication
startup time�

����� Dimensions of data space

Generally� the amount of inter�processors communication depends on the
hyper�perimeter of the distributed data structure �while the computa�
tional load usually depends on the hyper�volume�� For instance� in low�
level image processing applications� the working data structure is a two�
dimensional matrix of pixels� usually partitioned into square blocks� or win�
dows� among the processors� The size of the messages exchanged among
processors is proportional to the length of the internal border of adjacent

���� COMPUTATION BURST MODEL ��

4=p 16=p

D a t a
D o m a i n

r = 2
rσ

2
rr σσ =

p
4

rr σσ =
p

Figure ���� Example of communication scaling factor for a bidimensional
data domain�

windows� Thus� the size of message is reduced by a factor of
p
p �see Fig�

ure �����

We can generalize this idea for a generic number of dimensions r of
the program data space� introducing a scaling function g�p�� so that the
average communication time per processor is given by �rg�p�� The choice
of the scaling function g�p� depends on how the data domain is partitioned
among the working processors� Through the scaling function g�p� we are
able to capture a broad class of parallel applications� For instance� when
g�p� " �� we suppose that the communication factor does not scale with
the number of processors �it is the case of a data domain partitioned along
one dimension�� Since the ratio between the hyper�volume and the hyper�

perimeter of the hyper�cube� representing the program data� is p
r��
r � we

have�

g�p� " ��p
r��
r � �����

As particular cases we often consider two extreme situations� r " � and
r ��� which correspond to g�p� " � and g�p� " ��p� respectively�

�� CHAPTER �� INTEGRATE MODELS

����� Synchronization level

In this section we dene a parameter that captures another important be�
havior� the synchronization among the processors during the communica�
tion� The number of processors c� an integer � � c � p� involved in the
synchronous communication is referred as Synchronization Level� When
c " � we assume that the processors perform asynchronous communica�
tions� When c � �� it represents the number of processors involved in
synchronous collective communications� For instance� if p " � and c " ��
then we have p�c " � groups� composed by c " � processors� The pair
of processors� belonging to the same group� communicate to each other by
means of synchronous send
receive operations�

����� Network contention level

In the previous sections we have not considered the communication con�
tentions� Indeed� the term g�p��r represents only the time spent trans�
ferring data� Di�erent types of interconnection networks lead to di�erent
ways of modeling� For instance� a bus interconnection can be modeled as a
queueing server� since it is capable of handling one message at a time� while
a fully interconnected network can be modeled as a delay center since the
messages never queue for a link� More realistic network topologies �e�g� �D
meshes� hypercubes� toruses� are more complex to model �they require the
exact knowledge of the network routing mechanism��

We dene the Communication Contention Level w� a real number � �
w � �� that allows us to switch from the bus interconnection network
architecture �w " �� to the fully connected one �w " ��� The intermediate
values represent di�erent network architectures such as meshes� trees� etc��
in which the communication among the processors has delays due to the
occupation of the connection network� The value of w depends on the
communication hardware and on the program algorithm� For instance if
the processors of a program that is executed on a machine with a mesh
network topology communicate always with their neighbors� the network
behaves like a delay� i�e�� w " ��

����	 The model

We now exploit the parameters above dened in order to develop a queue�
ing network model that represents the time spent by a program during a
computation burst� As mentioned before� we refer to this model as compu�
tation burst sub�network and we use it inside the various models presented
in the following sections� Figure ��� shows this sub�network only for the
case of asynchronous I
O �AIO�� while for the case of synchronous I
O

���� COMPUTATION BURST MODEL ��

c delays

F o r k Join

F o r k Join

p roces so r s

r0r)()1(σσ +− pgw)(r pgwσ

cp

1

I/Op

C P U b u r s t
sub -mode l

Communica t ion bu r s t
sub -mode l

c delays

p /c delays

ppσ

ppσ

Figure ���� Sub�network that simulates the computation burst�

�SIO� it is su�cient to include the fork
join pair in the model� as depicted
in Figure ����

A job entering in the sub�network represents a group of c processors
which communicates among themselves by means of collective communi�
cation operations� Each job proceeds rst to a set of delays that models
the processors� then proceeds to the two service centers representing the
communication network �the communication sub�model�� On average� a
job performs a certain number of cycles through the sub�network� given by
the probability pI�O� and then exits the sub�network�

As shown in Figure ���� the processors elaboration is represented by p�c
delays and as many pairs of fork
join stations simulating the synchroniza�
tions��

A job arriving in the fork station is split into c new jobs each of them
representing a single processor computation� At this stage� the c jobs are
collected by the same number of delay stations� Each of them will perform
a delay �given by �p�p� that represents pure calculation� Finally� the join
station collects the jobs arriving from c delay stations and� when all the

�When we have more than one jobs� the symbol of the delay is replaced by a group
of delays equal to the number of jobs that the delay station can serve� Throughout the
thesis we simply refer to this group of delays as delay�

�� CHAPTER �� INTEGRATE MODELS

jobs are received� it replaces them by a new single job representing the
group of synchronized processors�

The conditions p " c and c " � correspond to special cases� The former
represents the situation in which all processors are synchronized before
each communication� i�e� there is only one job in the sub�network� The
latter corresponds to the case in which all processors perform asynchronous
communications�

The time elapsed between the arrive of the job in the fork station until
that job departs the join station� is a random variable dened as X "
maxfX�� � � � �Xcg� Where X�� � � � � Xc are random variables exponentially

distributed with the same mean
�p
p
� representing the c processor delays�

X is then a hypoexponential distributed random variable with mean given
by �����

E �X� "
�p
p

cX
i��

�

i
�

Therefore� the response time of the fork
join pair� is given by h�c�
�p
p
� where

h�c� "
cX

i��

�

i
� �����

The communication burst sub�model is composed by two service cen�
ters� a delay and a queuing center� We now analyze how the parameters�
dened in the previous sections� are mapped into this sub�model �see Fig�
ure ����� The startup time �r� becomes a simple delay of the communication
burst� The communication time �r is split into two terms� �� � w��r and
w�r� The former corresponds to the time of the delay station� the latter to
the service time of a queueing station� In this way we can switch� as men�
tioned in section ������ from the case without contention �w " ��� i�e�� in
which the connection network behaves as a pure delay station� to the case
with maximum contention �w " ��� i�e�� in which the connection network
behaves as a pure queueing station� The values of w such that � � w � �
represent intermediate levels of communication network contention�

In principle� we should consider the fact that �r� and �r are functions
of c� This dependence� however� is not known a priori and is in	uenced by
factors strongly dependent on the language used� on the type of collective
operation �broadcast� gather� scatter� etc�� and on the hardware of the
parallel machine� For these reasons we introduce the simplication �r� "
const and �r " const�

���� I�O MODELS ��

��� I�O models

It is di�cult to provide a general discussion of parallel I
O because di�er�
ent parallel computers have radically di�erent I
O architectures and hence
parallel I
O mechanisms�

Our I
O model comprises a simple delay� equal to �n� followed by a
queueing station with service time equal to �d multiplied by a scaling func�
tion�

For BUS models the delay station can simulate� for instance� the time
spent by the system transferring data from the processors to the I
O nodes�

For CLU models we can think the delay as the time �if any� spent by
the parallel program to redistribute the data to transfer before the I
O
operation� For example� if distributions on disk and in memory di�er� then
a large number of reads or writes may be required in order to achieve data
transfer� This problem is analogous to what happens when transferring
data structures between two parallel program components that require dif�
ferent distributions� In this situation at least two approaches are possible�
we can modify one or both components to use di�erent distributions� or we
can explicitly redistribute data before or while transferring it� Because I
O
requests tend to be more expensive than interprocessor communications� it
is often better to perform an explicit redistribution of data in memory so as
to minimize the number of I
O requests� This leads to a two�phase access
strategy� in which the data distributions used on disk and in memory are
decoupled�

The service time of the queueing station represents the time spent by
the I
O node managing the data� If the I
O nodes correspond to disks it
represents the time spent to read
write the data from
to the disks� While� if
the I
O nodes correspond to SIMD processors� it represents the time spent
to execute the SIMD procedure� We will always assume that this service
time scales as ��d� since the data are �striped� across the I
O nodes�

��� Model parameter summary

The parameters used throughout the thesis are summarized in Table ����
The parameters which refer to times in the computation burst �i�e�� �p�

�r� and �r� are normalized with respect to the time Sp � pI�OSd� The
parameters �d and �n are instead normalized with respect to Sp�pI�O�Sd�
As consequence� all the previous parameters represent fractions of time with
respect to the time required by the program executed on a single processor
and I
O node�

�� CHAPTER �� INTEGRATE MODELS

Parameter Meaning Type

p number of processors Integer ������

d number of I
O nodes Integer ������

�p computation time Real ��� ��

�r� communication startup time Real ������

�r communication time Real ������

�n time spent transferring I
O data Real ������
or spent redistribute I
O data

�d I
O node time Real " �� �p
r number of dimensions Integer ������

of the program data space

w Communication Contention Real ��� ��
Level �� " delay� � " queue�

c Synchronization Level �number of processor Integer �� � � � p�

Figure ���� Models parameters summary

Chapter �

Model analysis

In the preceding chapter we have shown the models corresponding to vari�
ous software
hardware aspects of the parallel applications� In this chapter
we will describe how to use these models and we will develop and illustrate
the algorithm required to evaluate the models�

Section ��� presents two optimistic situations in which we neglect the
communication and �n� In sections ���� ���� ��� and ��� we describe four
models obtained by combining the two possible hardware congurations
�i�e� BUS and CLU� with the two types of I
O �i�e�� SIO and AIO�� In
section ��� we present two simple case studies�

��� The optimistic cases

We consider optimistic situations in which we neglect the e�ects of com�
munication and of time �n� This analysis leads to two models� the rst
one for AIO programs and the second one for SIO programs� These models
provide simple upper bounds of the speedup that can be obtained from real
parallel programs�

The model for optimistic AIO programs �Figure ���� consists of two
delay stations� A delay �p�p represents the processor computations and a
delay �d��dp� represents the I
O nodes time� The latter delay scales with
��p since we assume that the time �d� corresponding to the whole data set�
is distributed among the processors� From this model we can formulate a
simple relation that expresses the normalized average execution time for
one program phase�

�AIO�p� d� "
�p
p

�
�d
dp
� �����

From ����� we can obtain the speedup as a function of number p of proces�

��

�� CHAPTER �� MODEL ANALYSIS

p I /O

C P U b u r s t
s u b - m o d e l

Communica t ion bu r s t
s u b - m o d e l

I /O Burs t
s u b - m o d e l

dp

Sd

p

SpI /O Burs t
s u b - m o d e l

p delays

p delays

Figure ���� Queuing network model of the AIO optimistic case�

sors and the number d of I
O nodes�

sAIO�p� d� "
�

�p
p

�
�d
dp

�����

As discussed in the preceding chapter� in SIO models we must introduce
the fork
join pair� in order to take into account the e�ect of I
O synchro�
nizations �see Figure ����� The e�ect of the fork
join on the speedup is
achieved by means of factor h�c� dened in ������ Therefore� the speedup
can be then expressed as�

sSIO�p� d� "
�

h�p�
�p
p

�
�d
d

�����

Figures ��� and ��� show the speedups obtained by using ����� and ������
respectively� They should be interpreted as upper bounds of the corre�
sponding speedup surfaces which will be presented throughout this chap�
ter� However� it is already possible to see the huge di�erence between
the speedup of AIO and the speedup of SIO� Nevertheless� as described in
section ���� the purpose of these two types of I
O is di�erent�

Note that from our denitions it is easy to see that �p��d " �� There�
fore �p and �d represent the respective percentage of processor computation
time and I
O time� with respect to the total execution time on a sequential
architecture�

���� THE OPTIMISTIC CASES ��

p I/O

CPU burs t
sub-model

Communicat ion burst
sub-model

I/O Burst
sub-model

d

Sd

p

Sp

F o r k Join

I /O Burst
sub-model

p delays

Figure ���� Queuing network model of the SIO optimistic case�

10
20 30 40

50 60
70

10

20

30

40

50

60

70
0

20

40

60

80

100

Processors
Disks

Sp
ee

du
p

Figure ���� Optimistic AIO speedup surface� �p " ������ �r� " �r " � "
�n " ��

�� CHAPTER �� MODEL ANALYSIS

10
20 30 40

50 60
70

10

20

30

40

50

60

70
0

2

4

6

8

10

12

14

16

18

Processors
Disks

Sp
ee

du
p

Figure ���� Optimistic SIO speedup surface� �p " ������ �r� " �r " � "
�n " �

��� BUS	SIO Model

BUS�SIO model simulates parallel programs which performs synchronous
I
O� executed on architectures with centralized I
O strategy� An exam�
ple of this scenario is an architecture with redundant disk arrays �RAID
disks� or an hybrid MIMD�SIMD machine� Figure ��� depicts the BUS�
SIO model� In order to determine the speedup of BUS�SIO model� we
rst evaluate the time �comp �i�e�� the time spent by the program during
the computation burst�� by estimating the computation burst sub�network
response time�

Let D�p� be the service time of communication queueing station given
by�

D�p� " w�rg�p�� �����

and let Z�p� be the sum of all delays belonging to the computation sub�
network�

Z�p� " h�c�
�p
p

� �r� � ��� w��rg�p�� �����

we have ���� �see Appendix B��

�comp�p� "

p�cX
i��

�

i
R�i� Z�p�� D�p�� p � �� �����

���� BUS�SIO MODEL ��

F o r k Join

d
d

n

σσ +

F o r k Join

c delays

F o r k Join

c delays

p roces so r s

r0r)()1(σσ +− pgw
)(r pgwσ

cp

1

I/Op

p /c delays
Communica t ion bur s t sub-mode l

I /O burs t sub-mode l

CPU bu r s t sub -mode l

ppσ

ppσ

Figure ���� BUS�SIO queueing network model�

�� CHAPTER �� MODEL ANALYSIS

where R�i� z� x� is the response time of a closed queueing network with
population i composed of a delay z and a queueing station with service
time x� The response time R�i� z� x� is given by �see Appendix A��

R�i� z� x� " z � d

X
�e��e���L�i��

e� � �

e�#
xe�ze�

X
�e��e���L�i��

�

e�#
xe�ze�

�����

where L�
i is the set of pairs �e�� e�� of non�negative integers such that

e� � e� " i�
The time of the I
O burst is given by the following equation�

�I�O�d� " �n �
�d
d
� �����

As mentioned in section ���� �n re	ects� in this case� the degradation of
performance due to centralized I
O strategy� Consider the case of a paral�
lel machine connected via communication network to a gateway processor
which in turn is connected to a RAID disks controller� Besides the time
taken by the disks to manage the data� there are other overheads related
to the path processors memory
disks� These overheads are� the time spent
transferring data from the processor memories to the I
O processor� the
time to transfer the data through the bus of the RAID controller and the
time taken by the controller to strip the data across the disks� �n can be
considered as the sum of the above times�

Upon substituting equation ����� and equation ����� into ������ we can
evaluate the speedup s�p� d��

����� Asymptotic analysis

By means of �comp and �I�O it is possible to know the speedup behavior
when p�� or d���

Case p��
When w " � the communication sub�network is composed only by delay
stations� Then �h�m� 	 lnm��

�comp 	 ln
p

c

�
�p
p

ln c� �r� � �rp
��r
r

�
� �����

This means that� when r � � and �r� " �� for large values of p� the speedup
tends to ���I�O �because �comp � ��� On the contrary� if r " � or �r�
" �
we get �comp ��� then the speedup tends to zero�

���� BUS�AIO MODEL ��

If w � � from ����� we have�

lim
p��

�comp�p� " lim
p��

p�cX
i��

�

i
R�i� Z�p�� D�p��� ������

Studying the convergence of the series in ������� when w � �� it is possible
to conclude that the asymptotic speedup is zero� Indeed� for large values
of p we can write�

R�i� Z�p��D�p�� 	 iD�p� " iw�rg�p��

and then�

�comp�p� "

p�cX
i��

�

i
R�i� Z�p��D�p�� �"

p�cX
i��

w�rg�p� "

"

p�cX
i��

w�rp
��r
r "

p

c
�

�

c
w�rp

�

r �

From the last equation we have�

lim
p��

�comp�p� " ���

We conclude that the asymptotic speedup is zero�

Case d��
In this case the I
O burst time tends to �n� while the computation term
remains constant� We conclude that�

s�p��� "
�

�comp � �n
�

��� BUS	AIO model

The BUS�AIO model represents centralized I
O architectures and parallel
applications characterized by asynchronous I
O�

Since in this case we do not have any I
O synchronization� we remove
from the model the fork
join pair� The I
O burst is represented by a
queueing station with service time given by c��n��d��dp�� �see Figure �����
As in the optimistic AIO case� we assume that the service time of the
I
O queueing station scales as ���dp�� Furthermore� since c processors are
involved in a collective communication� it is reasonable to assume that these
processors perform the I
O burst at the same time� Therefore� we consider
the service time of the I
O station proportional to c�

�� CHAPTER �� MODEL ANALYSIS

 +

dp
c n

dσσ

F o r k Join

c delays

F o r k Join

c delays

p roces so r s

r0r)()1(σσ +− pgw
)(r pgwσ

cp

1

I/Op

p /c delays

ppσ

ppσ

Figure ���� BUS�AIO queueing network model�

���� BUS�AIO MODEL ��

Though the two BUS models are similar� the solution technique is sub�
stantially di�erent� BUS�AIO queueing network can be solved by means
of exact MVA algorithm� This queueing network is composed by a delay
station Z�p�� given by ����� and by two queueing stations� The service time
of the rst queueing station is D�p�� given by ������ The service time of the
second one is�

E�p� d� " c

�
�n �

�d
dp

�
� ������

By using MVA we have�

�comp�p� d� " Z�p� �D�p�

X
�e��e��e���L�p�c��

e� � �

e�#
D�p�e�E�p� d�e�Z�p�e�

X
�e��e��e���L�p�c��

�

e�#
D�p�e�E�p� d�e�Z�p�e�

������
and

�I�O�p� d� " E�p� d�

X
�e��e��e���L�p�c��

e� � �

e�#
D�p�e�E�p� d�e�Z�p�e�

X
�e��e��e���L�p�c��

�

e�#
D�p�e�E�p� d�e�Z�p�e�

������

where L�
p is the set of triples �e�� e�� e�� of non�negative integers such that

e� � e� � e� " p� From ������ and ������ we can evaluate the speedup of
BUS�AIO model�

����� Asymptotic analysis

Case p���

When w " � we have a simple queueing network composed by a single
queueing station� E�p� d�� and a delay station� Z�p�� The asymptotic re�
sponse time is roughly given by pE�p� d� " pc�n � c�d�d and tends to
innite� We then conclude that the asymptotic speedup is zero�

When w � � we have two queueing stations with service time given
by D�p� and E�p� d�� We note that the response time of a closed queuing
network with large population loads is dominated by the station with the
greatest service time� In general� the asymptotic response time of a closed
queueing network is given by NDk� where N is the population and Dk the
greatest service time time� Since E�p� d� comprises the constant term �n�
we conclude that the asymptotic speedup is zero�

�� CHAPTER �� MODEL ANALYSIS

Case d��
E�p� d� � �n� Therefore the speedup tends to the reciprocal of the response
time queueing network obtained by setting E�p� d� " �n�

��� CLU	SIO model

In some architectures� clusters of processors share a common I
O node
connected to a bus that is separated from the communication network� In
this case� we consider only the congurations such that p � d� Indeed�
the case in which d � p is very rare� more than one I
O node for each
processor�

In the CLU�SIO model� d clusters of p�d processors� sharing a common
I
O node� perform I
O in synchronous manner� From the point of view of
the modeling� BUS�SIO and CLU�SIO are identical and the only di�erence
is in the meaning and the value of the parameter �n� The advantage of the
CLU�SIO is that �n can be� in some cases� zero �i�e�� the program does not
perform any data redistribution before transferring��

��� CLU	AIO model

The model for the CLU�AIO is a multi class closed queueing network in
which the job classes represent tasks running in di�erent clusters of proces�
sors� The multi class technique allows the simulation of di�erent groups of
tasks� belonging to di�erent clusters� following separate paths to the disks�

As mentioned� we consider only the case p � d� For sake of simplicity�
we restrict our attention to cases in which c � p�d and p�d multiple of
c� which ensures that the number of processors synchronized before the
communications belong to the same cluster� However� the methodology of
analysis for the more general case without restriction on c is essentially the
same�

The queueing model for the CLU�AIO has d job classes� a class repre�
sents a set of jobs that is executed in one of the d clusters of processors that
shares a common I
O node� Each class has the same population p��cd��

Figure ��� depicts the CLU�AIO queueing network model� The vector
of population ��n of dimension d� is given by�

��n "

�
p

cd
�
p

cd
� � � � �

p

cd

�
�

The service times of the queueing network is represented by a �d � � � d�

���� CLU�AIO MODEL ��

1-st I/O
node

d-th I/O
node

p
c dσ

F o r k Join
c delays

F o r k Join
c delays

p roces so r s

r0r)()1(σσ +− pgw)(r pgwσ

cp

1

I/Op

p
c dσ

p
pσ

p
pσ

Figure ���� CLU�AIO queueing network model

�� CHAPTER �� MODEL ANALYSIS

matrix G given by�

G "

�
BBBBBBBB�

c�dp � � � � �

� c�dp � � � �

� � � � � � � � � � � �
� � � � � c�dp

D�p� D�p� � � � D�p�
Z�p� Z�p� � � � Z�p�

	
CCCCCCCCA
�

where D�p� and Z�p� are dened in ����� and in ������ respectively� In order
to solve the CLU � �AIO queueing network we use the MVA algorithm
shown in section ������

����� Asymptotic analysis

Case p��
When w " � the model can be considered as mono�class one with popula�
tion p��cd�� a delay Z�p� and a queueing station with service time c�d�p�
The asymptotic response time of the queueing network is then given by�

p

cd
� c

�d
p

"
�d
d
�

Therefore� the asymptotic speedup �the reciprocal of the asymptotic re�
sponse time� is d��d�

When w � �� we have two queueing stations� The asymptotic response
time of the queueing network� is given by the product of the population
p��cd�� the number of classes d and the greatest service time� In this case
the greatest service time is the one of the communication network station

�w�rp
��r
r �� The asymptotic response time of the queueing network is then

given by wd�rp
�

r �c� This means that the speedup tends to zero�

Case p��
Since we restricted our attention to the case p � d� the case d�� makes
sense only if p��� This means that when d " p and d�� the speedup
tends to zero�

��
 Case studies

����� Hybrid MIMD
SIMD machine

Suppose we have a MIMD machine boosted by massively parallel SIMD
arrays� charged with the hugest number�crunching tasks� Consider a pro�
gram executed on this hybrid machine� In this case� the SIMD processors

��	� CASE STUDIES ��

10
20 30 40

50 60
70

50

100

150

200

250

300
0

5

10

15

MIMD Processors
SIMD Processors

Sp
ee

du
p

Figure ���� Example of the speedup surface of a program executed on
a hybrid MIMD�SIMD parallel machine� �p " ���� �r " ������ �r� "
������ �n " ����� r " �� c " �� w " ����

represent the I
O nodes of the system� We can study this scenario by
means of the BUS�SIO model� We chose BUS�SIO since the SIMD board
is connected to the MIMD machine according to the centralized structure�
Moreover� we consider that the hybrid application performs the MIMD and
the SIMD phase� in two disjoint intervals of time� Figure ��� depicts a pos�
sible speedup surface of a program executed on a hybrid machine with ��
MIMD and ��� SIMD processors� Note that a satisfactory speedup can be
already obtained for p " �� and d " ����

����� BUS�AIO vs CLU�AIO

It is of interest to compare the performance of BUS and CLU strategies of
parallel programs which perform out�of�core computations� In the former
case� we suppose to have RAID disks� In the latter case� the disks are
distributed among the processors according to the CLU architecture� The
tradeo� between the two strategies is determined by the parameter �n�
which is present only in the BUS model� We suppose� for instance� that the
I
O burst of the program is ��! of the total execution time �i�e�� �p " �����
Figure ��� shows the speedups of BUS�AIO and CLU�AIO in the case of
d" �� We see that when �� � p � �� the CLU�AIO case has the best
speedup�

�� CHAPTER �� MODEL ANALYSIS

0 10 20 30 40 50 60 70
2

4

6

8

10

12

14

16

18

Processors

Sp
ee

du
p

BUS−AIO
CLU−AIO

Figure ���� Speedup of a parallel program with di�erent I
O strategies�
d " �� �p " ���� �r " ������ �r� " ������ �n " � � ����� r " �� c " �� w " ����

Chapter �

Program Behavior Results

In this chapter we will illustrate how the techniques developed in preceding
sections can be used to study the behavior of real parallel applications�
In section ��� a parallel implementation of MVA on a distributed memory
machine� developed using the MPI library for communication� is described�
We systematically investigate the performance of the algorithm and com�
pare the observed speedup to the one obtained from the analytic model�
The algorithm has been implemented on a Cray T�D machine�

In section ��� we infer the model parameters by tting our model to
an observed speedup surface obtaining the values that yield the best t�
The applications considered were selected among those of the Scalable I
O
Initiative� Each application is comprised of a certain number of programs
executed in a pipeline fashion� each of which is indicated as a �stage��

�� Parallel MVA algorithm

The Mean Value Analysis algorithm is one of the most popular for evalu�
ating the performance of separable �or product form� queueing networks�
Although its complexity is modest when jobs are indistinguishable� the in�
troduction of di�erent customer classes rapidly increases its computational
cost� The problems of parallelizing the algorithm while retaining its con�
ceptual simplicity are examined� In particular� a parallel implementation of
MVA on a distributed memory machine is developed using the MPI library
for communication �����

Algorithms to numerically evaluate queueing networks have been the
subject of much interest� Buzen��� developed the rst algorithm� known as
the convolution algorithm� This algorithm nds the normalization constant
G for a network of M centers and N customers using a simple recurrence
relating G�M�N� to G�M � �� N� and G�M�N � ��� Other performance

��

�� CHAPTER 	� PROGRAM BEHAVIOR RESULTS

metrics� such as mean queue lengths� centre utilizations� etc are found using
G� Although very e�cient� the convolution algorithm is not very intuitive�
and its computations can be a�ected by over	ow or under	ow for large
networks�

Reiser and Lavenberg���� developed a new algorithm� Mean Value Anal�
ysis �MVA�� that uses only meaningful metrics of network performance in
its calculation�

A major advance in speeding up these algorithms has been the recog�
nition of the tree structuring apparent when di�erent classes of customer
only visit subsets of the service centres� It is then possible to signicantly
simplify the calculations for those stations which are not visited by par�
ticular classes of customer� The full complexity of the algorithm needs to
be applied only to service centers where di�erent classes of customer inter�
act� This simplication was originally discovered by Lam and Lien���� and
applied to the convolution algorithm� It can also be applied to MVA and
RECAL�

Parallel implementations of a number of these algorithms have been
proposed� Greenberg and McKenna���� developed a parallel version of RE�
CAL for use on shared memory multiprocessors� Pace and Tucci���� worked
with MVA� Greenberg and Mitrani���� have developed a technique using
fast Fourier transforms to evaluate the normalisation constant G in parallel�
Hanson et al����� also used MVA�

Most of these algorithms have been implemented or proposed for a
shared memory environment� It is a feature of all the algorithms� that they
build up their solutions iteratively� either from the solutions of the same
network with smaller populations� or from solutions to a smaller network
with the same population� Shared memory means that earlier results are
easily available on all processors�

Our interest is in the development of an algorithm which is e�ective in a
distributed memory environment� Here each processor has its own storage�
and data calculated on one processor is not available to other processors
without explicit transmission to the other processor�s memory� Inter pro�
cessor communication needs to be minimized� because it will typically be
several orders of magnitude slower than computations�

����� The algorithm

The aim of a parallel algorithm for MVA must be to calculate the same
results as a uni�processor MVA algorithm� while gaining signicant speedup
by performing some of the calculation in parallel� The precedence graph
will put an upper bound on the amount of parallelism that is possible�

We allocate a processor to be responsible for each population� Each pro�

	��� PARALLEL MVA ALGORITHM ��

3 4 50 1 2

0

1

3

2

processor 1 processor 2

po
pu

la
tio

n
of

 c
la

ss
 B

population of class A

Figure ���� Example of the PMVA algorithm with � classes and � proces�
sors�

cessor may be allocated more than one population� As soon as the preceding
populations have been calculated� calculations can start� If the preceding
populations were allocated to di�erent processors� then the performance
vector must be transmitted between the processors� If the preceding pop�
ulation was calculated on the same processor� then no communication is
needed�

Even if an unbounded number of processors were available� it would
not be sensible to allocate only a single population to a processor� The
communication cost in that case would overwhelm most of the speed up
obtained by parallelism of the computation� We anticipate that a modest
number of processors will achieve an almost linear speedup�

For simplicity� we allocate a population to a processor based only on
the population of the rst class of customers� This is easily implemented
and gives a signicant speed up� It might be possible to run some form of
processor allocation algorithm which toured the precedence graph in order�
allocating the population to a particular processor depending on whether
the processor was already allocated� and on the identity of the processor
used for neighboring populations in the graph�

�� CHAPTER 	� PROGRAM BEHAVIOR RESULTS

����� The implementation

Figure ��� shows the precedence graph of computation in the case of queue�
ing network with two customer classes �named A and B�� Class A has a
population of � customers and class B� � customers� The node at coordi�
nates �r� s� corresponds to the computation of the statistics �queue lengths�
response times� etc�� when the network has r customers of class A and s
customers of class B� The calculation ends when the node at coordinates
��� �� has been evaluated�

In the case of a two processors implementation� the nodes are parti�
tioned solely on the basis of the population of class A customers� Processor
� calculates those nodes that have class populations from � to � inclusive�
and processor � calculates those with class A populations of � or more� In
general� when the nal population is �m�n� processor � is allocated popu�
lations �i� j� for � � i � k and processor � is allocated k � i � m� where
k " m��� In Figure ���� k " � and processor � starts alone and executes
the computation at nodes ��� ��� ��� ��� � � � � �k� ��� in order� It then sends
the results of node �k� �� to processor �� which has been idle until this time�
Processor � executes the nodes from �k��� �� to �m� ��� and simultaneously
processor � executes the nodes from ��� �� to �k� ��� A pipeline is established
with processor � is executing node �r� s� with � � r � k and simultane�
ously processor � computes the results for �t� s � �� with k � � � t � m�
Eventually� processor � reaches node �k� n�� calculates the performance for
that population and transmits it to processor �� Processor � is then idle
while processor � works on nodes �k � �� n� � � � �m�n�� When processor �
reaches the node �m�n� and executes the corresponding computations� the
algorithm terminates�

When more processors are available� the nodes are still partitioned
among processors on the basis of their class � population� If a total class
population of m customers is to be calculated� and there are p processors
available� then each processor is assigned m�p values of class � population�

Networks with C classes of customer generate an C�dimensional prece�
dence graph� Although more complex processor assignment algorithms
would be possible� we have extended the two dimensional algorithm� The
nodes are partitioned on the basis of the population of class � customers�
Processor � starts by evaluating the nodes for populations of class � from
� to k� while all other classes have populations of �� When population k
is reached� processor � starts with population k � �� Meanwhile� proces�
sor � has started the calculation of results for a population of � in class ��
again taking the class � population from � to k� When it reaches k� pro�
cessor � should have nished computations for class � populations up to
m� and should be ready to calculate for population k�� again� but with a

