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Sommario

I supercomputer massivamente paralleli sono utilizzati sempre piu fre-
quentemente per soddisfare le esigenze di calcolo ad alte prestazioni sia
nel mondo della ricerca sia in quello dell’industria. Le prime architetture
parallele apparse sul mercato erano di tipo vettoriale, architetture in cui i
processori erano in grado di eseguire in modo parallelo una stessa operazio-
ne sui diversi elementi di un vettore. Volendo sfruttare in modo massiccio il
grado di parallelismo di un’applicazione, ¢ apparsa evidente la necessita di
realizzare architetture parallele di tipo general-purpose, costituite da un ele-
vato numero di processori dotati di memoria locale e interconnessi mediante
un’opportuna rete di comunicazione. Allo stato attuale il calcolo parallelo
viene realizzato attraverso macchine specializzate per il supercalcolo MIMD
(Multiple Instruction Multiple Data) o SIMD (Single Instruction Multiple
Data) oppure attraverso reti di workstation. Una nuova famiglia di super-
computer, oggetto di ricerca presso 'ENEA, ¢ composta da sistemi paralleli
ibridi. In queste architetture un sistema di supercalcolo MIMD utilizza un
computer di tipo SIMD come un insieme di coprocessori per le operazioni
di calcolo a virgola mobile pili complesse. In questo modo si accoppia la
flessibilita dei sistemi MIMD nel trattare diversi problemi, con la poten-
za di calcolo dei sistemi SIMD. In questo lavoro di ricerca si propone un
approccio sistematico per ’analisi modellistica del comportamento di ap-
plicazioni parallele, in termini di andamento delle richieste di elaborazione,
delle comunicazioni e delle operazioni di I/O, prendendo in considerazione
le architetture del tipo MIMD, ibride e cluster di workstation. Dal punto
di vista del software si utilizza un modello tipico della maggior parte delle
applicazioni parallele. Tl comportamento di tali programmi &, infatti, sche-
matizzabile come una sequenza fasi, ognuna delle quali consiste in singoli
burst di computazione seguiti da singoli burst di I/O. A sua volta i burst
di computazione possono essere ulteriormente scomposti in burst di calcolo
(in cui sono coinvolte solo operazioni di calcolo dei singoli processori) e bur-
st di comunicazione (in cui viene coinvolta la rete di interconnessione dei
processori). Le comunicazioni tra i processori rappresentano senz’altro un
aspetto rilevante nel determinare le prestazioni dei sistemi paralleli. Tl mo-
dello proposto consente di tener conto di tre elementi importanti presenti
nelle comunicazioni:

e le dimensioni dello spazio dei dati utilizzati dall’applicazione: in que-
sto modo si puo determinare come scalano le comunicazioni con il
numero di processori;

e il livello di contesa sulla rete, che dipende sia dal tipo di hardware di
comunicazione (maglia, memoria comune, albero, etc.) sia dal tipo di
algoritmo parallelo;



e il numero di processori che si sincronizzano durante le comunicazioni.
Puo variare da uno (comunicazioni asincrone) fino al numero massimo
di processori impiegati dall’applicazione.

L’I/O nei sistemi paralleli costituisce il secondo fattore limitante nelle
prestazioni di applicazioni di supercalcolo. Nei sistemi MIMD e nei clu-
ster di workstation viene preso in considerazioni I'I/O verso dispositivi di
memoria di massa. Nei sistemi ibridi diventa importante 1'T/O utilizzato
per la comunicazione fra il sottosistema MIMD e il sottosistema SIMD. Lo
studio di quest’ultimo tipo di I/O & importante in quanto la comunicazione
fra MIMD e SIMD puo diventare il collo di bottiglia di un’applicazione
parallela che voglia sfruttare a pieno la potenza della tecnologia ibrida. 1
modelli proposti permettono di ottenere speedup teorici in termini del nu-
mero di dischi disponibili o del numero di nodi SIMD della macchina reale.
Sono stati previsti due tipi di configurazione di I/O:

e sottosistema centralizzato: in cui I'I/O & gestito da un singolo no-
do della macchina parallela attraverso un canale di comunicazione
connesso ad un disco RAID o a una board SIMD;

e sottosistema distribuito: in questo caso gruppi di nodi della macchina
parallela condividono un canale di I/O tipicamente connesso ad un
disco.

Oltre al tipo di configurazione dell’hardware di I/O, sono stati presi in
considerazione anche le diverse modalita di I/O delle applicazioni parallele:

e I/O sincroni: tutti i processori coinvolti dall’applicazione effettua-
no contemporaneamente trasferimenti attraverso 1'I/O. Si pensi ad
esempio, nel caso di I/O verso unitd di massa, al checkpoint per
visualizzazione e analisi dei dati;

e 1/O asincroni: i processori effettuano I/O in momenti diversi. Sipensi
al caso della computazione out of core, in cui ogni processore salva
i dati in modo indipendente dagli altri allo scopo di liberare spazio
nella memoria RAM locale.

Allo scopo di validare i modelli proposti in questa ricerca, due tipi di
approcci sono stati utilizzati. In una prima fase & stata realizzata una
versione parallela dell’algoritmo MVA per la soluzione di reti di code parti-
colarmente complesse. Essendo note le caratteristiche di tale applicazione
e stato possibile stimare i parametri da introdurre nel modello. Lo speedup
ottenuto dal modello & stato infine confrontato con quello sperimentale. In
una seconda fase sono stati utilizzati gli speedup di alcune applicazioni pa-

rallele forniti dalla Scalable I/O Initiative. Poiché i parametri utilizzati dal



modello corrispondono a caratteristiche misurabili di un programma paral-
lelo, & possibile, attraverso tecniche di approssimazione ai minimi quadrati
fra lo speedup osservato e quello ottenuto dal modello, inferire i parametri
del programma.
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Chapter 1

Introduction

The purpose of massively parallel machines is to solve problems in vari-
ous scientific/engineering domains that would have unacceptable process-
ing times if solved with a traditional single processor machine. The perfor-
mance analysis has emerged as a key area of research in the field of parallel
architectures, ever since the first high performance machines appeared on
the market. This appeared ever more true as the trend of the high per-
formance computer moved from using vector and array processors to using
multiprocessor architectures. Many factors influence the performance of
parallel applications. Hardware or software components, or both can be in-
volved. Examples are: processor speed, processor communication network,
I/O architecture, sequential code, communication network contention and
synchronization protocols, data partitioning, etc.

The first effort to model the performance of parallel programs is due
to Amdahl and the well known homonymous law that relates the num-
ber of processors to the bound of the speedup which may be expected by
parallel processing [1]. This bound has proved useful in shaping our un-
derstanding of parallel system because it strikes a useful balance between
simplicity and precision. Several amendments and extensions to Amdahl’s
law have been proposed, each appropriate for different purposes. Gustafson
et al. [23, 25, 24] introduce the concept of scaled speedup as a measure of
how well an algorithm scales when the number of processors is multiplied
by k. Flat et al. [16] investigate the impact of synchronization and com-
munication overhead on the performance of parallel processors. Eager et
al. [13] studied speedup versus efficiency. Wu et al. [47] propose a formal
definition of scalability and discuss scalability of cluster systems. Finally,
Rosti et al. [42] extends Amdahl’s law to three—dimensional space to in-
clude processors and disks. However, these studies are limited by the fact
that the speedup formulations do not include any explicit parameters that
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reference the communication and I/O overhead or the type of hardware
used for executing the parallel application.

Other approaches use task graph models in order to represent the inter-
task precedence relations within a program, the task execution times, and
the times necessary to transfer data or other information from one task to
other during execution. In the case of program control structures that can
be represented by “series—parallel” task graphs, such as the fork—join struc-
ture, methodology to predict the best speedup which can be obtained with
such program has been developed. In particular, when the task execution
times are deterministic, Coffman et al. [9] used critical path analysis to
find the program completion time. If the task execution times are stochas-
tic and the number of processors is infinite, the probability distribution
time can be determined by a straightforward but in general very costly
computation [28, 3]. General acyclic random graph models are presented
in [15, 36, 12]. Gelenbe [18] generalizes the task graph models so that it
is possible to take into account the effect of communication times between
the tasks.

For more realistic cases where the number of processors is smaller than
the number of tasks in a program, a queueing network approach can be
used. Approximate models are presented in [8, 19, 11] and an exact model
is proposed by Baccelli et al. [2].

Task graphs, as general acyclic graphs, allow the description of sequen-
tial or parallel execution, synchronization, and spawning of task. Never-
theless, the multiprocessor systems considered have a generic architecture
with a finite number of processors sharing a central memory.

This work proposes a new model for parallel systems with distributed
computational and I/O resources when executing parallel applications char-
acterized by cyclic computation bursts and intensive I/O bursts. By means
of queuing network techniques, the analysis of the model leads to the defi-
nition of a generic model that allows simulation of the behaviour of several
parallel architectures.

Traditionally, speedup is defined as the ratio of the elapsed time when
executing a program on a single processor to the execution time when p
processors are available. We extend this definition to include the number
d of I/0 nodes. Because parallel program execution can be partitioned
into two distinct phases, denoted as computation burst and I/O burst, we
consider the p processors devoted to the execution of the computation burst
and the d I/O nodes, to the corresponding I/O burst. An I/O node can
represent a disk or a SIMD processor according to the parallel machine
modeled. For instance consider a hybrid architecture in which a moderate
number of processors (10-20) are arranged in a MIMD way and some (even
all) of them are “boosted” by massively parallel SIMD arrays, used for the



most intensive number—crunching tasks. The clusters of SIMD processors
is connected to the MIMD node through a high speed I/O channel. In
this scenario, several questions may arise, such as: how does the program
speedup scale with the number of SIMD processors? How much does the
I/O channel impact to performance of the program? Is there any advantage
in using the SIMD processors or it is better to use only the MIMD processors
to perform the number—crunching tasks? The approach we propose in this
thesis is, to the best author’s knowledge, the first attempt to address these
kinds of issues.

The purpose of this thesis is to develop analytical performance models
that captures the behavior of numerous applications running on a different
parallel architectures. The idea of our approach is to use queueing network
models. This type of model has the advantage of providing a “white—
box” view of the system to study. Because the parameters of our model
correspond to measurable program characteristics, we can use the model
in order to estimate the execution times for different number of processors

and/or I/O nodes.
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Chapter 2

Parallel architectures

Computational parallelism essentially consists of using more processors
(computational nodes) which cooperate through an interconnection net-
work for the solution of a computational problem.

Any computer, sequential or parallel, executes instructions on data. A
widely used way for classifying computer architectures is Flynn’s taxonomy;,
which considers instruction stream and data stream:

1. SISD: Single Instruction, Single Data;

2. MISD: Multiple Instruction, Single Data;

3. SIMD: Single Instruction, Multiple Data;

4. MIMD: Multiple Instruction, Multiple Data.

For example, a conventional sequential computer would be classified as
Single Instruction Single Data (SISD) as the processor executes at each
step one instruction on one piece of data. We list the main types of parallel
architectures in Figure 2.1. We do not talk about MISD architectues since
they are rarely used in computing.

2.1 Single Instruction Multiple Data architectures

A parallel machine of this class consists of IV identical processors (see Fig-
ure 2.2). Each processor has a local memory in which it keeps the data
which it will work on. In SIMD machines, all processors simultaneously
execute the same instruction, issued by the controller processor, on their
local data. The processors can communicate with each other in order to
perform shifts and other array operations. This approach can reduce both
hardware and software complexity but is appropriate only for specialized

5
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Figure 2.1: Flynn’s taxonomy.

problems characterized by a high degree of regularity, for example, image
processing and certain numerical simulations. If the loads on the processors
are not balanced, performance is poor (because execution is synchronized
at each step, with everything waiting for the slowest processor). Exam-
ples of SIMD computers are the ICL Distributed Array Processor (DAP),
the Thinking Machine Corporation’s CM-200, the MasPar MP and the
Quadrics of QWS.

Quadrics is a high-performance machine capable of facing major com-
puting challenges in several applied fields. Quadrics has a 3D architecture
based on a cubic lattice of nodes. Each node (i.e., one processor plus its
own memory) is connected to the six nearest nodes. The nodes situated
at the extremity of the lattice are linked in a ring shape to those on the
opposite side, obtaining, in fact, a 3D torus.

The processing element on which Quadrics is based is a proprietary
floating-point processor, called MAD (multiply and add device), specifically
designed to perform very efficiently the so—called “normal operation”, i.e.,
a combined multiply—add operation (a x b+ c¢). The processor can deliver
two floating—point operations per cycle. It contains a register file of 128
registers. Each MAD has 4 to 16 MB memory. The architecture of Quadrics
can theoretically span from 8 to 4,096 nodes. In practice, the maximum
configuration is given by 2,048 nodes, 100 Gflops (billions of floating—point
operations per second) of peak power and 32 GB of memory.

As for the evolution of Quadrics technology, the Italian National In-
stitute for Nuclear Physics (INFN) is now developing the next-generation
supercomputer, named APEmille (with local addressing capability, double
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Figure 2.2: An example of a SIMD architecture.

precision, real and complex numbers, integer and logical operations, 8 oper-
ations per cycle, up to 1-2 Teraflops — trillions of floating point operations
per second — of peak power).

2.2 Multiple Instruction Multiple Data architec-
tures

This class of computers is the most general and the most powerful of the
Flynn’s paradigm. MIMD means that each processor can execute a sep-
arate stream of instructions on its own local data. Within this class of
architectures a common method of subdividing them is on the relationship
between processors and memory. This type of subdivision leads to three
main types of MIMD architectures: Shared Memory, Distributed Memory
and Virtual Distributed Memory.

In the shared memory architecture, shown in Figure 2.3, all processors
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Figure 2.3: An example of a Shared Memory architecture.

access to a common memory, typically via a bus or a hierarchy of buses.
The processors communicate with one another by one processor writing
data into a location in memory and another processor reading the data.
With this type of communication the time to access any data is the same,
as all communications goes through the bus.

The advantage of this type of architecture is that it is easy to program
as there are no explicit communications between processors with communi-
cations handled via the global memory. Access to this memory store can be
controlled using techniques developed from multi-tasking computers, e.g.,
semaphores.

However, the shared memory architecture does not scale well. The main
problem occurs when a number of processors attempt to access the global
memory store at the same time, leading to a bottleneck. One method
of avoiding this memory access conflict is subdividing the memory into
multiple memory modules, each connected to the processors via a high
performance switching network. However, this approach tends to simply
shift the problem to the communication network.

Examples of computers with shared memory architecture are the SGI
PowerChallenge, Sequent Balance and Symmetry.

The distributed memory architecture (see Figure 2.4) get around the
drawbacks of the shared memory architecture by giving each processor its
own memory. A processor can only access the memory which is attached
directly to it. If a processor needs data which is contained in the memory
of a remote processor, then it must send a message to the remote processor
asking it to send it the data. Clearly access to local memory can occur
much faster than access to data on a remote processor. In addition to this,
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the further the physical distance to the remote processor, the longer it can
take to access remote data. This non-uniform access time can be affected by
the way the processors are connected. While connecting each processor to
every other one is a possibility for a small number of processors, it quickly
becomes impractical as the number of connections rises. One solution to
the problem of connecting the processors together is to connect a processor
to a small subset of its neighbors. Each of the neighbors in the communica-
tion subset would be connected to a different subset of processors, allowing
for messages to be sent from one processor to another via a number of in-
termediate processors. There are several ways this can be done, one option
would be to use switching chips which allow the user to adapt the topology
of the machine to their own particular needs. Another popular possibility
is to connect the processors in a hypercube arrangement. This has the
advantage of not radically increased number of connections as the num-
ber of processors is increased, while offering a number of different message
routing paths. Also, there are many parallel algorithms and software for
hypercubes. Distributed memory machines have been built using all the
methods described.

Rather than connecting processors together directly, current practice is
to connect the processors to a network of routing chips. The same topology
issues apply in this case but the processors no longer play any part in the
message forwarding. As there can be a different number of processors and
routing chips this allows greater freedom when constructing the network.

While this architecture has the drawback of requiring explicit commu-
nications, it is inherently far more scalable than the shared memory ar-
chitecture which is limited by bottlenecks in accessing its global memory.
Machines which have a distributed memory architecture include the Meiko
Computing Surfaces.

The above classifications are in a sense idealized architectures. Often
actual machines are mixtures of the different types of architectures. An
example of this is the so called virtual shared memory architecture, which
should be differentiated from the true shared memory machines mentioned
earlier. Like the distributed memory machines, each processor has some
local memory, but direct access can be made to remote memory by use
of a global address space. This remote access is possible because of the
incorporation of support circuitry which deals with the communication in-
dependently of the remote processor. This offers the possibility of very
fast communications through the use of sophisticated hardware (though of
course not as fast as local memory access) but with increasing communica-
tion overhead as the transferring distance of the messages travel increases.

An example of a Virtual Shared Memory machine is the Cray Research
T3D and T3E.
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2.3 Hybrid architectures

The world of parallel computing is moving along two directions: the first
depending on existing software constraints (i.e., the huge amount of legacy
codes incorporating even millions of year-persons for their development,
maintenance, and up-dating, over decades); the second, on ambitious goals
like those called “grand challenges”, where significant scientific results can
be achieved only over a computing power threshold in the range of 10 to
1000 Gigaflops. In the first case, the need to be able to run “experienced”
codes at increasing speeds without significantly modifying them, urges the
use of shared memory based platforms that allow up to 10-20 processors to
reach speedups with a satisfactory scalability. In the second case, massive
parallelism is the only reasonable solution, with the consequent price to
be paid in terms of revision of codes, models, algorithms, etc., in order to
“map” each particular problem onto the available computational architec-
ture.

In the frequent cases in which most of the computational weight of a
code is confined in one (or a few) kernel(s), often composed of a few state-
ments, a tradeoff can be reached between the desire of not modifying and /or
customizing the code to specific platforms, and the possibility of achieving
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Figure 2.5: Architecture of two processing elements in a hybrid parallel
computer.

more significant speedups by means of massively parallel platforms. The
solution can be represented by a hybrid architecture where a moderate
number of processors (10-20) are arranged in a MIMD way, while some
other (even all) are “boosted” by massively parallel SIMD arrays, charged
with the hugest number-crunching tasks.

Some computational problems, such as transaction processing, are dom-
inated by integer operations and I/0O. Some other, such as matrix problems
or Monte Carlo simulations, are both highly parallel and synchronous. In
such cases, maximum performance can be achieved by configuring the sys-
tem with a moderate number of super-scalar processors, each processor
with its own I/O system and a large array of simple SIMD processors. As
illustrated in Figure 2.5, SIMD processors are partitioned into clusters and
each cluster is connected to the MIMD node through a high speed I/O
channel [10].

In order to take advantage of both the flexibility of a MIMD architec-
ture and the scalability of a massively parallel SIMD architecture, the Na-
tional Agency for New Technology, Energy, and Environment (ENEA) has
recently set up a joint—venture with Finmeccanica’s Quadrics Supercom-
puters World Ltd. (QSW) aimed to the development of the first prototype
(named PQE1) of the new supercomputer. PQE1 (see Figure 2.6) is real-
ized by complementing the Casaccia’s Quadrics modules with an 8-nodes
Meiko CS-2.

A new project, named PQE2000, is adopting innovative software tech-
nologies and composite MPP architectures for petaflops computing [45].
Three Italian research agencies and one industrial company — The Na-
tional Research Council (CNR), ENEA, INFN, and QSW - are involved
in the PQE2000 project. The definition of the hardware of PQE2000 is
strongly influenced by following architectural models: coarse—grain symme-
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Figure 2.6: Architecture of a PQE1L node.

try multiprocessor (SMP) and uniform memory access (UMA); medium—
grain nonuniform memory access (NUMA) or cache-coherent-NUMA; fine-
grain SIMD; and fine-grain PIM (processors—-in-memory or active mem-

ory).

2.4 Clusters of workstations

A cluster of workstations is a collection of distinct and independent high—
performance workstations that are interconnected through a local area
network. This configuration can be considered as a powerful bridge be-
tween computing on a single workstation and computing on supercomput-
ers. Cluster technology takes advantages of high scalability, simple and
flexible architecture, high performance—price ratio and small risk of invest-
ment.

While typically more loosely coupled than the “single box” parallel ar-
chitectures described above, clusters can provide an invaluable route for
producing parallel code. Furthermore, they offer the opportunity for users
without resources to buy massively parallel machines to gain some of the
benefits of parallelism on machines available locally. The rapidly reduction
of the cost of high performance workstations/PCs makes this technology
ever more available. Moreover, new concepts for the integration of individ-
ual workstations through Local Area Networks are emerging. High speed
interconnection networks and optimized protocol system architectures are
the most important objectives of current research in this field of study.
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2.5 1I/0 in the parallel machines

I/O hardware parallelism essentially consists of using more disks and one
or more controllers, and distribute data across the disks. Among many
possible way of distributing data across multiple disks, striping is the most
popular.

In a striped file system, a file is interleaved across the disks. Striping
usually implies that the array of disks shares a common bus and is controlled
by a single controller. Simple disk striping has performance limitations
beyond five disks due to increasing overhead of managing I/O parallelism
serially via a single controller [26]. In fact, modern disks have a SCSI
connection and state—of-the—art controllers are capable of driving SCSI
buses at no more then 20 Mbytes/sec.

A more efficient and flexible parallel disk architecture is constituted by a
set of independent disks, each disk with a separate controller and connected
to a distinct processor of the parallel machine. The individual devices in
a parallel independent disk system could themselves be an array of disks.
Usually, processors with disks are not loaded with computational tasks,
but they are dedicated to the handling of I/O activities. In [37] a tracing
study of all file related activity on the Intel iPSC/860, at the NASA Ames
Research Center and the Thinking Machines CM-5 at the National Center
for Supercomputing Applications, found that file size I/O was dominated
by writes. In [5] a study of I/O characteristics of four parallel applications
on a IBM SP2 using Vesta parallel file system found that I/O requests had
a strong temporal and spatial locality.

The I/0O represents today the limiting performance factor of large scale
scientific computations that deal with large quantities of data. The impact
of the I/O contention in parallel machines is becoming ever more important
as the computational power of processors and the throughput of communi-
cation networks are increasing. High performance communication network
and parallel file systems are needed to satisfy the data exchange require-
ments of current parallel scientific applications. The efficient design of such
systems depends on a comprehensive understanding of the performance be-
havior of typical scientific applications.

Over the past two decades, advances in computer technology have led
toward faster computational machines. Today high performance computers
(HPC) can perform computations at gigaflop rates. Much of this computa-
tional capacity has been mainly addressed toward large—scale mathematical
modeling and simulation of various physical, chemical and biological phe-
nomena. Many computational intensive applications are among a set of
scientific Grand Challenges, an annual list first initiated a decade ago by
Kenneth Wilson winner of the Nobel physic prize [46].
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Application | I/O storage | I/O bandwidth |

4-D Earth observing 3 Thytes 1 Thbyte/day

Particle algorithms in 1 Thyte 200 Mbyte/second
cosmology and astrophysics

Radio synthesis imaging 10 Gbytes 100 Mbyte/second
Computational quantum materials 3 Gbytes 100 Mbyte/second
High—performance aircraft simulation 4 Gbytes 100 Mbyte/second
Computational fluid and 1 Thbyte 45 Mbyte/second
combustion dynamics (for visualization)

Figure 2.7: 1/O requirements for Grand Challenge applications

Aside from requiring significant amount of processing time, these ap-
plications often deal with enormous quantities of data that must be ex-
changed among working processors and/or with I/O devices. Current high—
performance applications involve 1 Gigabyte to 4 terabytes of data per run.
Table 1 summarizes the I/O requirements for some Grand Challenge appli-
cations [29]. Such applications, whose bottlenecks is the I/O and not the
computation, are said to be I/O bound. As a single processor and a single
disk are unable to sustain the requirements of current Grand Challenge
applications, a logical solution is to use more processors and more disks. In
a parallel system with p processors and d disks, it is theoretically possible
to achieve p times the computational rate of a single processor and to de-
liver d times the data of a single disk to an application. However, network
and system software, as well as applications bottlenecks, greatly reduce the
computational and I/O speedup.

Real parallel applications can exploit I/O for different purposes [17]:

e Checkpoints. Periodic checkpointing of long-run computation state
is essential in order to reduce the cost of system failures. On large
parallel computers, state can be large (many Gigabytes).

e Simulation data. Scientific and engineering simulations that compute
the time evolution of physical systems periodically save system state
for subsequent visualization or analysis. Some simulations can gen-
erate very large amounts of data — hundreds of Gigabytes or more in
a single run.

e Qut—of-core computation. Some programs must operate on data
structures that are larger than available “core” memory. In prin-
ciple, a virtual memory system can perform the necessary paging of



2.5. I/O IN THE PARALLEL MACHINES 15

data to and from disk. In practice, not all parallel computers provide
virtual memory.

e Data retrieval. Many applications involve the analysis of large amounts
of data (e.g., data from weather satellites may be searched for tem-
perature values). These data analysis applications are particularly
demanding from an I/O point of view, because little computation is
performed on each datum retrieved from disk.
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Chapter 3

Queueing network models

In this section an abstraction technique from computer systems to queueing
network models is presented. The parameters that define a model are given
and the techniques used to determine exact performance estimates for the
models are discussed.

3.1 Introduction

Queueing networks have been widely used to model and analyze the per-
formance of complex systems involving service. Examples of such systems
include communication systems, computer networks transaction systems,
manufacturing systems and vehicular traffic. A study of such systems is
necessary to evaluate their performance in terms of achievable throughputs
and delays experienced. Such studies are also required to locate bottle-
necks; identifying and removing the bottleneck may result in significant
improvements in the performance of the system. These studies will also
help in designing a system with optimum investments in resources in terms
of number of servers, buffer space etc.

A queueing network is a set of interconnected queues. Customers, after
receiving service at a queue, will move to another queue (or out of the
network) with some probability. The service time for a customer at a
queue is chosen independently for each visit to the queue, according to
a service time distribution. In a queueing network, multiple classes of
customers can exist simultaneously. Each class can have a different service
time distribution at each of the queues in the network.

When applying queueing networks to computer system, the stations
represent the various system resources (e.g. CPUs, channels, disks, etc.)
while the customers represent jobs in the system.

Queueing network models are defined by servers, customer classes, and
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a description of how the classes use the servers. A customer class contains
one or more customers that have independent yet statistically identical
behaviour. A customer class can also be referred to as a group. If there is a
fixed number of customers of the class in the model at all times, it is called a
closed class. Closed class customers alternate between queueing for various
resources and being in a queue for idle customers. The idle time is referred
to as a think time because computer system users often initiate some system
function, receive a result, then think about the result before making another
request for work. Idle periods can be of duration zero. A model consisting
only of closed classes is a closed model. If customers are better described
as arriving at some rate, satisfying their service requirements, and then
leaving the system, the class is called an open class. The arrival of an open
class customer is an invocation of its corresponding program. A model
consisting only of open classes is an open model. If both open and closed
classes are present, the model is called a mixed model.

Overall system performance can be evaluated by using parameters (ser-
vice time,visit ratio, system load) of the system and its components to
calculate performance measures, such as response time, throughput, and
utilization. Analysis of the devices can determine their throughputs when
they are operating at 100% of capacity. This is described as the saturation
point of the device. The device with the lowest throughput at saturation
will limit the throughput of the entire system, thus creating a bottleneck.
When the system attempts to process jobs faster than the bottleneck de-
vice, system response time increases.

3.2 Solution Techniques

Many queueing networks do not have closed form analytic solutions and
cannot be evaluated other than by Monte Carlo simulation. Simulations
are expensive to perform, and the results which are calculated are only
known to fall within certain confidence intervals. Queuing analysts found
closed form solutions for increasingly complex queueing networks through
the 1960s, and in 1975 the discovery of the class of separable or product
form queueing networks was announced. This class of networks represents
the most complex queueing networks that can be effectively evaluated an-
alytically today.

3.2.1 Open model solution technique

Since for the open queueing network the system throughput is given as an
input, solutions can be obtained simply. Let C' be the number of customer
classes of a given open queueing network. We denote the vector of arrival
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rates for each class by X = (A1, A2,...,A¢). Let D,y denote the given
service service time of the class ¢ at center k. The response time of the
queueing center k for the class ¢, Ry, is given by:

Dc,k

RCk: C

_)

1= 3 U
j=1

)

: (3.1)

where U, ; is the utilization of the center k of the class ¢, given by D, yA.. It
is possible to prove [4] that (3.1) is always valid for PS and LCFS queueing
discipline. For FCFS, (3.1) is valid if all classes have the same service time.

3.2.2 Closed model solution technique: the Mean Value
Analysis algorithm

Queueing networks in which customers circulate between service centers
have the potential to be extremely difficult to analyze because of the inter-
dependency of the different service centers. Jackson [30] showed that open
networks with all services exponentially distributed and arrivals Poisson
could be analyzed as if the service centers were independent M /M /1 queues.
Baskett et al. [4] were able to extend this analysis to a more general frame-
work, allowing non exponential services in some instances, and also different
classes of customers with their own routing behaviour. They showed the
probability of the network being in a state N = (N1, Ns,...,Ng), when
there are K service centers, is of the form:

Pr(i\_/:) = —1 M” fi(ng). (3.2)
G
=1

If the network is open, the factor G is 1, and the service centers are es-
sentially independent of one another, only interacting through the routing
of customers to other centers after service. When the network is closed,
however, the factor G, which ensures that the probabilities are normalized,
introduces a dependency between the service centers. The fact that it is
known that center 1, say, has 5 customers present, alters the probability
of there being 5 customers at other centers. Obvious approaches to calcu-
lating G, for example by summing over all possible states, soon run into
practical problems because of the number of states involved, not to say
numerical difficulties such as round off.

Algorithms to numerically evaluate these networks have been the sub-
ject of much interest. Buzen [6] developed the first algorithm, known as
the convolution algorithm. This algorithm finds the normalization constant
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G for a network of K centers and N customers using a simple recurrence
relating G(M,N) to G(M — 1,N) and G(M,N — 1). Other performance
metrics, such as mean queue lengths, center utilizations, etc. are found
using G. Although very efficient, the convolution algorithm is not very
intuitive, and its computations can be affected by overflow or underflow
for large networks. Reiser and Lavenberg [40] developed a new algorithm,
Mean Value Analysis (MVA), that uses only meaningful metrics of network
performance in its calculation. Essentially, the performance of the net-
work when N customers are present is evaluated using the performance of
the network when there are N — 1 customers. Metrics, such as utilization
and mean queue length, are produced as a side effect. The normalization
constant is not calculated. MVA is of similar complexity to convolution.

Mean value analysis operates by relating the performance of the net-
work when n customers are present to the performance when n — 1 are
present. Since the performance when there are 0 customers is known triv-
ially, calculation proceed using increasing populations, from 0 to N. When
the population is N, and there are K stations, the complexity of the al-
gorithm is O(KN). If there are C classes of customer, then the perfor-
mance when the population vector is 7@ = (Ny, Ny, ..., N¢) is calculated
using the performance at populations @ = (N —1, Na, ..., N¢), (N, No —
1,...,N¢),...,(N1,Ng,...,Nc—1). Given a final population for which we
wish to calculate the performance, the calculations needed give a precedence
relationship between the different populations. The population 0 precedes
all other populations, and the other populations must be calculated. The
order of calculation is not totally determined, since the precedence rela-
tionship is only a partial ordering.

In order to describe more formally the MVA algorithm we use the fol-
lowing notations:

e (C, number of customer classes;
e K, number of service centers;
e N., population of the class ¢;

e Q1(7), queueing length of the center k for the population W =
(nl,ng, PN ,nc);

e D.y, service demand of the class ¢ at center k;
e Uy, utilization of the class c at center k;
e R.;, response time of the class c at center £;

e X, throughput of the class c;
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for k:=1 do Qk(ﬁ)::();

c
for n:=1 do ZNC
c=1

c
for each 7 = (ny,n,...,nc,) such that ch =n do
c=1
begin

for ¢:=1 to C do

for k:=1 to K do R,y := Doy [1 + Qi(me(7))];

for ¢:=1 to C do X, := n; ;

Ze+ Z Ry
k=1

C
for k:=1to K do Qu(7) := Y _ XcR.;
c=1

end;

Figure 3.1: MVA solution algorithm.

e 7., think time of the terminal of class ¢ (the sum of all class ¢ delays);

e m.(7), population 7 with one class ¢ customer removed, i.e., (ny, no, ...

1,...,n¢).

The exact MVA solution algorithm [33], in psuedo-code, is shown in Fig-
ure 3.1. When this algorithm terminates, the values of R, X. and ()} are
available.

In chapter 6 we will show a parallel version of algorithm MVA, and will
study its performance.
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Chapter 4

Integrate models

In parallel architectures, several processors work simultaneously and coop-
erate to the execution of a single task. In this way, the computing per-
formance can be significantly increased compared to a sequential single—
processor architecture. Performance predictions for parallel programs on
multiprocessor systems are therefore of crucial importance for both software
and hardware designers.

In this chapter we formulate a general model of program behavior that
captures the computation and I/O characteristics of a parallel application,
or a class of parallel applications'. We then derive a simple mathemat-
ical analysis of the model, and define performance metrics based on this
analysis. The multiprocessor system under consideration has a generic
structure, as the one illustrated in Figure 4.1. We assume a fixed num-
ber of (homogeneous) processors and a fixed number of (homogeneous)
I/O nodes. Computational nodes and I/O nodes are connected to each
other via a communication network. Through this model we can study
the influence on the speedup of communication aspects (synchronizations,
link contentions, scaling factors) and of I/O issues (synchronizations, data
managing before I/0, time spent sending the data to the I/O nodes).

We consider two distinct hardware configurations of I/O systems:

e BUS: I/O nodes are connected via a single bus to the system (Fig-
ure 4.2a);

e CLU: cluster of processors that shares a common I/O node (Fig-
ure 4.2b).

The BUS case is a centralized architecture in which a single I/O node, or
a pool of I/O nodes, are connected via a “single” path to the processors.

!Throughout the discussion we consider a monoprogrammed multiprocessor system,
i.e., there is always only one program is execution.

23



24 CHAPTER 4. INTEGRATE MODELS

/0 nodes

Interconnection Network

Processors

Figure 4.1: General purpose parallel machine.
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Figure 4.2: I/O configurations considered: a) BUS, b) CLU.
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Processors accessing the I/O nodes must send/receive data to/from the
gateway processor that manages the I/O nodes. Several components could
become the bottleneck of the I/O. By increasing the number of I/O nodes
we expect that the performance of the I/O improve, however any further
increase of the number of I/O nodes besides a certain limit will saturate
the bus or the gateway processor and do not produce any increase in the
throughput.

In the CLU case, a pool of processors shares an I/O node. When the
number of I/O nodes is equal to the number of processors we have one I/O
node for one processor.

4.1 Parallel program behavior

Studies on I/O characterization of scientific applications [37, 5, 35, 39]
showed that I/O behavior is rather regular and cyclic along time. The I/O
properties of many parallel programs result in execution behavior that can
be naturally partitioned into disjoint intervals, each of which consists of a
single I/O burst followed by a single computation burst (see Figure 4.3):

e Computation burst: is partitioned into disjoint sub—intervals each one
consisting of a single burst of CPU activity (pure calculation opera-
tions) followed by a single burst of communication (inter—processors
data exchange);

e I/0 burst, I/O read/write operations.

We use the term phase to refer to each such interval composed of an I/O
burst followed by a computation burst.

4.2 Speedup models

In this section we develop a performance model for a program executed on
a system composed of a single processor and I/O node. We use this model
as a reference model. Let pr/o be the probability of an I/O burst at the
end of a CPU burst, we have that the global computation burst is com-
posed by 1/p; /o CPU bursts. Where the average time of the computation
burst is given by S;,. The reason for this representation will be clarified
when we will introduce the communication overhead. Figure 4.4 depicts
the closed queueing network corresponding to the reference model. A sin-
gle job, representing the program in execution, circulates in the queueing
network. The average response time of the circulating job can be expressed
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Figure 4.3: An example of program behavior.

Figure 4.4: Queueing network model of a program executed on a single
processor and I/O node.



4.2. SPEEDUP MODELS 27

as”:

To=N (i + Sd> , (4.1)
Prjo

where N represents the average number of phases of the program. Note
that the term Sp/pI/O + 54 is the response time of the queuing network, i.e.,
the average execution time of one phase of the program. Throughout the
thesis we will use Ty as a reference time, in order to evaluate the speedup
behavior of different parallel programs and architectures.

Suppose we have a parallel program executed on a parallel machine with
p processors and d I/O nodes. We decompose its average execution time
T(p,d) into two terms:

T(p,d) = N(Teomp(p, d) + Tijo(p, d)), (4.2)

where Teomy(p, d) and Ti/o(p, d) represent the average time of the compu-
tation burst and I/O burst, respectively. The normalized values of these
two times Tcomp(p, d) and 11,0 (p, d) are defined as follows:

T, ,d
Tcomp (p, d) = fs’omp (p )
— + 84
Pr/o
and Too(ped)
1/0\P,
1170 (P, d) = S/ :
ot L Sq

Throughout the discussion, we indicate the normalized times by small
Greek letters. From (4.2) we can formulate the speedup?® law s(p,d) of
parallel programs that represents a generalization of Amdahl’s law [42] ex-
tended to a system with multiple I/O nodes:

i + Sq
s(p,d) = To _ Pr/o _ 1
’ T(p, d) Tcomp (p, d) + TI/O(pa d) Tcomp (p, d) + 7’1/0(;0, d)

(4.3)

In order to normalize the times which characterize our queueing network
models, we use the time Sp/pl/o + Sy (i.e., the time required by one phase
of the program executed on single processor and I/O node). Let Tcpy

2With response time we will refer to the average time required by a job to perform a
cycle through the network.

30ur definition of speedup should be called relative speedup. However, throughout
this thesis we will refer to it dropping the word “relative”.
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and Tcomm be the respective (normalized) global durations of the CPU and
communication bursts (Tecomp = TcPU + Tcomm). The speedup s can be
expressed as:

1
7cpPU (P, d) + Teomm (P, d) + T1/0 (p, d) ‘

s(p,d) = (4.4)

The advantage of using normalized times is that we can evaluate the
speedup of a program by simply calculating the inverse of its execution
time. Indeed, in this way we consider the average execution time of the
same program, on a single processor and I/O node, equal to 1.

Figure 4.5 depicts the generic queueing network used for modeling the
parallel program behavior described in the previous section. The blocks
represent the “sub-models” corresponding to the bursts of the program
phases. A single job, representing the running program, circulates in the
queueing network. According to the type of I/O used by parallel programs,
we can have:

e SIO (Synchronous I/0): all processors allocated to the program per-
form I/O bursts always at the same time (e.g., checkpoint and simu-
lation data).

e AIO (Asynchronous I/O): the processors allocated to the program
perform I/O bursts at different instants of time (e.g., out—of-core).

We model the SIO cases using a pair of fork/join stations. A single job
represents the I/O activity. When this job is collected by the fork sta-
tion it is replaced with a certain number of jobs which correspond to the
computation burst activities. On the contrary, when all jobs, representing
the computation burst activities, are collected by the join station, they are
replaced by a single job that corresponds to the I/O burst activity.

In the case of AIO models the jobs representing the computation burst
activities perform I/O bursts independently. Hence, as shown in Figure 4.5,
the fork/join pair are removed from the computation burst block of the ATIO
model.

4.3 Computation burst model

4.3.1 Introduction

Among different interconnection networks, two extreme situations can be
identified: a fully interconnected system and a single bus system. In the for-
mer case, no contention arises in any communication operation: messages
exchanged between pairs of processors experience a simple delay regardless
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Figure 4.5: Structure of the queueing network used for modeling parallel
programs.

of the network usage. In the latter case, when two or more messages are ex-
changed simultaneously, there is always contention for the use of the shared
bus. Different interconnection networks, as for example meshes or trees,
represent tradeoffs between the communication performance and the scala-
bility of the machine. Moreover, it is clear that the impact of the communi-
cation depends also on the software. For instance, a pipeline implemented
on a parallel machine can be realized in such a way that the communication
does not suffer from contention for the communication network. However,
little can be done in order to avoid that the processors waste time during
the communication while they wait for their receiver/sender partners. Even
when the balance of the work among the processors is perfect, there can be
a little difference of computation time (e.g., due to the processor caches)
that puts the processors out of phase.

A common programming paradigm in scientific applications, when ex-
ecuted on distributed memory architectures, involves the decomposition
of the problem domain. Data decomposition is often used as a method
for obtaining some degree of parallelism that is usually easy to manage
and typically matches the problem structure closely. This decomposition
is translated into a data—domain mapping over the set of computational
nodes. Each node applies a sequence of similar operations to all or most el-
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ements of the local portion of the distributed data structure. Such parallel
applications generally use several N—dimensional arrays that are distributed
in a block fashion among processors. Main advantage of this approach is
the simplicity (thus, the rapidity) of the code development; main drawback
is the concurrency of communications and I/O operations which causes the
interconnection network and/or the I/O system to become the bottleneck
of the system.

In the following sections, we formulate a general model of a parallel
program that attempts to address these issues. In sections 4.3.2 and 4.3.3
we define the model parameters which represent the communication times.
In sections 4.3.4, 4.3.6 and 4.3.5 we present the model parameters that
take into account the communication scaling factor, the network contention
and the synchronization during the processor communications. Finally,
section 4.3.7 presents the queueing network that models the computation
burst activity.

4.3.2 Communication transfer time

The main parameter of the communication is the transfer time o,. It rep-
resents the time that the processor, of the target parallel machine, spends
to transfer a certain amount of data point to point to another processor of
the same machine. Often, this time is referred in literature as the ratio of
the number IV of bytes of the data to transfer by the bandwidth T}, of the
communication network, expressed in byte/sec. Since o, is a normalized
time, it corresponds to the percentage of total communication time with
respect to the program execution time on a single processor and I/O node.

4.3.3 Communication startup time

We must also consider a parameter that models the communication startup
time, which is practically present in all networks. We use the parameter o
(a real number > 0) in order to represent the normalized communication
startup time.

4.3.4 Dimensions of data space

Generally, the amount of inter-processors communication depends on the
hyper-perimeter of the distributed data structure (while the computa-
tional load usually depends on the hyper—volume). For instance, in low—
level image processing applications, the working data structure is a two—
dimensional matrix of pixels, usually partitioned into square blocks, or win-
dows, among the processors. The size of the messages exchanged among
processors is proportional to the length of the internal border of adjacent
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Figure 4.6: Example of communication scaling factor for a bidimensional
data domain.

windows. Thus, the size of message is reduced by a factor of \/p (see Fig-
ure 4.6).

We can generalize this idea for a generic number of dimensions r of
the program data space, introducing a scaling function g(p), so that the
average communication time per processor is given by o,g(p). The choice
of the scaling function g(p) depends on how the data domain is partitioned
among the working processors. Through the scaling function g(p) we are
able to capture a broad class of parallel applications. For instance, when
g(p) = 1, we suppose that the communication factor does not scale with
the number of processors (it is the case of a data domain partitioned along
one dimension). Since the ratio between the hyper—volume and the hyper—
perimeter of the hyper—cube, representing the program data, is p%, we
have:

r—1

glp) =1/p 7.

(4.5)

As particular cases we often consider two extreme situations, » = 1 and
r — 00, which correspond to g(p) = 1 and g(p) = 1/p, respectively.
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4.3.5 Synchronization level

In this section we define a parameter that captures another important be-
havior: the synchronization among the processors during the communica-
tion. The number of processors ¢, an integer 1 < ¢ < p, involved in the
synchronous communication is referred as Synchronization Level. When
¢ = 1 we assume that the processors perform asynchronous communica-
tions. When ¢ > 1, it represents the number of processors involved in
synchronous collective communications. For instance, if p = 8 and ¢ = 2,
then we have p/c = 4 groups, composed by ¢ = 2 processors. The pair
of processors, belonging to the same group, communicate to each other by
means of synchronous send/receive operations.

4.3.6 Network contention level

In the previous sections we have not considered the communication con-
tentions. Indeed, the term g(p)o, represents only the time spent trans-
ferring data. Different types of interconnection networks lead to different
ways of modeling. For instance, a bus interconnection can be modeled as a
queueing server, since it is capable of handling one message at a time, while
a fully interconnected network can be modeled as a delay center since the
messages never queue for a link. More realistic network topologies (e.g. 2D
meshes, hypercubes, toruses) are more complex to model (they require the
exact knowledge of the network routing mechanism).

We define the Communication Contention Level w, a real number 0 <
w < 1, that allows us to switch from the bus interconnection network
architecture (w = 1) to the fully connected one (w = 0). The intermediate
values represent different network architectures such as meshes, trees, etc.,
in which the communication among the processors has delays due to the
occupation of the connection network. The value of w depends on the
communication hardware and on the program algorithm. For instance if
the processors of a program that is executed on a machine with a mesh
network topology communicate always with their neighbors, the network
behaves like a delay, i.e., w = 0.

4.3.7 The model

We now exploit the parameters above defined in order to develop a queue-
ing network model that represents the time spent by a program during a
computation burst. As mentioned before, we refer to this model as compu-
tation burst sub—network and we use it inside the various models presented
in the following sections. Figure 4.7 shows this sub—network only for the
case of asynchronous I/O (AIO), while for the case of synchronous I/O
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Figure 4.7: Sub-network that simulates the computation burst.

(SIO) it is sufficient to include the fork/join pair in the model, as depicted
in Figure 4.5.

A job entering in the sub—network represents a group of ¢ processors
which communicates among themselves by means of collective communi-
cation operations. Each job proceeds first to a set of delays that models
the processors, then proceeds to the two service centers representing the
communication network (the communication sub-model). On average, a
job performs a certain number of cycles through the sub—network, given by
the probability pr/o, and then exits the sub-network.

As shown in Figure 4.7, the processors elaboration is represented by p/c
delays and as many pairs of fork/join stations simulating the synchroniza-
tions?.

A job arriving in the fork station is split into ¢ new jobs each of them
representing a single processor computation. At this stage, the ¢ jobs are
collected by the same number of delay stations. Each of them will perform
a delay (given by op,/p) that represents pure calculation. Finally, the join
station collects the jobs arriving from c¢ delay stations and, when all the

*When we have more than one jobs, the symbol of the delay is replaced by a group
of delays equal to the number of jobs that the delay station can serve. Throughout the
thesis we simply refer to this group of delays as delay.
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jobs are received, it replaces them by a new single job representing the
group of synchronized processors.

The conditions p = ¢ and ¢ = 1 correspond to special cases. The former
represents the situation in which all processors are synchronized before
each communication, i.e, there is only one job in the sub—network. The
latter corresponds to the case in which all processors perform asynchronous
communications.

The time elapsed between the arrive of the job in the fork station until
that job departs the join station, is a random variable defined as X =
max{Xy,...,X.}. Where Xi,..., X, are random variables exponentially

o
distributed with the same mean —, representing the ¢ processor delays.

X is then a hypoexponential distributed random variable with mean given
by [44]:

Op = 1
E[X]:?ng.
=1

Therefore, the response time of the fork/join pair, is given by h(c)&, where
p

he) =3 % (4.6)
i=1

The communication burst sub—model is composed by two service cen-
ters: a delay and a queuing center. We now analyze how the parameters,
defined in the previous sections, are mapped into this sub—model (see Fig-
ure 4.7). The startup time o,y becomes a simple delay of the communication
burst. The communication time o, is split into two terms: (1 — w)o, and
woy. The former corresponds to the time of the delay station, the latter to
the service time of a queueing station. In this way we can switch, as men-
tioned in section 4.3.6, from the case without contention (w = 0), i.e., in
which the connection network behaves as a pure delay station, to the case
with maximum contention (w = 1), i.e., in which the connection network
behaves as a pure queueing station. The values of w such that 0 < w < 1
represent intermediate levels of communication network contention.

In principle, we should consider the fact that oy¢ and o, are functions
of ¢. This dependence, however, is not known a priori and is influenced by
factors strongly dependent on the language used, on the type of collective
operation (broadcast, gather, scatter, etc.) and on the hardware of the
parallel machine. For these reasons we introduce the simplification o, =
const and o, = const.
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4.4 1/0 models

It is difficult to provide a general discussion of parallel I/O because differ-
ent parallel computers have radically different I/O architectures and hence
parallel I/O mechanisms.

Our I/O model comprises a simple delay, equal to oy, followed by a
queueing station with service time equal to oq multiplied by a scaling func-
tion.

For BUS models the delay station can simulate, for instance, the time
spent by the system transferring data from the processors to the I/O nodes.

For CLU models we can think the delay as the time (if any) spent by
the parallel program to redistribute the data to transfer before the I/O
operation. For example, if distributions on disk and in memory differ, then
a large number of reads or writes may be required in order to achieve data
transfer. This problem is analogous to what happens when transferring
data structures between two parallel program components that require dif-
ferent distributions. In this situation at least two approaches are possible:
we can modify one or both components to use different distributions, or we
can explicitly redistribute data before or while transferring it. Because I/0O
requests tend to be more expensive than interprocessor communications, it
is often better to perform an explicit redistribution of data in memory so as
to minimize the number of I/O requests. This leads to a two—phase access
strategy, in which the data distributions used on disk and in memory are
decoupled.

The service time of the queueing station represents the time spent by
the I/O node managing the data. If the I/O nodes correspond to disks it
represents the time spent to read /write the data from/to the disks. While, if
the I/O nodes correspond to SIMD processors, it represents the time spent
to execute the SIMD procedure. We will always assume that this service
time scales as 1/d, since the data are “striped” across the I/O nodes.

4.5 Model parameter summary

The parameters used throughout the thesis are summarized in Table 4.8.

The parameters which refer to times in the computation burst (i.e., op,
oy and oy) are normalized with respect to the time S, + pr/0Sq. The
parameters o4 and oy, are instead normalized with respect to Sy,/pr/o + Sq-
As consequence, all the previous parameters represent fractions of time with
respect to the time required by the program executed on a single processor
and I/O node.
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‘ Parameter ‘ Meaning ‘ Type ‘
D number of processors Integer [1, 400
d number of I/O nodes Integer [1, +o00]
o computation time Real ]0, 1]
o communication startup time Real [0, 00|
Oy communication time Real [0, 00|
On time spent transferring I/O data Real [0, 00|

or spent redistribute I/O data
o4 I/O node time Real =1 -0,
r number of dimensions Integer [1, 4+o00]
of the program data space
w Communication Contention Real [0, 1]
Level (0 = delay, 1 = queue)
c Synchronization Level (number of processor | Integer [1...p]

Figure 4.8: Models parameters summary



Chapter 5

Model analysis

In the preceding chapter we have shown the models corresponding to vari-
ous software/hardware aspects of the parallel applications. In this chapter
we will describe how to use these models and we will develop and illustrate
the algorithm required to evaluate the models.

Section 5.1 presents two optimistic situations in which we neglect the
communication and o,. In sections 5.2, 5.3, 5.4 and 5.5 we describe four
models obtained by combining the two possible hardware configurations
(i.e, BUS and CLU) with the two types of I/O (i.e., SIO and AIO). In
section 5.6 we present two simple case studies.

5.1 The optimistic cases

We consider optimistic situations in which we neglect the effects of com-
munication and of time o,. This analysis leads to two models: the first
one for AIO programs and the second one for SIO programs. These models
provide simple upper bounds of the speedup that can be obtained from real
parallel programs.

The model for optimistic AIO programs (Figure 5.1) consists of two
delay stations. A delay o}, /p represents the processor computations and a
delay oq/(dp) represents the I/O nodes time. The latter delay scales with
1/p since we assume that the time o4, corresponding to the whole data set,
is distributed among the processors. From this model we can formulate a
simple relation that expresses the normalized average execution time for
one program phase:

_op 04

TAaTO(D,d) = — + —. 5.1
ro(p,d) s (5.1)

From (5.1) we can obtain the speedup as a function of number p of proces-
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CPU burst

|/O Burst sub-model
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sub-model \ p
,,,,,,,,,,,,,,,,,,,,, &
/O\ Pio
»< p delays o
T '\O/ Communication burst

| sub-model

,,,,,,,,,,,,,,,,,,,,,,,,, 1/0 Burst

/’ sub-model

Figure 5.1: Queuing network model of the AIO optimistic case.

sors and the number d of I/O nodes:

1

saro(p,d) = 7, od (5.2)

b, Zd
p dp
As discussed in the preceding chapter, in SIO models we must introduce
the fork/join pair, in order to take into account the effect of I/O synchro-
nizations (see Figure 5.2). The effect of the fork/join on the speedup is
achieved by means of factor h(c) defined in (4.6). Therefore, the speedup
can be then expressed as:

1
ssro(p,d) = hip) 2R 4 9d (5.3)
)

Figures 5.3 and 5.4 show the speedups obtained by using (5.2) and (5.3),
respectively. They should be interpreted as upper bounds of the corre-
sponding speedup surfaces which will be presented throughout this chap-
ter. However, it is already possible to see the huge difference between
the speedup of AIO and the speedup of SIO. Nevertheless, as described in
section 4.2, the purpose of these two types of I/O is different.

Note that from our definitions it is easy to see that o, +04 = 1. There-
fore o}, and o4 represent the respective percentage of processor computation
time and I/O time, with respect to the total execution time on a sequential
architecture.
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Figure 5.3: Optimistic AIO speedup surface. o, = 0.625, 0,9 = 0y = 0 =
o, = 0.
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Speedup

Disks 10

Processors

Figure 5.4: Optimistic SIO speedup surface. o, = 0.625, 0,9 = 0r =0 =
op =0

5.2 BUS-SIO Model

BUS-SIO model simulates parallel programs which performs synchronous
I/0O, executed on architectures with centralized I/O strategy. An exam-
ple of this scenario is an architecture with redundant disk arrays (RAID
disks) or an hybrid MIMD+SIMD machine. Figure 5.5 depicts the BUS-
SIO model. In order to determine the speedup of BUS-SIO model, we
first evaluate the time 7¢op,, (i-e., the time spent by the program during
the computation burst), by estimating the computation burst sub-network
response time.
Let D(p) be the service time of communication queueing station given
by:
D(p) = worg(p), (5.4)

and let Z(p) be the sum of all delays belonging to the computation sub—

network:
Z(p) = h(c)% + om0 + (1 — w)org(p), (5.5)

we have [20] (see Appendix B):
p/c 1

Tcomp(p) = Z ZR(Zv Z(p), D(p)) p =2, (5'6)
=1
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Figure 5.5: BUS-SIO queueing network model.
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where R(i,z,z) is the response time of a closed queueing network with
population ¢ composed of a delay z and a queueing station with service
time z. The response time R(i, z, ) is given by (see Appendix A):

€1 + 1
E — 8 2%
€9.
2
(el,ez)GLi71

1
E — L z¢2

€9
(e1,e2)€L? |

R(i,z,z) =z+d

(5.7)

where L? is the set of pairs (er,ez) of non—negative integers such that
el +ey =1.
The time of the I/O burst is given by the following equation:

mi/0(d) = on + 5. (5.8)
As mentioned in section 4.4, o, reflects, in this case, the degradation of
performance due to centralized I/O strategy. Consider the case of a paral-
lel machine connected via communication network to a gateway processor
which in turn is connected to a RAID disks controller. Besides the time
taken by the disks to manage the data, there are other overheads related
to the path processors memory/disks. These overheads are: the time spent
transferring data from the processor memories to the I/O processor, the
time to transfer the data through the bus of the RAID controller and the
time taken by the controller to strip the data across the disks. o, can be
considered as the sum of the above times.

Upon substituting equation (5.6) and equation (5.8) into (4.3), we can
evaluate the speedup s(p, d).

5.2.1 Asymptotic analysis

By means of 7¢omp and 7/0 it is possible to know the speedup behavior
when p — 0o or d = 0.

Case p — o©
When w = 0 the communication sub-network is composed only by delay
stations. Then (h(m) ~ Inm):

1—r

o
Teomp = lnz—c) Llnc+op+op = |. (5.9)

p
This means that, when r > 1 and oy¢ = 0, for large values of p, the speedup
tends to 1/71/0 (because T¢omp — 0). On the contrary, if r =1 or o9 # 0
we get Teomp — 00, then the speedup tends to zero.
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If w > 0 from (5.6) we have:

p/c
Jim Teomp(p) = lim 1 -B(1, Z(p), D(p)). (5.10)

1=
Studying the convergence of the series in (5.10), when w > 0, it is possible
to conclude that the asymptotic speedup is zero. Indeed, for large values

of p we can write:

2

R(i, Z(p), D(p)) =~ iD(p) = iworg(p),

and then:
p/c p/c
Tcomp(p) = Z ;R('La Z(p)a D(p)) = ngrg(p) =
=1 =1

ple 1-r D 1 1
= Y wop T ="+ —wop?.
=1 ¢ ¢

From the last equation we have:

plggo Teomp(P) = +00.

We conclude that the asymptotic speedup is zero.

Case d — oo
In this case the I/O burst time tends to oy, while the computation term
remains constant. We conclude that:

1

S ) = —m.
(p’ ) Tcomp + On

5.3 BUS—-AIO model

The BUS-AIO model represents centralized I/O architectures and parallel
applications characterized by asynchronous 1/0.

Since in this case we do not have any I/O synchronization, we remove
from the model the fork/join pair. The I/O burst is represented by a
queueing station with service time given by c¢(on+04q/(dp)) (see Figure 5.6).
As in the optimistic AIO case, we assume that the service time of the
I/O queueing station scales as 1/(dp). Furthermore, since ¢ processors are
involved in a collective communication, it is reasonable to assume that these
processors perform the I/O burst at the same time. Therefore, we consider
the service time of the I/O station proportional to c.
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Figure 5.6: BUS-AIO queueing network model.
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Though the two BUS models are similar, the solution technique is sub-
stantially different. BUS—-AIO queueing network can be solved by means
of exact MVA algorithm. This queueing network is composed by a delay
station Z(p), given by (5.5) and by two queueing stations. The service time
of the first queueing station is D(p), given by (5.4). The service time of the
second one is:

E(p,d) = c <0n + %) . (5.11)
By using MVA we have:
er +1
> 1@3, D(p)* E(p,d)** Z(p)*?

(el 762783)6112/6_1

Tcomp(pa d) = Z(p) + D(p)

1
> —D(p)* B(p,d) Z(p)
(81,82,63)EL2/C_1 3
(5.12)
and
1
> 62+, D(p)** E(p,d)** Z(p)*®
3 €3:
(61782763)6Lp/c_1
m0(p.d) = Blp, (1)
> P B, d) Z(p)
(el,ez,eg)ELg/C_l

where Lf’) is the set of triples (eq, e, e3) of non—negative integers such that
e1 + ez +e3 = p. From (5.12) and (5.13) we can evaluate the speedup of
BUS-ATIO model.

5.3.1 Asymptotic analysis

Case p — oo.

When w = 0 we have a simple queueing network composed by a single
queueing station, E(p,d), and a delay station, Z(p). The asymptotic re-
sponse time is roughly given by pE(p,d) = pco, + coq/d and tends to
infinite. We then conclude that the asymptotic speedup is zero.

When w > 0 we have two queueing stations with service time given
by D(p) and E(p,d). We note that the response time of a closed queuing
network with large population loads is dominated by the station with the
greatest service time. In general, the asymptotic response time of a closed
queueing network is given by N D¢, where N is the population and Dy the
greatest service time time. Since E(p,d) comprises the constant term oy,
we conclude that the asymptotic speedup is zero.
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Case d - 0
E(p,d) — oy. Therefore the speedup tends to the reciprocal of the response
time queueing network obtained by setting E(p,d) = oy.

5.4 CLU-SIO model

In some architectures, clusters of processors share a common I/O node
connected to a bus that is separated from the communication network. In
this case, we consider only the configurations such that p > d. Indeed,
the case in which d > p is very rare: more than one I/O node for each
processor.

In the CLU-SIO model, d clusters of p/d processors, sharing a common
I/0 node, perform I/O in synchronous manner. From the point of view of
the modeling, BUS-SIO and CLU-SIO are identical and the only difference
is in the meaning and the value of the parameter o,. The advantage of the
CLU-SIO is that oy, can be, in some cases, zero (i.e., the program does not
perform any data redistribution before transferring).

5.5 CLU-AIO model

The model for the CLU-AIO is a multi class closed queueing network in
which the job classes represent tasks running in different clusters of proces-
sors. The multi class technique allows the simulation of different groups of
tasks, belonging to different clusters, following separate paths to the disks.

As mentioned, we consider only the case p > d. For sake of simplicity,
we restrict our attention to cases in which ¢ < p/d and p/d multiple of
¢, which ensures that the number of processors synchronized before the
communications belong to the same cluster. However, the methodology of
analysis for the more general case without restriction on c is essentially the
same.

The queueing model for the CLU-AIO has d job classes: a class repre-
sents a set of jobs that is executed in one of the d clusters of processors that
shares a common I/0O node. Each class has the same population p/(cd).

Figure 5.7 depicts the CLU-AIO queueing network model. The vector
of population 7 of dimension d, is given by:

_ (P P P
= (cd’cd"”’cd>'

The service times of the queueing network is represented by a (d + 2 x d)
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Figure 5.7: CLU-AIO queueing network model
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matrix G given by:

c%d 0

0 c%d 0
o I

D(p) D(p) ... D(p)

Z(p) Z(p) ... Z(p)

where D(p) and Z(p) are defined in (5.4) and in (5.5), respectively. In order
to solve the CLU — —AIO queueing network we use the MVA algorithm
shown in section 3.2.2.

5.5.1 Asymptotic analysis

Case p — o0
When w = 0 the model can be considered as mono—class one with popula-
tion p/(cd), a delay Z(p) and a queueing station with service time coq/p.
The asymptotic response time of the queueing network is then given by:
b od 0d
p X c; =
Therefore, the asymptotic speedup (the reciprocal of the asymptotic re-
sponse time) is d/oq.

When w > 0, we have two queueing stations. The asymptotic response
time of the queueing network, is given by the product of the population
p/(cd), the number of classes d and the greatest service time. In this case
the greatest service time is the one of the communication network station
(warpl_j). The asymptotic response time of the queueing network is then
given by wdarp% /c. This means that the speedup tends to zero.

Case p — o©
Since we restricted our attention to the case p > d, the case d — co makes
sense only if p — oo. This means that when d = p and d — oo the speedup
tends to zero.

5.6 Case studies

5.6.1 Hybrid MIMD+SIMD machine

Suppose we have a MIMD machine boosted by massively parallel SIMD
arrays, charged with the hugest number-crunching tasks. Consider a pro-
gram executed on this hybrid machine. In this case, the SIMD processors
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Figure 5.8: Example of the speedup surface of a program executed on
a hybrid MIMD+SIMD parallel machine; o, = 0.2,0, = 0.002,0,0 =
0.001,04, =0.02,7r =1,c=1,w = 0.4.

represent the I/O nodes of the system. We can study this scenario by
means of the BUS-SIO model. We chose BUS-SIO since the SIMD board
is connected to the MIMD machine according to the centralized structure.
Moreover, we consider that the hybrid application performs the MIMD and
the SIMD phase, in two disjoint intervals of time. Figure 5.8 depicts a pos-
sible speedup surface of a program executed on a hybrid machine with 64
MIMD and 256 SIMD processors. Note that a satisfactory speedup can be
already obtained for p = 28 and d = 128.

5.6.2 BUS-AIO vs CLU-AIO

It is of interest to compare the performance of BUS and CLU strategies of
parallel programs which perform out—of-core computations. In the former
case, we suppose to have RAID disks. In the latter case, the disks are
distributed among the processors according to the CLU architecture. The
tradeoff between the two strategies is determined by the parameter oy,
which is present only in the BUS model. We suppose, for instance, that the
I/O burst of the program is 20% of the total execution time (i.e., o, = 0.8).
Figure 5.9 shows the speedups of BUS-AIO and CLU-AIO in the case of
d= 4. We see that when 24 < p < 52 the CLU-AIO case has the best
speedup.
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Figure 5.9: Speedup of a parallel program with different I/O strategies;
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Chapter 6

Program Behavior Results

In this chapter we will illustrate how the techniques developed in preceding
sections can be used to study the behavior of real parallel applications.
In section 6.1 a parallel implementation of MVA on a distributed memory
machine, developed using the MPI library for communication, is described.
We systematically investigate the performance of the algorithm and com-
pare the observed speedup to the one obtained from the analytic model.
The algorithm has been implemented on a Cray T3D machine.

In section 6.2 we infer the model parameters by fitting our model to
an observed speedup surface obtaining the values that yield the best fit.
The applications considered were selected among those of the Scalable I/O
Initiative. Each application is comprised of a certain number of programs
executed in a pipeline fashion, each of which is indicated as a “stage”.

6.1 Parallel MVA algorithm

The Mean Value Analysis algorithm is one of the most popular for evalu-
ating the performance of separable (or product form) queueing networks.
Although its complexity is modest when jobs are indistinguishable, the in-
troduction of different customer classes rapidly increases its computational
cost. The problems of parallelizing the algorithm while retaining its con-
ceptual simplicity are examined. In particular, a parallel implementation of
MVA on a distributed memory machine is developed using the MPI library
for communication [31].

Algorithms to numerically evaluate queueing networks have been the
subject of much interest. Buzen[7] developed the first algorithm, known as
the convolution algorithm. This algorithm finds the normalization constant
G for a network of M centers and N customers using a simple recurrence
relating G(M,N) to G(M — 1,N) and G(M,N — 1). Other performance
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metrics, such as mean queue lengths, centre utilizations, etc are found using
G. Although very efficient, the convolution algorithm is not very intuitive,
and its computations can be affected by overflow or underflow for large
networks.

Reiser and Lavenberg[41] developed a new algorithm, Mean Value Anal-
ysis (MVA), that uses only meaningful metrics of network performance in
its calculation.

A major advance in speeding up these algorithms has been the recog-
nition of the tree structuring apparent when different classes of customer
only visit subsets of the service centres. It is then possible to significantly
simplify the calculations for those stations which are not visited by par-
ticular classes of customer. The full complexity of the algorithm needs to
be applied only to service centers where different classes of customer inter-
act. This simplification was originally discovered by Lam and Lien[32] and
applied to the convolution algorithm. It can also be applied to MVA and
RECAL.

Parallel implementations of a number of these algorithms have been
proposed. Greenberg and McKenna[21] developed a parallel version of RE-
CAL for use on shared memory multiprocessors. Pace and Tucci[38] worked
with MVA. Greenberg and Mitrani[22] have developed a technique using
fast Fourier transforms to evaluate the normalisation constant G in parallel.
Hanson et al.[27] also used MVA.

Most of these algorithms have been implemented or proposed for a
shared memory environment. It is a feature of all the algorithms, that they
build up their solutions iteratively, either from the solutions of the same
network with smaller populations, or from solutions to a smaller network
with the same population. Shared memory means that earlier results are
easily available on all processors.

Our interest is in the development of an algorithm which is effective in a
distributed memory environment. Here each processor has its own storage,
and data calculated on one processor is not available to other processors
without explicit transmission to the other processor’s memory. Inter pro-
cessor communication needs to be minimized, because it will typically be
several orders of magnitude slower than computations.

6.1.1 The algorithm

The aim of a parallel algorithm for MVA must be to calculate the same
results as a uni-processor MVA algorithm, while gaining significant speedup
by performing some of the calculation in parallel. The precedence graph
will put an upper bound on the amount of parallelism that is possible.
We allocate a processor to be responsible for each population. Each pro-
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Figure 6.1: Example of the PMVA algorithm with 2 classes and 2 proces-
sors.

cessor may be allocated more than one population. As soon as the preceding
populations have been calculated, calculations can start. If the preceding
populations were allocated to different processors, then the performance
vector must be transmitted between the processors. If the preceding pop-
ulation was calculated on the same processor, then no communication is
needed.

Even if an unbounded number of processors were available, it would
not be sensible to allocate only a single population to a processor. The
communication cost in that case would overwhelm most of the speed up
obtained by parallelism of the computation. We anticipate that a modest
number of processors will achieve an almost linear speedup.

For simplicity, we allocate a population to a processor based only on
the population of the first class of customers. This is easily implemented
and gives a significant speed up. It might be possible to run some form of
processor allocation algorithm which toured the precedence graph in order,
allocating the population to a particular processor depending on whether
the processor was already allocated, and on the identity of the processor
used for neighboring populations in the graph.
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6.1.2 The implementation

Figure 6.1 shows the precedence graph of computation in the case of queue-
ing network with two customer classes (named A and B). Class A has a
population of 5 customers and class B, 3 customers. The node at coordi-
nates (r, s) corresponds to the computation of the statistics (queue lengths,
response times, etc.) when the network has r customers of class A and s
customers of class B. The calculation ends when the node at coordinates
(5,3) has been evaluated.

In the case of a two processors implementation, the nodes are parti-
tioned solely on the basis of the population of class A customers. Processor
1 calculates those nodes that have class populations from 0 to 2 inclusive,
and processor 2 calculates those with class A populations of 3 or more. In
general, when the final population is (m,n) processor 1 is allocated popu-
lations (7,7) for 0 < 4 < k and processor 2 is allocated k < 7 < m, where
k = m/2. In Figure 6.1, k = 2 and processor 1 starts alone and executes
the computation at nodes (0,0), (1,0), ..., (k,0), in order. It then sends
the results of node (k,0) to processor 2, which has been idle until this time.
Processor 2 executes the nodes from (k+1,0) to (m,0), and simultaneously
processor 1 executes the nodes from (0, 1) to (k,1). A pipeline is established
with processor 1 is executing node (r,s) with 0 < r < k and simultane-
ously processor 2 computes the results for (¢,s — 1) with £ +1 < ¢t < m.
Eventually, processor 1 reaches node (k,n), calculates the performance for
that population and transmits it to processor 2. Processor 1 is then idle
while processor 2 works on nodes (k + 1,n)...(m,n). When processor 2
reaches the node (m,n) and executes the corresponding computations, the
algorithm terminates.

When more processors are available, the nodes are still partitioned
among processors on the basis of their class 1 population. If a total class
population of m customers is to be calculated, and there are p processors
available, then each processor is assigned m/p values of class 1 population.

Networks with C' classes of customer generate an C-dimensional prece-
dence graph. Although more complex processor assignment algorithms
would be possible, we have extended the two dimensional algorithm. The
nodes are partitioned on the basis of the population of class 1 customers.
Processor 1 starts by evaluating the nodes for populations of class 1 from
0 to k, while all other classes have populations of 0. When population &
is reached, processor 2 starts with population k£ 4+ 1. Meanwhile, proces-
sor 1 has started the calculation of results for a population of 1 in class 2,
again taking the class 1 population from 0 to k. When it reaches k, pro-
cessor 2 should have finished computations for class 1 populations up to
m, and should be ready to calculate for population k£ + 1 again, but with a
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population of 1 in class 2.

6.1.3 Performance prediction of the algorithm

Letting N, be the population of class ¢ for 1 < ¢ < C, the execution time
T(1) of the algorithm on a single processor is given by:

C

T(1) = q(1) [T(WVe + 1), (6.1)
c=1

where ¢(1) represents the mean time spent computing a node of the MVA
algorithm in the case of p = 1. Since the parallel machines exploit cache
mechanisms during the computations, we assume that ¢ may depend on
the number of processors. The execution time T'(p) with p > 1 is given by:

T(p) =Ty (p) + Tcm(p)v (62)

where Ti,,(p) is the time spent communicating and T¢;(p) the time spent
computing. The term T;(p) can be estimated from the time to calculate
one node, the number of processors, and careful accounting for the periods
when not all processors are active. Each processor is responsible for a range
of class 1 subscripts. Most processors deal with a range of size [%]
subscripts. The processors that are responsible for a smaller range will be

idle for the processing of a single node. If we assume that the calculation of

N1+1]
P
to calculate while processor 2 is idle. It will then proceed to calculate for

the remaining populations of class 2 through to class C'. Hence processor 1
will be busy for a time given by:

a single node takes ¢(p), then the first processor will take time ¢(p) - [

aly) | M [T+ 1)

p =2

Before the computation is complete, the pipeline must empty. This involves

NH—fI

the remaining p — 1 processors each calculating for a time of ¢(q) [ m

Adding these terms we get

C
Ta(p) = q(p) [Nl - 1} <H(Ni +1)+p— 1> (6.3)

p i—2

This formula will be a slight overestimate if the processors are not all re-
sponsible for the same number of subscripts. Dividing them equally, if
N; + 1 is not exactly divisible by p, one should give [(N7 + 1)/p] to pro-
cessors 1,2,3,...k, and one fewer subscripts to processors k + 1,...,p. The
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correction term for the pipeline emptying will be slightly smaller than that
given above when the later processors have fewer subscripts for which to
calculate.

In a similar manner, the communication time can be derived, assuming
that all communications are synchronous.

C
Tem(p) = k(p) (H(Ni +1)+p— 2) : (6.4)

=2

where k(p) represents the mean time spent communicating the queue lengths
of a node of the MVA algorithm from a processor to its successor in the
pipeline when the number of processors is p'. Finally we can give the ex-
pression of the total time T'(p) by means the equations (6.2), (6.3) and
(6.4):

C C
T(p) = gfp) (Vi +1) (1 TIV:+1) + 1%) k() (H(Ni F1)+p- 2)

1=2

6.1.4 Experimental results

The pipelined implementation described above has been implemented on
the Cray T3D machine at the Edinburgh Parallel Computing Centre. The
algorithm was restricted to the case of load independent service centers.
This was only for implementation convenience, and does not represent a
restriction on the applicability of the method. The C programming lan-
guage was used, with all real values being expressed as double variables,
which occupy 8 bytes. The MPI message passing library was used to provide
interprocessor communications. Synchronous communication was used, so
that the sender of a message would block until it had been successfully
received.

The following parameters were chosen so that the program takes about
30 minutes elapsed time when running on a single processor.

e C' =3 (number of classes);
e K =5 (number of centers);
e Ny =4095, Ny = 177, N3 = 127 (classes populations).

The execution times?, the speedups and the relative efficiency, of the
program with increasing number of processors are shown in the Figures 6.2, 6.3
and 6.4, respectively.
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Figure 6.2: Execution times of the pipeline MVA algorithm on Cray T3D

machine.
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Figure 6.3: Speedup of the pipeline MVA algorithm on Cray T3D machine.
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Case study R =3, Q =5, Pop = 4095 X 177 X 127
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Figure 6.4: Relative efficiency of the pipeline MVA algorithm on Cray T3D
machine.
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Figure 6.5: The k parameter of the pipeline MVA algorithm on Cray T3D
machine.
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Figure 6.5 shows the average k(p) with p from 2 to 512. Notice the
difference between k(2) and k(p) when p > 2. This is due to the differ-
ent behavior of the pipeline and the use of synchronous communications
among the processors (see Figure 6.6). Further when p > 2 the mean time
communicating k(p) decreases as the number of processors increases. This
is because the relative amount of load imbalance decreases as the amount
of work is distributed amongst more processors decreases. Suppose a pro-
cessor finishes a lot sooner than all the others, it will start wait until the
receiver is ready to receive, hence its communication time will reflect this.
As the amount of work is distributed any potential load imbalance will de-
crease in proportion, hence it will appear that the communication time is
coming down.

6.1.5 Interpretation of the results

Using Equation (6.1) and the experimental results we can evaluate the
parameter g(1):

q(1) = # = 16.6usec. (6.6)

[T +1)

=1

In order to evaluate ¢(p), when p > 1, we can exploit the measured time
K;(p) that is the total time spent communicating from the processor i.
Since the measured time T'(p) can be considered as the execution time of
p-th processor, we obtain:

q(p) = p(T(p) = Kp(p)) = 16.6psec’. (6.7)
[T +1)

=1

Figure 6.7 shows the parameter ¢(p) obtained in this way. We observe
that the computation time ¢(p) depends on the number of processors. This
effect is because of differing data being stored in the high speed memory
cache.

! Notice that k(p) includes the waiting time of the synchronous communications.

?Because the T3D machine does not accept job running with only one processor, the
execution time for the case p = 1 is considered to be equal the time obtained with the
program running on two processor job with population of class 1 given by 2(N1+1) —1,
without communications and keeping one of two processors idle.

3The time K;(p) also includes the time spent waiting in the communication operations.
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Figure 6.6: Behavior of the pipeline MVA algorithm with two and four
Processors.
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Case study R =3, Q =5, Pop = 4095 X 177 X 127
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Figure 6.7: The g parameter of the pipeline MVA algorithm on Cray T3D
machine.

6.1.6 Improving the performance of the program

The performance of the pipeline MVA algorithm depends strongly on the
input problem. The speedup Smye(p) of the program is given by dividing
T(1) by T'(p), that is:

q(1) | ] (N +1)

=

=1

Sm'ua(p) = 1 C b 1 C .
g(p)(N1 +1) (— [TV +1) + 7) + k(p) (H(Nz- +1)+p - 2)

i=2 1=2
(6.8)
Dividing both numerator and denominator of (6.8) by k(p) and supposing

a(p) = % = %4, we obtain:

R

a(p) [T(Ni + 1)

=1

Sm'ua(p) = 1 R 1 R .
a(p)(Ny + 1) (— [T +1)+ p—) +J[(Vi+ 1) +p—2
P p =2
(6.9)

“This is true when we can neglect the effect of the cache. In our case study this is
true when p < 256.
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R
When the effect of the pipeline delays are negligible, that is when H(NZ +
i=2
1) > p, Equation (6.9) becomes:
a(p)(Ny +1
smalp) = L (6.10)
— (N1 +1) +1
p
Then the relative efficiency e(p) = Smoa(P) is:
p
Ny +1
e(p) = DN 1) (6.11)

a(p)(Ni+1) +p’

Hence when a(p)(Ni + 1) > p we can obtain from the program a relative
efficiency near to 1.

Equation (6.11) implies that one should arrange the classes such that
class 1 has the largest population. This will ensure that a(p)(N; + 1) is
as large as possible with respect to p. The effect of the ordering of the
other classes will be minimal, although cache effects may give rise to small
differences in performance.

Figure 6.8 shows the execution times when the same queueing network
is analyzed, but with the classes presented in a different order. For instance
the case ABC means the class A corresponds to the class with index i = 1
in the MVA algorithm, the class B with index ¢ = 2, and so on. We see
that the two cases ABC and ACB have the best execution times, that is
when the class with the largest population has index ¢ = 1.

6.1.7 Model validation

In order to evaluate the usefulness of our speedup models, we compare the
performance figures of the pipeline MVA with our analytic model result.
Because pipeline MVA does not perform any I/0, the type of models
CLU and BUS are, in this case, equivalent. We must choose the AIO
model, since, even though there is not I/O (o, = 1) we do not want that
the processors are synchronized at the end of the computation burst. The
absence of I/O can be obtained by setting o, = 1 (i.e., 04 = 0) and o, = 0.
Since we have synchronous communications between all pairs of con-
tiguous processors of the pipeline, we choose ¢ = 2. Moreover, there is no
contention using the communication network, because the pipeline stages
are mapped to contiguous processors of the T3D mesh. Therefore, w = 0.
The algorithm data space is unidimensional (r = 1), and hence g(p) = 1.
In [14] performance measures of MPI send (standard and synchronous)
are available. The bandwidth T}, and the latency L, for the message size
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Total time [sec]

number of processors

Figure 6.8: Execution time of the PMVA with different order of classes in
the algorithm. N4 = 4095, Np = 127, N¢ = 63.

M = 40B of our case study, are 115MB/sec and 46.9usec, respectively.
In order to evaluate o, and o,y we need to know to computation time of
the PMVA algorithm between two communications. This is the average
time spent computing a node of the MVA algorithm (~ ¢(1) = 16.6usec),
multiplied the population of class 1 (N7 = 4095). By normalizing the
communication times, with respect to the computation time, we obtain:

MS —6
oy = =5.3074 - 107, 6.12
Toa(D(NA - 1) (6.12)

L —4
o0 = = 7.1564 - 10, (6.13)

q(1)(Na +1)

Figure 6.9 shows a comparison between the experimental speedup with
the one obtained from the BUS-AIO model. Note that we needed only the
sequential computation time and an estimate of the communication times.

6.2 Speedup surfaces of applications with inten-
sive I/O

In this section we show the speedup surfaces of three I/O intensive pro-
grams. The applications considered were selected among those of the Scal-
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Figure 6.9: Comparison between the experimental speedup and BUS-AIO
model speedup.

able I/O Initiative®, that exhibit a nonnegligible speedup. Each application
is comprised of a certain number of programs executed in a pipeline fashion,
each of which is indicated here as a “stage” [42].

The experimental platform used is the 512-node Intel Paragon XP/S
with 64 4GB Seagate disks, each attached to a computation node, at the
Caltech Center of Advanced Computing Research. Performance measures
are collected using Pablo, a performance analysis environment that provides
trace data for the I/O and CPU requests of the parallel applications.

The first application considered is QCRD (Quantum Chemical Reaction
Dynamics) that solves the Schroedinger equation for the differential and
integral cross section of the scattering of an atom by a diatomic molecule.
It was effectively used to investigate the reaction between a deuterium atom
and a diatomic hydrogen molecule and led to the discover of a geometric
phase effect that had not been detected before. QCRD implements the
method of symmetrical hyperspherical coordinates and local hyperspherical
surface functions with a typical SPMD structure. All nodes execute the
same code on different portions of the data set each of equal size so as

®The Scalable I/O Initiative is an effort to collect a suite of I/O intensive national
challenge scientific applications, characterize their behavior in terms of I/O access pat-
terns, analyze their performance and use the gathered information to design and evaluate
policies for the management of parallel file systems.
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to keep the load balanced. The execution is divided into 5 consecutive
stages that proceed in a pipeline fashion. During stage 1, a twodimensional
eigenvalueeigenvector problem is solved and a primitive surface function
is obtained. All the nodes perform a series of interleaved writes to the
basis file. During stage 2, each node independently computes a subset of
the integrals that are needed to evaluate the two-dimensional quadratures
involving the primitive basis functions. Both read and write operations are
performed by all nodes. In stage 3, the integrals computed at the previous
stage are collected into dense matrices. Each node reads the basis matrices
and solves the tridiagonal system resulting from the tridiagonalization of
the generalized eigensystem. Different parts of the Hamiltonian matrices
that were solved for are stored at different nodes. In stage 4 read operations
are followed by computation and then write operations. Every interaction
matrix is loaded at each processor in order to compute the collision energies.
Once the propagator file is computed, it is written out to disks by all nodes.
Finally, in stage 5 the propagator file is read by all nodes, which then
compute the scattering matrices and write the results to the disks. We
focus on stage 2 and stage 4 because they achieve reasonable speedups.

The second application is MESSEKIT, an electronic structure calcu-
lations application that uses the Hartree—Fock algorithm. The electronic
density around a molecule is computed by considering each of the molecule
electrons in the collective field of the others, iterating the computation until
the field felt by each electron is consistent with that of the other electrons.
Input to the algorithm is the basis functions derived from the atoms and the
relative geometries of the atom centers. The Coulomb interactions between
electrons are computed by solving the atomic integrals over the basis func-
tions, thus producing an approximate molecular density. The density and
the atomic integrals are then used to derive a Fock matrix. A selfconsistent
field (SCF) method is finally applied until the molecular density converges
to within an acceptable threshold. The application is comprised of three
logical stages executed in a pipelined fashion. During the first stage, called
setup, a single node, node 0, is active reading initialization data from disk,
calculating the basis sets and writing the results out to disk. Such a stage is
not parallel so it is not modeled here. In stage 2, called ARGOS, all nodes
participate in the computation of the atomic integrals, each node writing a
private file with the locally computed integrals. The granularity of the I/O
and CPU bursts is fine. During stage 3, called SCF, all nodes repeatedly
read the integral data, construct the Fock matrix, compute, synchronize,
and solve the SCF equations. All nodes operate concurrently, with node
0 that periodically reads the intermediate results and writes them out to
disk. We focus on stage 2.

Since in the algorithm of the ARGOS and QCRD stage 2 the proces-
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Figure 6.10: ARGOS - Experimental speedup surface (dashed line) wvs
analytical (solid line); o, = 0.8805,0,9 = 0.0070,0, = 0.0605,r =
1.4055 - 105, w = 0.9455, o, = 5.1883 - 1074,
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Figure 6.11: QCRD stage 2 — Experimental speedup surface (dashed line) vs
analytical (solid line); o, = 0.7118, 09 = 0.0487,0, = 0.4125,r = 4.5296 -
102, w = 0.1871,9.0 - 10~4.
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Figure 6.12: QCRD stage 4 — Experimental speedup surface (dashed line) vs
analytical (solid line); o, = 0.6585, 09 = 0.0, 0, = 0.0013,r = 0.6985, w =
0.4260.

sors perform read/write operation independently, we chose to use the model
BUS—-AIO. Instead, for the QCRD stage 4 the BUS-SIO is more appropri-
ate.

Given a set of observed speedup s, 4 we estimated values of the model
parameters that minimize the sum of squared differences between the ob-
served values and the fitted values s(p, d). In other words, we minimized:

e=Y [s(p,d) — spl”-

p,d

Figure 6.10, 6.11 and 6.12 show the speedups observed vs the speedups
obtained from the estimate parameters®. In each case, we observe that the
fitted model is a good match for the observed data. Note that in ARGOS
and in QCRD stage 2 the value of r tends infinite. This means that the
communication time scale as g(p) = 1/p.

®Note that the average error is defined as:

Z [s(p,d) — sp.a]°
52 ’
p,d ¢
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Chapter 7

Conclusion

In this thesis we have described a modeling approach for investigating par-
allel programs performance when executed on different types of systems.
From these models we obtain the qualitative and quantitative behavior of
programs that alternate computations and I/O in a cyclic fashion. The pro-
posed performance model allows to study the impact of both the communi-
cation contention and I/O of the system, showing the dependence between
speedup and number of processors and I/O nodes in the parallel machine.
Various aspects of the communication and I/O have been analyzed and
different hardware architectures have been taken into consideration.

The purpose of this thesis is to permit an estimate of the program
speedup by inserting in the models the computation times, the communi-
cation times, the number of processors involved in the synchronous commu-
nications and the number of dimensions of the program space data. Con-
cerning the I/O we need to know the size of the data and an estimation
of the parameter o,. The communication contention level w is the most
difficult to determine, however, by assigning w = 1 and w = 0 it is possible
to obtain a lower bound and a upper bound of the speedup, respectively.

Moreover, we have shown that we can infer the program characteristics
of a program by fitting our model to observed speedup. With the proposed
modeling technique, the fitting of experimental speedup surfaces produced
very small errors; thus it would be appropriate to use these estimated pa-
rameters for allocation and scheduling.

69



70

CHAPTER 7. CONCLUSION



Bibliography

1]

2]

[5]

[6]

[9]

G. M. Amdhal. Validity of the single processor approach to achieving
large scale computing capabilities. In Proceedings AFIPS 1967 Spring
Joint Computer Conference, volume 30, pages 483-485, April 1967.

F. Baccelli and Z. Liu. On the execution of parallel programs on
multiprocessor system — a queuing theory approach. Journal of the
Association for Computing Machinery, 37(2):373-414, 1990.

K. R. Backer. Introduction to Sequencing and Software. John Wiley
& Sons, 1974.

F. Baskett, K. M. Chandy, R. R. Muntz, and F. G. Palacios. Open,
closed, and mixed networks of queues with different classes of cus-
tomers. Journal of the ACM, 22(2):248-260, April 1975.

S. Baylor and C. Wu. I/0 in parallel and distributed computer systems,
chapter Parallel I/O worload characteristics using Vesta, chapter 7,
pages File—access character. Kluwer Academic Publisher, 1996.

J. P. Buzen. Computational algorithms for closed queueing networks
with exponential servers. Communications of the ACM, 16(9):527-531,
September 1973.

J.P. Buzen. Computational algorithms for closed queueing networks
with exponential servers. Communications of the ACM, 16(9):527-531,
September 1973.

W. W. Chu and K. K. Leung. Module replication and assignment for
real-time distributed processing systems. In Proceedings of the IEEE
Vol. 75 No. 5, 1987.

E. G. Coffman and P. J. Denning. Operating System Theory. Prentice—
Hall, N. J. Henglewood Cliff, 1973.

71



72

[10]

[12]

[13]

[20]

[21]

BIBLIOGRAPHY

P. Cremonesi and C. Gennaro. I/o performance in hybrid mimd+simd
machines. In Proceedings of High-Performance Computing and Net-
working 98, volume 1017 of Lecture Notes in Computer Science, Am-
sterdam, April 1998. Springer-Verlag.

R. Suros E. Gelenbe, E. Montagne and C. M. Woodside. A perfor-
mance model of block—structured parallel programs. In Proceedings of

the International Workshop on Parallel Algorithms and Architectures,
pages 127-138. North—Holland, 1986.

T. Philips E. Gelenbe, R. Nelson and A. Tantawi. The asymptotic
processing time for a model of parallel computation. In Proceedings of
the National Computer Conference, Las Vegas, USA, 1986.

D. L. Eager, E. D. Lazowska, and J. Zahorjan. Speedup versus
efficiency in parallel systems. [EEE Transaction on Computers,
38(3):408-423, 1989.

EPCC. Mpi for t3d performance measures, jun 1997. Available at
http://www.epcc.ed.ac.uk/t3dmpi/Product/Performance/.

G. Fayolle, P. J. B. King, and I. Mitrani. On the execution of programs
by many processors. In Proceedings of Performance 88, pages 217-228.
North-Holland, Amsterdam, 1983.

H. P. Flatt and K. Kennedy. Performance of parallel processors. Par-
allel Computing, 12:1-20, 1989.

I. Foster. Design and building parallel programs, 1995. Available at
www.mcs.anl.gov/dbpp/text/.

E. Gelenbe. Multiprocessor Performance, pages 83—90. John Wiley &
Sons, Series in Parallel Computing, 1989.

E. Gelenbe and Z. Liu. Performance analysis approximation for par-
allel processing in multiprocessor systems. In Proceedings of the IFIP
Working Conference on Parallel Processing, pages 363-375. North—
Holland, 1988.

C. Gennaro. Performance models for i/o bound spmd applications
on clusters of workstations. To appear on Proc. of 7th Euromicro
Workshop on Parallel and Distributed Processing, 1999.

A.G. Greenberg and J. McKenna. Solution of closed, product form,
queueing networks via the RECAL and tree-RECAL methods on
a shared memory multiprocessor. Performance Fvaluation Review,
17(1):127-135, 1989.



BIBLIOGRAPHY 73

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

32]

[33]

[34]

A.G. Greenberg and I. Mitrani. Massively parallel algorithms for net-
work partition functions. In International Conference on Parallel Pro-
cessing, Chicago, January 1991.

J. L. Gustafson. Reevaluating amdahl’s law. Communication of the
ACM, 31(5):532-533, 1988.

J. L. Gustafson, G. R. Montry, and R. E. Benner. Development of
parallel methods for a 1024-processor hypercube. SIAM J. Sci. and
Stat. Computing, 9(4):609-638, 1988.

J.L. Gustafson. The scaled-sized model: A revision of amdhal’s law.
ICS Supercomputing, 11:130-133, 1988.

K. Salem H. Garcia-Molina. The impact of disk-striping in reliability.
IEEE Database Engineering Bulletin, 11(1):26-33, mar 1988.

F.B. Hanson, J.-D. Mei, C. Tier, and H. Xu. PDAC: A data parallel
algorithm for the performance analysis of closed queueing networks.
Parallel Computing, 19(12):1345-1358, 1993.

U. Herzog and W. Hoffmann. Syncrhonization problems in hierachi-
cally orgasnized multiprocessor computer systems. In Performance of
Computer System, Proc. 4th Int. Symp. Modeling Performance Evalu-
ation Computer Syst., pages 29-48. North—Holland, Amsterdam, 1979.

A. N. Choudhary J. M. del Rosario. High—performance i/o for mas-
sively parallel computers. IEEE Computer, pages 59-68, March 1994.

J.R. Jackson. Jobshop-like queueing systems. Manage. Seci., 10(1):131-
142, 1963.

P. J. B. King and C. Gennaro. Parallelising the mean value analysis
algorithm. To appear on Special Issue on Parallel and Distributed
Simulation Transaction of the Society for Computer Simulation, 1999.

S.S. Lam and Y.L. Lien. A tree convolution algorithm for the solution
of queueing networks. Communications of the ACM, 26(3):203-215,
March 1983.

E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik. Quanti-
tative System Performance — Computer System Analysis Using Queue-
ing Network Models. Prentice-Hall, Englewood Cliffs, New Jersey,
1984.

J. D. C. Little. A proof of the queueing formula L = AW. Operations
Research, pages 9:383-387, 1961.



74

[35]

[36]

[41]

[42]

[43]

[44]

[45]

[46]

BIBLIOGRAPHY

E. L. Miller and R. H. Katz. Input/output behavior of supercomputing
applications. In Proceedings of Supercomputing 91, pages 567-576,
November 1991.

P. Mussi and J. T. Nain. Evaluation of parallel execution of program
tree structures. In Proceedings of the ACM SIGMETRICS Conference
on Measurement and Modeling of Computer Systems, pages 7887,
1984.

N. Nieuwejaar, D. Kotz, A. Purakayastha, C. Ellis, and M. Best. File—
access characteristics of parallel scientific workloads, technical report
pcs—tr95-263. Technical report, March 1995.

L. Pace and S. Tucci. A parallel algorithm for distributed computer
performance evaluation environments. In Proc. 1990 Summer Com-
puter Simulation Conference, pages 797-802, 1990.

B. K. Pasquale and G. Plyzos. A static analysis of i/o characterization
of scientific applications in a production workload. In Proceedings of
Supercomputing 93, pages 388-397, November 1993.

M. Reiser and S. S. Lavenberg. Mean-value analysis of closed multi-
chain queueing networks. Journal of the ACM, 27(2):313-322, April
1980.

M. Reiser and S.S. Lavenberg. Mean value analysis of closed multichain
queueing networks. Journal of the ACM, 27(2):313-322, 1980.

E. Rosti, G. Serazzi, E. Smirni, and M. S. Squillante. The impact of
i/o on program behavior and parallel scheduling. In ACM Sigmetrics
Conference, June 1998.

P. J. Schweitzer. Exact solution of the MVA equations. STAM Review,
23:528-532, 1981.

K. S. Trivedi. Probability and Statistics with Reliability, Queueing,
and Computer Science Applications. Prentice-Hall, Durham, North
Carolina, 1982.

M. Vanneschi. Pqe2000: Hpc tools for industrial applications. IEEE
Concurrency, pages 68-71, oct—dec 1998.

K. Wilson. High—performance computing and communications, grand
challenges 1993 report. Technical report, Report by the Committee on
physical, mathematical and engineering sciences federal coordinating
council for science engineering and technology, Washington D.C., 1993.



BIBLIOGRAPHY 75

[47] X. Wu and W. Li. Performance models for scalable cluster computing.
Journal of System Architecture, 44:189-205, 1998.



76

BIBLIOGRAPHY



Appendix A

Non-recursive M VA formula

In this appendix we derive a non—recursive form of the MVA algorithm for
queueing networks with one job class.

Consider the queueing network shown in Figure A.1. Let S; (1 < j <k)
and Z denote the service time of the j—th queueing stations and the delay
of the terminal, respectively. Let p be the number of jobs in the network.
The mean response R;(p) time of the j—th queueing center is given by:

e
J el €k 7€k 41
> IR AR

€k+1-
(61,...,6k+1)ELkJ_rl
Ri(p) = S; | (A.1)
) et e e

Ck+1-
(61,...,6k+1)EL;ji

where L7 is the set of m-tuple (ey,...,en) of non negative integers such
that ey +... 4+ ey, =n.
We show a proof of (A.1) for k£ = 1, a complete proof can be find in [43].

Figure A.1: Queuing network used for non-recursive MVA solution.
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Proof. By induction on p. When p = 1 it is straightforward to verify that
(A.1) holds. Assume that (A.1) holds for p — 1, we show that it holds for
p. From (A.1) we can write R(p — 1) as:

Rip—1)=§ [%] (A.2)
Where
Py
N(p) = Z Tspfzflzz
i=0
and
p—1 1

D(p) =y 5717

The response time R(p) is given by [33]:

R(p) =S[Q(p—-1) +1] (A.3)

Where Q(p—1) is the mean queueing length when in the network are p —1
jobs circulating. Let X (p) be the throughput of the jobs, given by:

X(p) = o

Z + R(p)
Therefore using the Little’s law [34] (Q = RX) and (A.3):

(p—DR(pP-1)
Z+R(p-1)

R(p):s{ +1}

Upon substituting (A.2) into the last equation we obtain:

(p—1)SN(p—1) 1] :S{pSN(p—I)JrZD(p—l)

ZD(p—1)+SN(p—1) ZD(p—1)+SN(p—1)

(A.4)

Substituting the expressions of N(p — 1) and D(p — 1) into (A.4), we get
the following formula:

R(p) =5 |

) . —2
”z:pp — i — ISp_i_IZi n pz: lsp—i—ZZi-l—l
; 7! — 4!

R(p) =S | =2 i=0 (A.5)

p—2 p—2 .
S Lgpicagint | Y PTIT L gpiig
pard per L

In (A.5) it is straightforward to collapse the terms S7Z* of the polyno-
mials with the same degrees j and k. For instance, for the numerator:
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the generic term i—th of the left polynomial (i.e., ppfifls'p =17%) added
to the term (i — 1)-th of the right polynomial (i.e., = 1) Sp=i=l71) gives

WS’””_IT =(p— 1)%8”‘“1?. Finally, we obtain:

Z Sp i— 1Z7, Zp Sp i— 1Z7,

R(p) =8 | =2 =5 (A.6)

Z . gp—i—1yi ;ESp—i—lzi
i

1=0
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Appendix B

Fork/join queueing network
response time

In this section we evaluate the average response time Ry, of the fork/join
system of Figure B.1.

The response time of this system can be seen as the time taken by the p
jobs to exit the queueing network. We use the Markov chain of Figure B.2
in order to obtain an approximate value of this time.

Let « and U be the exit probability and the utilization of the queueing
station, respectively, the exit rate is given by aU/S, from which we obtain
the time Ry, ;:

LS
%N_Xhﬁa

=1 !

(B.1)

where U is the utilization of the queue for population ¢ and S is service
time of the queueing station. From the Little’s law we know that:

i

U = XS =
R;

(B.2)

where X; and R; are the respective throughput and response time of the
queueing network for the population 7. Substituting (B.2) into (B.1) we
have:

1 &R
=== B.
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Fork Join

—>D7

S

Figure B.1: fork/join system: « = exit probability, S = queue service time,
Z = terminal think time, p = population.

OSACNIERG

Figure B.2: Markov chain used for evaluating the average fork/join response
time.