	��� PARALLEL MVA ALGORITHM ��

population of � in class ��

����� Performance prediction of the algorithm

Letting Nc be the population of class c for � � c � C� the execution time
T ��� of the algorithm on a single processor is given by�

T ��� " q���
CY
c��

�Nc � ��� �����

where q��� represents the mean time spent computing a node of the MVA
algorithm in the case of p " �� Since the parallel machines exploit cache
mechanisms during the computations� we assume that q may depend on
the number of processors� The execution time T �p� with p � � is given by�

T �p� " Tcl�p� � Tcm�p�� �����

where Tcm�p� is the time spent communicating and Tcl�p� the time spent
computing� The term Tcl�p� can be estimated from the time to calculate
one node� the number of processors� and careful accounting for the periods
when not all processors are active� Each processor is responsible for a range

of class � subscripts� Most processors deal with a range of size
l
N�	�
p

m
subscripts� The processors that are responsible for a smaller range will be
idle for the processing of a single node� If we assume that the calculation of

a single node takes q�p�� then the rst processor will take time q�p� �
l
N�	�
p

m
to calculate while processor � is idle� It will then proceed to calculate for
the remaining populations of class � through to class C� Hence processor �
will be busy for a time given by�

q�p�

N� � �

p

� CY
i��

�Ni � ��

Before the computation is complete� the pipeline must empty� This involves

the remaining p� � processors each calculating for a time of q�q�
l
N�	�
p

m
�

Adding these terms we get

Tcl�p� " q�p�

N� � �

p

�� CY
i��

�Ni � �� � p� �

�
�����

This formula will be a slight overestimate if the processors are not all re�
sponsible for the same number of subscripts� Dividing them equally� if
N� � � is not exactly divisible by p� one should give d�N� � ���pe to pro�
cessors ���������k� and one fewer subscripts to processors k � �� � � � � p� The

�� CHAPTER 	� PROGRAM BEHAVIOR RESULTS

correction term for the pipeline emptying will be slightly smaller than that
given above when the later processors have fewer subscripts for which to
calculate�

In a similar manner� the communication time can be derived� assuming
that all communications are synchronous�

Tcm�p� " k�p�

�
CY
i��

�Ni � �� � p� �

�
� �����

where k�p� represents the mean time spent communicating the queue lengths
of a node of the MVA algorithm from a processor to its successor in the
pipeline when the number of processors is p�� Finally we can give the ex�
pression of the total time T �p� by means the equations ������ ����� and
������

T �p� " q�p��N����

�
�

p

CY
i��

�Ni � �� �
p� �

p

�
�k�p�

�
CY
i��

�Ni � �� � p� �

�

�����

����� Experimental results

The pipelined implementation described above has been implemented on
the Cray T�D machine at the Edinburgh Parallel Computing Centre� The
algorithm was restricted to the case of load independent service centers�
This was only for implementation convenience� and does not represent a
restriction on the applicability of the method� The C programming lan�
guage was used� with all real values being expressed as double variables�
which occupy � bytes� The MPI message passing library was used to provide
interprocessor communications� Synchronous communication was used� so
that the sender of a message would block until it had been successfully
received�

The following parameters were chosen so that the program takes about
�� minutes elapsed time when running on a single processor�

� C " � �number of classes��

� K " � �number of centers��

� N� " ����� N� " ���� N� " ��� �classes populations��

The execution times�� the speedups and the relative e�ciency� of the
program with increasing number of processors are shown in the Figures ���� ���
and ���� respectively�

	��� PARALLEL MVA ALGORITHM ��

1

10

100

1000

10000

1 2 4 8 16 32 64 128 256 512

T
ot

al
 ti

m
e

[s
ec

]

Number of processors

Case study R = 3, Q = 5, Pop = 4095 X 177 X 127

Figure ���� Execution times of the pipeline MVA algorithm on Cray T�D
machine�

1

10

100

1000

1 2 4 8 16 32 64 128 256 512

S
pe

ed
up

Number of processors

Case study R = 3, Q = 5, Pop = 4095 X 177 X 127

PMVA’s Speedup
Ideal

Figure ���� Speedup of the pipeline MVA algorithm on Cray T�D machine�

�� CHAPTER 	� PROGRAM BEHAVIOR RESULTS

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 4 8 16 32 64 128 256 512

R
el

at
iv

e
ef

fic
ie

nc
y

Number of processors

Case study R = 3, Q = 5, Pop = 4095 X 177 X 127

Figure ���� Relative e�ciency of the pipeline MVA algorithm on Cray T�D
machine�

130

135

140

145

150

155

160

165

170

175

2 4 8 16 32 64 128 256 512

k
pa

ra
m

et
er

 [m
ic

ro
se

c]

number of processors

Case study R = 3, Q = 5, Pop = 4095 X 177 X 127

Figure ���� The k parameter of the pipeline MVA algorithm on Cray T�D
machine�

	��� PARALLEL MVA ALGORITHM ��

Figure ��� shows the average k�p� with p from � to ���� Notice the
di�erence between k��� and k�p� when p � �� This is due to the di�er�
ent behavior of the pipeline and the use of synchronous communications
among the processors �see Figure ����� Further when p � � the mean time
communicating k�p� decreases as the number of processors increases� This
is because the relative amount of load imbalance decreases as the amount
of work is distributed amongst more processors decreases� Suppose a pro�
cessor nishes a lot sooner than all the others� it will start wait until the
receiver is ready to receive� hence its communication time will re	ect this�
As the amount of work is distributed any potential load imbalance will de�
crease in proportion� hence it will appear that the communication time is
coming down�

����� Interpretation of the results

Using Equation ����� and the experimental results we can evaluate the
parameter q����

q��� "
T ���

RY
i��

�Ni � ��

" ����	sec� �����

In order to evaluate q�p�� when p � �� we can exploit the measured time
Ki�p� that is the total time spent communicating from the processor i�
Since the measured time T �p� can be considered as the execution time of
p�th processor� we obtain�

q�p� "
p�T �p��Kp�p��

CY
i��

�Ni � ��

" ����	sec�� �����

Figure ��� shows the parameter q�p� obtained in this way� We observe
that the computation time q�p� depends on the number of processors� This
e�ect is because of di�ering data being stored in the high speed memory
cache�

�Notice that k�p includes the waiting time of the synchronous communications�
�Because the T�D machine does not accept job running with only one processor� the

execution time for the case p � � is considered to be equal the time obtained with the
program running on two processor job with population of class � given by ��N���� ��
without communications and keeping one of two processors idle�

�The timeKi�p also includes the time spent waiting in the communication operations�

�� CHAPTER 	� PROGRAM BEHAVIOR RESULTS

.

.

.

.

.

.

C

C

C

S

S

C

WR

C

R

R

C

C

C

C

C

S

S

S

S

WS

WS

WS

C

C

C

C

C

C

C

C

C

C

C

S

S

S

S

S

S

R

R

WR

WR

R

RS

R

R

R

R

R

WS

S

R

WR

R

R

WR

WR

P1P1 P1P2 P2 P3 P4

C

S

WR

WS

R

Computation operations

Waiting for Send

Send operation

Receive operation

Waiting for Recive

Time

LEGEND:

Figure ���� Behavior of the pipeline MVA algorithm with two and four
processors�

	��� PARALLEL MVA ALGORITHM ��

16

17

18

19

20

21

22

23

24

25

1 2 4 8 16 32 64 128 256 512

h
pa

ra
m

et
er

 [m
ic

ro
se

c]

Number of processors

Case study R = 3, Q = 5, Pop = 4095 X 177 X 127

Figure ���� The q parameter of the pipeline MVA algorithm on Cray T�D
machine�

����� Improving the performance of the program

The performance of the pipeline MVA algorithm depends strongly on the
input problem� The speedup smva�p� of the program is given by dividing
T ��� by T �p�� that is�

smva�p� "

q���
CY
i��

�Ni � ��

q�p��N� � ��

�
�

p

CY
i��

�Ni � �� �
p� �

p

�
� k�p�

�
CY
i��

�Ni � �� � p� �

� �

�����
Dividing both numerator and denominator of ����� by k�p� and supposing

�p� " h�p�
k�p� h���

k�p�
�� we obtain�

smva�p� "

�p�
RY
i��

�Ni � ��

�p��N� � ��

�
�

p

RY
i��

�Ni � �� �
p� �

p

�
�

RY
i��

�Ni � �� � p� �

�

�����

�This is true when we can neglect the e�ect of the cache� In our case study this is
true when p � ����

�� CHAPTER 	� PROGRAM BEHAVIOR RESULTS

When the e�ect of the pipeline delays are negligible� that is when
RY
i��

�Ni�

��� p� Equation ����� becomes�

smva�p� "

�p��N� � ��

�p�

p
�N� � �� � �

� ������

Then the relative e�ciency e�p� "
smva�p�

p
is�

e�p� "

�p��N� � ��

�p��N� � �� � p
� ������

Hence when
�p��N� � �� � p we can obtain from the program a relative
e�ciency near to ��

Equation ������ implies that one should arrange the classes such that
class � has the largest population� This will ensure that
�p��N� � �� is
as large as possible with respect to p� The e�ect of the ordering of the
other classes will be minimal� although cache e�ects may give rise to small
di�erences in performance�

Figure ��� shows the execution times when the same queueing network
is analyzed� but with the classes presented in a di�erent order� For instance
the case ABC means the class A corresponds to the class with index i " �
in the MVA algorithm� the class B with index i " �� and so on� We see
that the two cases ABC and ACB have the best execution times� that is
when the class with the largest population has index i " ��

����	 Model validation

In order to evaluate the usefulness of our speedup models� we compare the
performance gures of the pipeline MVA with our analytic model result�

Because pipeline MVA does not perform any I
O� the type of models
CLU and BUS are� in this case� equivalent� We must choose the AIO
model� since� even though there is not I
O ��p " �� we do not want that
the processors are synchronized at the end of the computation burst� The
absence of I
O can be obtained by setting �p " � �i�e�� �d " �� and �n " ��

Since we have synchronous communications between all pairs of con�
tiguous processors of the pipeline� we choose c " �� Moreover� there is no
contention using the communication network� because the pipeline stages
are mapped to contiguous processors of the T�D mesh� Therefore� w " ��

The algorithm data space is unidimensional �r " ��� and hence g�p� " ��
In ���� performance measures of MPI send �standard and synchronous�

are available� The bandwidth Tb and the latency L� for the message size

	��� SPEEDUP SURFACES OF APPLICATIONSWITH INTENSIVE I�O��

0

50

100

150

200

250

300

350

2 4 8 16 32

T
ot

al
 ti

m
e

[s
ec

]

number of processors

’ABC’
’ACB’
’BAC’
’BCA’
’CAB’
’CBA’

Figure ���� Execution time of the PMVA with di�erent order of classes in
the algorithm� NA " ����� NB " ���� NC " ���

Ms " ��B of our case study� are ���MB
sec and ����	sec� respectively�
In order to evaluate �r and �r� we need to know to computation time of
the PMVA algorithm between two communications� This is the average
time spent computing a node of the MVA algorithm �	 q��� " ����	sec��
multiplied the population of class � �N� " ������ By normalizing the
communication times� with respect to the computation time� we obtain�

�r "
Ms

Tbq����NA � ��
" ������ � ���
� ������

�r� "
L

q����NA � ��
" ������ � ����� ������

Figure ��� shows a comparison between the experimental speedup with
the one obtained from the BUS�AIO model� Note that we needed only the
sequential computation time and an estimate of the communication times�

�� Speedup surfaces of applications with inten�
sive I�O

In this section we show the speedup surfaces of three I
O intensive pro�
grams� The applications considered were selected among those of the Scal�

�� CHAPTER 	� PROGRAM BEHAVIOR RESULTS

2 4 8 16 32 64 128 256 512
0

50

100

150

200

250

300

Processors

Sp
ee

du
p

analytical
experimental

Figure ���� Comparison between the experimental speedup and BUS�AIO
model speedup�

able I
O Initiative�� that exhibit a nonnegligible speedup� Each application
is comprised of a certain number of programs executed in a pipeline fashion�
each of which is indicated here as a �stage� �����

The experimental platform used is the ����node Intel Paragon XP
S
with �� �GB Seagate disks� each attached to a computation node� at the
Caltech Center of Advanced Computing Research� Performance measures
are collected using Pablo� a performance analysis environment that provides
trace data for the I
O and CPU requests of the parallel applications�

The rst application considered is QCRD �Quantum Chemical Reaction
Dynamics� that solves the Schroedinger equation for the di�erential and
integral cross section of the scattering of an atom by a diatomic molecule�
It was e�ectively used to investigate the reaction between a deuterium atom
and a diatomic hydrogen molecule and led to the discover of a geometric
phase e�ect that had not been detected before� QCRD implements the
method of symmetrical hyperspherical coordinates and local hyperspherical
surface functions with a typical SPMD structure� All nodes execute the
same code on di�erent portions of the data set each of equal size so as

�The Scalable I�O Initiative is an e�ort to collect a suite of I�O intensive national
challenge scienti	c applications� characterize their behavior in terms of I�O access pat�
terns� analyze their performance and use the gathered information to design and evaluate
policies for the management of parallel 	le systems�

	��� SPEEDUP SURFACES OF APPLICATIONSWITH INTENSIVE I�O��

to keep the load balanced� The execution is divided into � consecutive
stages that proceed in a pipeline fashion� During stage �� a twodimensional
eigenvalueeigenvector problem is solved and a primitive surface function
is obtained� All the nodes perform a series of interleaved writes to the
basis le� During stage �� each node independently computes a subset of
the integrals that are needed to evaluate the two�dimensional quadratures
involving the primitive basis functions� Both read and write operations are
performed by all nodes� In stage �� the integrals computed at the previous
stage are collected into dense matrices� Each node reads the basis matrices
and solves the tridiagonal system resulting from the tridiagonalization of
the generalized eigensystem� Di�erent parts of the Hamiltonian matrices
that were solved for are stored at di�erent nodes� In stage � read operations
are followed by computation and then write operations� Every interaction
matrix is loaded at each processor in order to compute the collision energies�
Once the propagator le is computed� it is written out to disks by all nodes�
Finally� in stage � the propagator le is read by all nodes� which then
compute the scattering matrices and write the results to the disks� We
focus on stage � and stage � because they achieve reasonable speedups�

The second application is MESSEKIT� an electronic structure calcu�
lations application that uses the Hartree�Fock algorithm� The electronic
density around a molecule is computed by considering each of the molecule
electrons in the collective eld of the others� iterating the computation until
the eld felt by each electron is consistent with that of the other electrons�
Input to the algorithm is the basis functions derived from the atoms and the
relative geometries of the atom centers� The Coulomb interactions between
electrons are computed by solving the atomic integrals over the basis func�
tions� thus producing an approximate molecular density� The density and
the atomic integrals are then used to derive a Fock matrix� A selfconsistent
eld �SCF� method is nally applied until the molecular density converges
to within an acceptable threshold� The application is comprised of three
logical stages executed in a pipelined fashion� During the rst stage� called
setup� a single node� node �� is active reading initialization data from disk�
calculating the basis sets and writing the results out to disk� Such a stage is
not parallel so it is not modeled here� In stage �� called ARGOS� all nodes
participate in the computation of the atomic integrals� each node writing a
private le with the locally computed integrals� The granularity of the I
O
and CPU bursts is ne� During stage �� called SCF� all nodes repeatedly
read the integral data� construct the Fock matrix� compute� synchronize�
and solve the SCF equations� All nodes operate concurrently� with node
� that periodically reads the intermediate results and writes them out to
disk� We focus on stage ��

Since in the algorithm of the ARGOS and QCRD stage � the proces�

�� CHAPTER 	� PROGRAM BEHAVIOR RESULTS

10
20 30 40

50 60
70

10

20

30

40

50

60

70
0

5

10

15

20

25

Processors

Average error = 0.19%

Disks

Sp
ee

du
p

Figure ����� ARGOS � Experimental speedup surface �dashed line� vs
analytical �solid line�� �p " ������� �r� " ������� �r " ������� r "
������ � ���� w " ������� �n " ������ � �����

10
20 30 40

50 60
70

10

20

30

40

50

60

70
0

5

10

15

Processors
Disks

Average error = 0.20%

Sp
ee

du
p

Figure ����� QCRD stage � � Experimental speedup surface �dashed line� vs
analytical �solid line�� �p " ������� �r� " ������� �r " ������� r " ������ �
����� w " ������� ��� � �����

	��� SPEEDUP SURFACES OF APPLICATIONSWITH INTENSIVE I�O��

10
20 30 40

50 60
70

10

20

30

40

50

60

70
0

1

2

3

4

5

6

Processors

Average error = 0.36%

Disks

Sp
ee

du
p

Figure ����� QCRD stage � � Experimental speedup surface �dashed line� vs
analytical �solid line�� �p " ������� �r� " ���� �r " ������� r " ������� w "
�������

sors perform read
write operation independently� we chose to use the model
BUS�AIO� Instead� for the QCRD stage � the BUS�SIO is more appropri�
ate�

Given a set of observed speedup sp�d we estimated values of the model
parameters that minimize the sum of squared di�erences between the ob�
served values and the tted values s�p� d�� In other words� we minimized�

� "
X
p�d

�s�p� d�� sp�d�
� �

Figure ����� ���� and ���� show the speedups observed vs the speedups
obtained from the estimate parameters
� In each case� we observe that the
tted model is a good match for the observed data� Note that in ARGOS
and in QCRD stage � the value of r tends innite� This means that the
communication time scale as g�p� " ��p�

�Note that the average error is de	ned as�

X
p�d

�s�p� d� sp�d�
�

s�i
�

�� CHAPTER 	� PROGRAM BEHAVIOR RESULTS

Chapter �

Conclusion

In this thesis we have described a modeling approach for investigating par�
allel programs performance when executed on di�erent types of systems�
From these models we obtain the qualitative and quantitative behavior of
programs that alternate computations and I
O in a cyclic fashion� The pro�
posed performance model allows to study the impact of both the communi�
cation contention and I
O of the system� showing the dependence between
speedup and number of processors and I
O nodes in the parallel machine�
Various aspects of the communication and I
O have been analyzed and
di�erent hardware architectures have been taken into consideration�

The purpose of this thesis is to permit an estimate of the program
speedup by inserting in the models the computation times� the communi�
cation times� the number of processors involved in the synchronous commu�
nications and the number of dimensions of the program space data� Con�
cerning the I
O we need to know the size of the data and an estimation
of the parameter �n� The communication contention level w is the most
di�cult to determine� however� by assigning w " � and w " � it is possible
to obtain a lower bound and a upper bound of the speedup� respectively�

Moreover� we have shown that we can infer the program characteristics
of a program by tting our model to observed speedup� With the proposed
modeling technique� the tting of experimental speedup surfaces produced
very small errors� thus it would be appropriate to use these estimated pa�
rameters for allocation and scheduling�

��

�� CHAPTER
� CONCLUSION

Bibliography

��� G� M� Amdhal� Validity of the single processor approach to achieving
large scale computing capabilities� In Proceedings AFIPS ��� Spring
Joint Computer Conference� volume ��� pages �������� April �����

��� F� Baccelli and Z� Liu� On the execution of parallel programs on
multiprocessor system � a queuing theory approach� Journal of the
Association for Computing Machinery� �������������� �����

��� K� R� Backer� Introduction to Sequencing and Software� John Wiley
$ Sons� �����

��� F� Baskett� K� M� Chandy� R� R� Muntz� and F� G� Palacios� Open�
closed� and mixed networks of queues with di�erent classes of cus�
tomers� Journal of the ACM� �������������� April �����

��� S� Baylor and C� Wu� I�O in parallel and distributed computer systems�
chapter Parallel I
O worload characteristics using Vesta� chapter ��
pages File�access character� Kluwer Academic Publisher� �����

��� J� P� Buzen� Computational algorithms for closed queueing networks
with exponential servers� Communications of the ACM� ��������������
September �����

��� J�P� Buzen� Computational algorithms for closed queueing networks
with exponential servers� Communications of the ACM� ��������������
September �����

��� W� W� Chu and K� K� Leung� Module replication and assignment for
real�time distributed processing systems� In Proceedings of the IEEE
Vol� �� No� �� �����

��� E� G� Co�man and P� J� Denning� Operating System Theory� Prentice�
Hall� N� J� Henglewood Cli�� �����

��

�� BIBLIOGRAPHY

���� P� Cremonesi and C� Gennaro� I
o performance in hybrid mimd�simd
machines� In Proceedings of High�Performance Computing and Net�
working ��� volume ���� of Lecture Notes in Computer Science� Am�
sterdam� April ����� Springer�Verlag�

���� R� Suros E� Gelenbe� E� Montagne and C� M� Woodside� A perfor�
mance model of block�structured parallel programs� In Proceedings of
the International Workshop on Parallel Algorithms and Architectures�
pages �������� North�Holland� �����

���� T� Philips E� Gelenbe� R� Nelson and A� Tantawi� The asymptotic
processing time for a model of parallel computation� In Proceedings of
the National Computer Conference� Las Vegas� USA� �����

���� D� L� Eager� E� D� Lazowska� and J� Zahorjan� Speedup versus
e�ciency in parallel systems� IEEE Transaction on Computers�
�������������� �����

���� EPCC� Mpi for t�d performance measures� jun ����� Available at
http�

www�epcc�ed�ac�uk
t�dmpi
Product
Performance
�

���� G� Fayolle� P� J� B� King� and I� Mitrani� On the execution of programs
by many processors� In Proceedings of Performance ��� pages ��������
North�Holland� Amsterdam� �����

���� H� P� Flatt and K� Kennedy� Performance of parallel processors� Par�
allel Computing� �������� �����

���� I� Foster� Design and building parallel programs� ����� Available at
www�mcs�anl�gov
dbpp
text
�

���� E� Gelenbe� Multiprocessor Performance� pages ������ John Wiley $
Sons� Series in Parallel Computing� �����

���� E� Gelenbe and Z� Liu� Performance analysis approximation for par�
allel processing in multiprocessor systems� In Proceedings of the IFIP
Working Conference on Parallel Processing� pages �������� North�
Holland� �����

���� C� Gennaro� Performance models for i
o bound spmd applications
on clusters of workstations� To appear on Proc� of �th Euromicro
Workshop on Parallel and Distributed Processing� �����

���� A�G� Greenberg and J� McKenna� Solution of closed� product form�
queueing networks via the RECAL and tree�RECAL methods on
a shared memory multiprocessor� Performance Evaluation Review�
�������������� �����

BIBLIOGRAPHY ��

���� A�G� Greenberg and I� Mitrani� Massively parallel algorithms for net�
work partition functions� In International Conference on Parallel Pro�
cessing� Chicago� January �����

���� J� L� Gustafson� Reevaluating amdahl�s law� Communication of the
ACM� �������������� �����

���� J� L� Gustafson� G� R� Montry� and R� E� Benner� Development of
parallel methods for a �����processor hypercube� SIAM J� Sci� and
Stat� Computing� ������������� �����

���� J�L� Gustafson� The scaled�sized model� A revision of amdhal�s law�
ICS Supercomputing� II��������� �����

���� K� Salem H� Garcia�Molina� The impact of disk�striping in reliability�
IEEE Database Engineering Bulletin� ������������ mar �����

���� F�B� Hanson� J��D� Mei� C� Tier� and H� Xu� PDAC� A data parallel
algorithm for the performance analysis of closed queueing networks�
Parallel Computing� ����������������� �����

���� U� Herzog and W� Ho�mann� Syncrhonization problems in hierachi�
cally orgasnized multiprocessor computer systems� In Performance of
Computer System� Proc� �th Int� Symp� Modeling Performance Evalu�
ation Computer Syst�� pages ������ North�Holland� Amsterdam� �����

���� A� N� Choudhary J� M� del Rosario� High�performance i
o for mas�
sively parallel computers� IEEE Computer� pages ������ March �����

���� J�R� Jackson� Jobshop�like queueing systems� Manage� Sci�� ����������
���� �����

���� P� J� B� King and C� Gennaro� Parallelising the mean value analysis
algorithm� To appear on Special Issue on Parallel and Distributed
Simulation Transaction of the Society for Computer Simulation� �����

���� S�S� Lam and Y�L� Lien� A tree convolution algorithm for the solution
of queueing networks� Communications of the ACM� ��������������
March �����

���� E� D� Lazowska� J� Zahorjan� G� S� Graham� and K� C� Sevcik� Quanti�
tative System Performance � Computer System Analysis Using Queue�
ing Network Models� Prentice�Hall� Englewood Cli�s� New Jersey�
�����

���� J� D� C� Little� A proof of the queueing formula L " �W � Operations
Research� pages ���������� �����

�� BIBLIOGRAPHY

���� E� L� Miller and R� H� Katz� Input
output behavior of supercomputing
applications� In Proceedings of Supercomputing �� pages ��������
November �����

���� P� Mussi and J� T� Nain� Evaluation of parallel execution of program
tree structures� In Proceedings of the ACM SIGMETRICS Conference
on Measurement and Modeling of Computer Systems� pages ������
�����

���� N� Nieuwejaar� D� Kotz� A� Purakayastha� C� Ellis� and M� Best� File�
access characteristics of parallel scientic workloads� technical report
pcs�tr������� Technical report� March �����

���� L� Pace and S� Tucci� A parallel algorithm for distributed computer
performance evaluation environments� In Proc� ��� Summer Com�
puter Simulation Conference� pages �������� �����

���� B� K� Pasquale and G� Plyzos� A static analysis of i
o characterization
of scientic applications in a production workload� In Proceedings of
Supercomputing ��� pages �������� November �����

���� M� Reiser and S� S� Lavenberg� Mean�value analysis of closed multi�
chain queueing networks� Journal of the ACM� �������������� April
�����

���� M� Reiser and S�S� Lavenberg� Mean value analysis of closed multichain
queueing networks� Journal of the ACM� �������������� �����

���� E� Rosti� G� Serazzi� E� Smirni� and M� S� Squillante� The impact of
i
o on program behavior and parallel scheduling� In ACM Sigmetrics
Conference� June �����

���� P� J� Schweitzer� Exact solution of the MVA equations� SIAM Review�
����������� �����

���� K� S� Trivedi� Probability and Statistics with Reliability� Queueing�
and Computer Science Applications� Prentice�Hall� Durham� North
Carolina� �����

���� M� Vanneschi� Pqe����� Hpc tools for industrial applications� IEEE
Concurrency� pages ������ oct�dec �����

���� K� Wilson� High�performance computing and communications� grand
challenges ���� report� Technical report� Report by the Committee on
physical� mathematical and engineering sciences federal coordinating
council for science engineering and technology� Washington D�C�� �����

BIBLIOGRAPHY ��

���� X� Wu and W� Li� Performance models for scalable cluster computing�
Journal of System Architecture� ����������� �����

�� BIBLIOGRAPHY

Appendix A

Non�recursive MVA formula

In this appendix we derive a non�recursive form of the MVA algorithm for
queueing networks with one job class�

Consider the queueing network shown in Figure A��� Let Sj �� � j � k�
and Z denote the service time of the j�th queueing stations and the delay
of the terminal� respectively� Let p be the number of jobs in the network�
The mean response Rj�p� time of the j�th queueing center is given by�

Rj�p� " Sj

�
�

X
�e������ek����L

k��
p��

ej
ek	�#

Se�� � � � Sekk Zek��

X
�e������ek����L

k��
p��

�

ek	�#
Se�� � � � Sekk Zek��

�
������ �A���

where Lmn is the set of m�tuple �e�� � � � � em� of non negative integers such
that e� � � � �� em " n�

We show a proof of �A��� for k " �� a complete proof can be nd in �����

...

. . .
S 1 S k

Z

p

1

Figure A��� Queuing network used for non�recursive MVA solution�

��

�� APPENDIX A� NON�RECURSIVE MVA FORMULA

Proof� By induction on p� When p " � it is straightforward to verify that
�A��� holds� Assume that �A��� holds for p � �� we show that it holds for
p� From �A��� we can write R�p� �� as�

R�p� �� " S

�
N�p� ��

D�p� ��

�
�A���

Where

N�p� "
p��X
i��

p� i

i#
Sp�i��Zi

and

D�p� "
p��X
i��

�

i#
Sp�i��Zi

The response time R�p� is given by �����

R�p� " S �Q�p� �� � �� �A���

Where Q�p� �� is the mean queueing length when in the network are p� �
jobs circulating� Let X�p� be the throughput of the jobs� given by�

X�p� "
p

Z �R�p�

Therefore using the Little�s law ���� �Q " RX� and �A����

R�p� " S

�
�p� ��R�p� ��

Z �R�p� ��
� �

�

Upon substituting �A��� into the last equation we obtain�

R�p� " S

�
�p� ��SN�p� ��

ZD�p� �� � SN�p� ��
� �

�
" S

�
pSN�p� �� � ZD�p� ��

ZD�p� �� � SN�p� ��

�
�A���

Substituting the expressions of N�p � �� and D�p � �� into �A���� we get
the following formula�

R�p� " S

�
�

p��X
i��

p
p� i� �

i#
Sp�i��Zi �

p��X
i��

�

i#
Sp�i��Zi	�

p��X
i��

�

i#
Sp�i��Zi	� �

p��X
i��

p� i� �

i#
Sp�i��Zi

�
������ �A���

In �A��� it is straightforward to collapse the terms SjZk of the polyno�
mials with the same degrees j and k� For instance� for the numerator�

��

the generic term i�th of the left polynomial �i�e�� pp�i��i� Sp�i��Zi� added
to the term �i � ���th of the right polynomial �i�e�� �

�i����S
p�i��Zi�� gives

p�p�i���	i
i� Sp�i��Zi " �p� �� �p�i�i� Sp�i��Zi� Finally� we obtain�

R�p� " S

�
�

p��X
i��

�p� ��
p� i

i#
Sp�i��Zi

p��X
i��

�p� ��
�

i#
Sp�i��Zi

�
������ " S

�
�

p��X
i��

p� i

i#
Sp�i��Zi

p��X
i��

�

i#
Sp�i��Zi

�
������ �A���

�� APPENDIX A� NON�RECURSIVE MVA FORMULA

Appendix B

Fork�join queueing network
response time

In this section we evaluate the average response time RF�J of the fork
join
system of Figure B���

The response time of this system can be seen as the time taken by the p
jobs to exit the queueing network� We use the Markov chain of Figure B��
in order to obtain an approximate value of this time�

Let
 and U be the exit probability and the utilization of the queueing
station� respectively� the exit rate is given by
U�S� from which we obtain
the time RF�J �

RF�J "
pX
i��

S

Ui
� �B���

where Ui is the utilization of the queue for population i and S is service
time of the queueing station� From the Little�s law we know that�

Ui " XiS "
i

Ri
S �B���

where Xi and Ri are the respective throughput and response time of the
queueing network for the population i� Substituting �B��� into �B��� we
have�

RF�J "
�

pX
i��

Ri

i
�B���

��

��APPENDIX B� FORK�JOIN QUEUEING NETWORKRESPONSE TIME

S

p

1

...

Z

Join

α
F o r k

Figure B��� fork
join system�
 " exit probability� S " queue service time�
Z " terminal think time� p " population�

N N - 1 0

λN λN -1 λ1
. . .

Figure B��� Markov chain used for evaluating the average fork
join response
time�

