
Milos: a Multimedia Content Management
System for Digital Library Applications?

Giuseppe Amato, Claudio Gennaro, Fausto Rabitti, Pasquale Savino

ISTI-CNR
Pisa, Italy

{giuseppe.amato, claudio.gennaro, fausto.rabitti,

pasquale.savino}@isti.cnr.it

Abstract. This paper describes the MILOS Multimedia Content Man-
agement System: a general purpose software component tailored to sup-
port design and effective implementation of digital library applications.
MILOS supports the storage and content based retrieval of any multime-
dia documents whose descriptions are provided by using arbitrary meta-
data models represented in XML. MILOS is flexible in the management
of documents containing different types of data and content descriptions;
it is efficient and scalable in the storage and content based retrieval
of these documents. The paper illustrates the solutions adopted to sup-
port the management of different metadata descriptions of multimedia
documents in the same repository, and it illustrates the experiments per-
formed by using the MILOS system to archive documents belonging to
four different and heterogenous collections which contain news agencies,
scientific papers, and audio/video documentaries.

1 Introduction

Digital Library (DL) technology is today limited to manage specific types of dig-
ital objects and specific metadata description models. This implies that existing
DL applications can be hardly adapted to different application environments and
to different metadata description models. Indeed, many DLs were built having
in mind a specific application and, in many cases, a specific document collection,
thus resulting in an ad-hoc solution: all components of the DL – the data repos-
itory, the metadata manager, the search and retrieval components, etc. – are
specific to a given application and cannot be easily used in other environments.
Many of these systems guarantee inter-operability with other systems, by adopt-
ing standard protocols such as OAI, or Z39.50. However, their inter-operability
is limited to the exchange (import/export) of data/metadata. In fact, there is no
? This work was partially supported by the ECD project (Extended Content Delivery)

[12], funded by the Italian government, by the VICE project (Virtual Communities
for Education), also funded by the Italian government, and by DELOS NoE, funded
by the European Commission under FP6 (Sixth Framework Programme). We would
like to thank Paolo Bolettieri, Franca Debole, Fabrizio Falchi, Francesco Furfari, and
Bertrand Le Saux for their valuable contribution to the MILOS implementation.



chance of reusing software components, to integrate functionality of other DLs,
or to use digital contents (documents and metadata) compliant to other stan-
dards. This is mainly due to the lack of standard general purpose basic building
components tailored to DL application design.

In this paper we propose an approach similar to that applied in the field
of traditional database applications. In fact, database applications are generally
built relying on a Database Management System (DBMS), a general purpose
software module that offers all functions needed to build many different database
applications (e.g., banking, corporate management, billing, etc.); these applica-
tions will use different types of data, and they will support many different types
of retrieval. We intend to demonstrate that the same can be done in the DL
field: it is possible to build a general purpose Multimedia Content Management
System (MCMS) which offers functionalities specialized for DL applications. Dif-
ferent DL applications, can be built on top of such an MCMS, each supporting
the management of documents of any data type, described by using different
metadata description models, searchable in many different modes. This MCMS
should be able to manage not only formatted data, like in databases, but also
textual data, using Information Retrieval technology, semi-structured data, typ-
ically in XML, mixed-mode data, like structured presentations, and multimedia
data, like images and audio/video.

In this paper we discuss the functionality that the MCMS should provide
(Section 2) and we present the MILOS Multimedia Content Management System
(Section 3), that we built according to those criteria. Finally we present several
significant DL applications that were implemented by using MILOS, and we
show the advantages of the proposed approach in building these specific DL
applications, resulting in the simplicity of the implementation and in significant
system performance (Section 4).

2 Motivations

Digital library applications are document intensive applications where possibly
heterogeneous documents and their metadata have to be managed efficiently and
effectively. We believe that the main functionalities required by DL applications
can be embedded in a general purpose Multimedia Content Management System
(MCMS), that is a software tool specialized to support applications where doc-
uments, embodied in different digital media, and their metadata are efficiently
and effectively handled.

The minimal requirements of a Multimedia Content Management System are
Flexibility, in structuring both multimedia documents and their metadata, Scal-
ability, and efficiency. Flexibility is required to manage both basic multimedia
documents and their metadata. The flexibility required in representing and ac-
cessing metadata can be obtained by adopting XML as standard for specifying
any metadata (for example MPEG-7 [5] can be used for multimedia objects, or
SCORM [11] for e-Learning objects). Requirements of scalability and efficiency
are essential for the deployment of real systems able to satisfy the operational



requirements of a large community of users over a huge amount of multimedia
information.

A MCMS mainly supports the storage and preservation of digital documents,
and their efficient and effective retrieval and management. This is provided with
an appropriate management of documents and related metadata, by:

1. managing different documents embodied in different media and stored with
different strategies;

2. supporting the description of document content by way of arbitrary, and
possibly heterogeneous, metadata;

3. providing DL applications with custom/personalised views on the metadata
schema actually handled.

Point 1) requires that no assumption should be taken on the types of media
and encoding used to represent documents, and especially on the specific strat-
egy used to store them. This allows applications to be unaware of the technical
details related to multimedia document management. For instance, textual doc-
uments can be stored in the file system and served to the users using a normal
web server. However, video documents might need to be maintained in a video
server that uses various storage devices, as for example digital tapes stored in
silos, optical disks, and/or temporary storage space on arrays of hard disks [21].
In addition, video documents might be served exploiting specific real-time con-
tinuous media streaming strategies to avoid hiccups during playback. The DL
application should be designed independently from these issues, which should
be managed transparently by the MCMS. For instance, changes in the storage
strategies should be possible without changing the DL application software.

Point 2) states that a content management system should be able to deal with
arbitrary metadata. This is required by the fact that different DL applications,
according to their specific requirements, might need to use different metadata.
Consider that existing archiving organizations have already their own metadata
schemas, and hardly want to modify them to be compatible with a specific
system. Therefore, a DL management system should be able to support any
metadata schema without requiring metadata translation or restrictions on the
functionality offered. There are also cases where the same application needs to
deal with different metadata at the same time. These different metadata might be
needed because the documents have redundant descriptions in terms of different
metadata, or because the DL application is dealing with a document collection
described with heterogeneous metadata. The last case might occur, for instance,
in case of integration/merging of archives managed by different organization.

Point 3) makes it possible that the metadata schema seen by the DL appli-
cation is different from the metadata schemas actually stored in the repository
of the content management system. Suppose that an application was built to
deal just with a specific metadata schema. The MCMS should be able to serve
requests of such an application even if metadata stored in the repository com-
ply to different schemas. Metadata schema independence can be obtained by
exploiting techniques of schema mapping. This feature is especially useful in



case of heterogeneous metadata available at the same time in the repository: the
DL application will refer to just one metadata schema, relying on the multiple
schema mapping performed on the fly by the MCMS. In addition, this feature
allows different DL application, which require different metadata schemas, to
share the same MCMS transparently.

3 The MILOS multimedia content management system

We have designed and built MILOS (Multimedia dIgital Library Object Server),
a MCMS that satisfies the requirements and offers the functionalities discussed
in previous section. The MILOS MCMS has been developed by using the Web
Service technology, which in many cases (e.g. .NET, EJB, CORBA, etc.) already
provides very complex support for “standard” operations such as authentication,
authorization management, encryption, replication, distribution, load balancing,
etc. Thus, we do not further elaborate on these topics, but we will mainly con-
centrate on the aspects discussed above.

MILOS is composed of three main components as depicted in Figure 1: the
Metadata Storage and Retrieval (MSR) component, the Multi Media Server
(MMS) component, and the Repository Metadata Integrator (RMI) component.
All these components are implemented as Web Services and interact by using
SOAP. The MSR manages the metadata of the DL. It relies on our technology for
native XML databases, and offers the functionality illustrated at point 2) above.
The MMS manages the multimedia documents used by the DL applications.
MMS offers the functionality of point 1) above. The RMI implements the service
logic of the repository providing developers of DL applications with a uniform
and integrated way of accessing MMS and MRS. In addition, it supports the
mapping of different metadata schemas as described at point 3) above. All these
components were built choosing solutions able to guarantee the requirements of
flexibility, scalability, and efficiency, as discussed in the next sections.

3.1 Metadata Storage and Retrieval

A typical search in a DL is performed on metadata which describe the document
content end their bibliographic information. Three different approaches have
been adopted until now to support document retrieval in digital libraries: (a) use
of relational databases; (b) use of information retrieval engines; (c) full sequential
scan of metadata records. Unfortunately, these approaches did not prove to be
effective for DL applications: designers had to face the problem of choosing the
right compromise between efficiency of the search systems and complexity of the
metadata schema. The result of this compromise is that in mostmany cases DLs
use very simple and flat metadata schemas such as Dublin Core [2].

Solution (a) requires that metadata should be converted into relational schemas.
This is easy for simple flat metadata schemas, such as Dublin Core, but it far
more difficult for complex and descriptive metadata schemas, such as ECHO [14],



 

 
   MILOS Repository 

Metadata 
Integrator 

Multi 
Media 
Server 

Metadata 
Storage 
Retrieval 

 
XML 

 
SILOS 

File 
System 

 
RAID 

DL Applications 
Metadata 
editor 

Ingestion 
manag. 

Search 
Browse 

Fig. 1. General Architecture of MILOS

MPEG-7 [5], IFLA-FRBR [10], P/META [13]. Moreover, a query on these meta-
data must be translated into complex SQL queries at relational level, resulting
in many expensive joins to implement tree structure traversals. Thus, the result-
ing search performance is often unacceptable. However, even with flat metadata
schemas, pure relational databases do not offer all functionalities needed for an
effective retrieval, such as full text search.

Solution (b) uses full text search engines [22] to index metadata records. In
this case the main emphasis is devoted to the textual information contained in
metadata fields. Many text search engines offer the fielded indexing capability,
where text contained in different fields is independently indexed. However, appli-
cations are limited to relatively simple and flat metadata schemas. In addition,
it is not possible to search by specifying ranges of values.

Solution (c) is very trivial and inefficient. It is not practicable in applica-
tions that pretend to be more than toy systems. In this case no indexing is
performed on the metadata and the custom search algorithms always scans the
entire metadata set to retrieve searched information.

We successfully attempted a different approach: we have designed and im-
plemented an enhanced native XML database/repository system with special
features for DL applications. This is especially justified by the well known and
accepted advantages of representing metadata as XML documents. Metadata
represented with XML might have arbitrary complex structures, which allows
to deal with complex metadata schemas, and might be easily exported and im-
ported. Our XML database can store and retrieve any valid XML document. No
metadata schema or XML schema definition is needed before inserting an XML
document, except optional index definitions for performance boosting. Once an
arbitrary XML document has been inserted in the database it can be immedi-
ately retrieved using XQuery. This allows DL applications to use arbitrary (XML
encoded) metadata schemas and to deal with heterogeneous metadata, without
any constraint on schema design and/or overhead due to metadata translation.



We decided not to use a commercial XML database system (e.g. Tamino [9])
because of our specific operational requirements:

1. Particular attention must be given to the performance of search and insert
operations.

2. It is not necessary to enforce a database-like transactional mechanism, since
update operations are quite rare compared to search operations. Editing of
complex multimedia objects and their metadata, can be based on a sort of
check-out/check-in mechanism.

Thus, our native XML database/respository system is simpler than a general
purpose XML database system, but offers significant improvements in specific
area: it supports standard XML query languages such as XPath [18] and XQuery
[19], and offers advanced search and indexing functionality on arbitrary XML
documents; it supports high performance search and retrieval on heavily struc-
tured XML documents, relying on specific index structures [15,23], as well as full
text search [22], automatic classification [20], and feature similarity search [17].
The system administrator can associate an index to a specific XML element. For
instance, the tag <abstract> can be associated with a full text index and to an
automatic topic classifier that automatically indexes it with topics chosen from
a controlled vocabulary. On the other hand, the MPEG-7 <VisualDescriptor>
tag can be associated with a similarity search index structure and with an au-
tomatic visual content classifier. The XQuery language has been extended with
new operators that deal with approximate match and ranking, in order to deal
with these new search functionality.

In our database every XML document is identified by an URN. Therefore,
relationships and links among documents - even if they are stored in different
repositories - can be easily and unambiguously represented.

3.2 Multi Media Server

Different DL applications may have different storage and access needs. For exam-
ple, very small DLs might store documents on standard hard disks, while more
mission critical applications might need to store documents on arrays of disks,
possibly duplicating and distributing content on several sites. Digital libraries
dealing with huge archives of video documents, might need to store them on
digital tapes maintained in silos, and to have arrays of disks used as temporary
storage for frequently used documents. In addition, we must consider that a DL
may scale over time, when the number of documents grows over a certain limit
or faster access is needed.

DL applications might also use different delivery strategies. For example,
a small DL might serve documents using a normal web server, while heavily
accessed DLs might need to use replication and load balancing strategies to
guarantee high performance access to content. A video DL might use high per-
formance video servers to stream videos in real time to users [21].

The MMS allows the programmers of the DL applications to be unaware of all
these issues. The key idea is that the DL application should deal with documents



in a uniform way, independently of the specific strategy used to manage them.
Thus, the MMS identifies all documents with an URN and maintains a mapping
table to associate URNs with actual storage locations. Applications use the URN
to get or store documents from the MMS, which behaves as a gateway to the
actual repository that stores the document. The system administrator can define
rules that make use of MIME types, to specify how the MMS has to store a
document of a specific type. For example, the rule may specify that an MPEG-2
video has to be be stored in a tape of a silos, while an image will be stored in
an array of disks.

A special care is taken to deal with the actual access protocols offered to
retrieve the documents. An application will refer a specific document always
using its URN. However, the retrieval of the document should be done using
an access protocol compatible with the storage and delivery strategy associated
with the document. For instance, when the document is stored in a web server
it will be retrieved with an HTTP request. On the other hand, suppose that a
video document is served through a commercial video server such as the Helix
Universal Server [4]; in this case the real time streaming of the video will be
obtained using RTSP [6]. When an application requires to retrieve a document,
the MMS will translate the given URN into a specific handle (for instance an
RTSP URL) that the application will use to access the document.

3.3 Repository Metadata Integrator

The RMI manages the accesses to the document and metadata repositories and
supports metadata mapping to guarantee metadata independence. The mapping
of application requests into requests compatible to the metadata schema actually
managed by the MCMS is accomplished by defining a set of schema mapping
rules. The main purpose of this mapping is to translate application requests into
XQuery queries compliant to the stored metadata. This mechanism allows the
RMI to translate names of fields (such as Title, Author, etc.) known to the DL
application, into requests to the MSR without the need of knowing the specific
schema model adopted. When a new XML schema is introduced, the system
administrator must specify the mappings for the new metadata.

Each mapping rule specifies how to translate the name of a metadata field,
known to the application, into an XPath expression that specifies the XML path
names that should be used to access that metadata field in the target metadata
schema. A generic mapping rule has the following structure:

metadataType[.Name]* = <RE XPath>,<SE XPath> where

1. The metadataType field identifies the metadata model used by the applica-
tion e.g. DublinCore, SCORM, MPEG-7 etc;

2. Name is the name of a metadata field requested by the application e.g.,
Title, Author, etc. If empty, it means that the rule applies to all metadata
fields of the specified metadataType;

3. <RE XPath> (Retrieved Element XPath) is the XPath corresponding to
the XML element that will be retrieved with this field;



4. <SE XPath> (Searched Element XPath) is the XPath, under <RE XPath>,
of the element that contains the value of the metadata field used for search-
ing.

As an example, let us consider a DL for e-Learning applications, where the
Learning Objects in the repository have a complex metadata structure, based on
SCORM [11]. Suppose that we want to search SCORM metadata trough Dublin
Core. We can use the following mapping rules:

dc.title = /lom, general/title/langstring
dc.description = /lom, general/description/langstring

They specify that the Dublin Core metadata fields ‘dc.title’ and ‘dc.description’
can be searched in SCORM respectively by means of the XPath string lom/gen
eral/title/langstring, and lom/genaral/description/langstring. The whole
<lom> element will be retrieved when <langstring> contains the desired value.
Note that, the <title> and <description> SCORM XML elements do not
contain the title text of the document, but the element <langstring>, which in
turn contains the real text.

Let us now explain how the mapping directives are used by RMI to generate
the XQuery query. The RMI allows applications to search on metadata by using
the findExactMatch method:

findExactMatch(string MetadaType, vector of string fields, vector of
string values, string returnFields),

This method searches for a set of metadata records of the specified MetadaType.
The fields parameter is a vector of (application known) names of metadata fields,
of the MetadaType, to search for. The values parameter specifies the values that
the fields must match (the different fields are searched by using the boolean con-
nective AND). Finally, returnFields specifies the fields of the retrieved records
(i.e. RE XPath) that the application wants to know. The method translates
the request into an XQuery query as follows:

1. for each triple <MetadaType, valuei, fieldi>, specified in the findExact-
Match, RMI searches the mapping rules matching MetadaType.fieldi to
fetch the corresponding XPath strings RE XPathi and SE XPathi;

2. for each pair <MetadaType, returnFieldi >, specified in the findExact-
Match, RMI searches the mapping rules matching MetadaType.returnFieldj

to fetch the corresponding XPath strings RE XPathretj and SE XPathretj .
3. check that all the strings RE XPathi and RE XPathretj are the same string

and call that string RE XPath, otherwise fail and stop;
4. finally, combine the XPath strings RE XPath, SE XPathi, and SE XPathretj

to generate the XQuery query, as follows:

for $a in RE XPath
where $a/SE XPath1 = value1 and . . . and $a/SE XPathn = valuen

return $a/SE XPathret1 . . . $a/SE XPathretm



Example: Suppose that an application wants to use Dublin Core to search
SCORM metadata having a specific title, and wants to have back the corre-
sponding descriptions. In this case we have MetadataType = dc, field1 = title,
returnField1 = description. Applying the previous mapping rules we obtain:

for $a in /lom
where $a/general/title/langstring = value1

return $a/general/description/langstring

4 Field Trials

In order to verify and demonstrate the flexibility and efficiency of MILOS in
managing different heterogeneous DL applications, we took four data sets used
by four different existing DLs and we built the corresponding DL applications
on top of MILOS. The data sets that we considered consist of documents and
metadata of very different nature: the Reuters data set [7], the ACM Sigmod
Record dataset [8], the DBLP data set [1], and the ECHO data set [14].

The DL applications that we built use the same MILOS installation and all
data sets were stored together. The functionality of MILOS allows individual
applications to selectively access data and metadata of their interest or to per-
form cross-library search. Each DL application consists of a specific search and
browsing interface (built according to the data managed) and a bulk import
tool. The search and browse interfaces were built as web applications using Java
Server Pages (JSP). The bulk import tool was a simple Java application. On av-
erage, the effort required to build each application from scratch was one week of
work of a single skilled person. This, we believe, is really a little effort compared
to the cost that would have been required to build from scratch a DL, without
general purpose tools, or the cost that would have been required to translate and
adapt the data and metadata to cope with the requirements and restrictions of
an existing DL system.

We built the browse and retrieval interface from scratch. However, we are
currently working to develop a tool supporting the automatic generation of the
browsing and retrieval interface according to data and metadata fields. This will
contribute to a further reduction of the cost of building DL applications.

All applications resulted to be very efficient. We installed the system, the
applications, and the data on a single computer equipped with a Pentium 1.8
GHz and 1 Gb of RAM, running Windows 2000 server. We have used JAX-RPC
as SOAP application server to run MILOS. Applications have been tested by
30 users operating at the same time from remote workstations, and executing
a predefined search intensive job. On average the response time of the system
was below 1 second. Notice also that for more intensive uses of the system, the
underlying Web Service technologies offer plenty of solutions to guarantee scal-
ability exploiting techniques of replication, load balancing, resource/connection
pooling etc.



The Reuters data set [7] contains text news agencies and the corresponding
metadata composed of Reuters specific metadata including titles, authors, topic
categories, and extended Dublin Core metadata. The data set contains 810,000
news agencies (2.6 Gb) with text and metadata both encoded in XML. We
associated the full text index and the automatic topic classifier to the elements
containing the body, the title, and the headline of the news. Other value indexes
were associated with elements corresponding to frequently searched metadata,
such as location, date, country. The search interface allows the user to perform
integrated text, category, and exact match search.

Both the ACM Sigmod Record [8] and the DBLP data-sets [1] consist
of metadata corresponding to the description of scientific publications in the
computer science domain. The ACM Sigmod record is composed of 46 XML files
(1Mb), while the DBLP data-set is composed of a sinlge large (187Mb) XML file.
Their structure is completely different even if they contain information describing
similar objects. For these two datasets we built one single DL application that
allows one to access both. The MILOS mapping is used to translate application
requests in the two schemas. We associated a full text index to the elements
containing the titles of the articles, and we associated other value indexes to
other frequently searched elements, such as the authors, the dates, the years,
etc. The search and browse interface allows users to search for articles by various
combinations full text and exact/partial match of elements. In addition it allows
user to browse results by navigating trough links (and implicitly submitting new
queries to MILOS) related to the author, journal, conference, etc.

The ECHO data set [14] includes historical audio/visual documents and the
corresponding metadata. ECHO is a significant example of the capability of MI-
LOS to support the management of arbitrary metadata schemas. The metadata
model adopted in ECHO, based on IFLA/FRBR [10] model, is rather complex
and strongly structured. It is used for representing the audio-visual content of
the archive and includes among others, the description of videos in English and
in the original language, specific metadata fields such as Title, Producer, year,
etc., the boundaries of scenes detected (associated with a textual descriptions),
the audio segmentation (distinguishing among noise, music, speech, etc.), the
Speech Transcripts, and visual features for supporting similarity search on key-
frames. The collection is composed of about 8,000 documents for 50 hours of
video described by 43,000 XML files (36 Mb). Each scene detected is associated
with a JPEG encoded key frame for a total of 21GB of MPEG-1 and JPEG files.
Full text indexes where associated to textual descriptive fields, similarity search
index where associated with elements containing MPEG-7 image (key frames)
features, and other value indexes where associated with frequently searched ele-
ments. The search and retrieval interface (Figure 2) allows users to find videos
by combining full text, image similarity, and exact/partial match search. Users
can browse among scenes, and corresponding metadata. The original ECHO DL
application [3], was built using a relational database, and translating all meta-
data in a relational schema. Even simple searches required several (up to 10 or
more) seconds to be processed. With MILOS we had a dramatic improvement



Fig. 2. The ECHO retrieval interface implemented in MILOS

of performance, being able to serve requests in less than one second even with
several users accessing the system.

5 Conclusion

This paper described the architecture of the MILOS Content Management Sys-
tem and the solutions adopted to obtain a system that is flexible in the manage-
ment of documents with different types of content and descriptions, and that is
efficient and scalable in the storage and content based retrieval of these docu-
ments. In particular, we described the approach adopted to support the manage-
ment of different metadata descriptions of multimedia documents in the same
repository. This goes towards the solution of the challenging problems of in-
teroperability among different metadata descriptions. The proposed solution,
based on the use of a mapping mechanism among the metadata fields of the
different models, has been practically experimented by using the MILOS system
to archive documents belonging to four different and heterogenous collections
which contain news agencies, scientific papers, and audiovideo documentaries.
The archiving of these documents was straightforward and it only required the
creation of the mapping file and the development of the user interfaces to archive
and to search the documents.



An evolution of this activity is foreseen in several directions: on one side we
are working to improve the retrieval capabilities of the Metadata Storage and
Retrieval component; on the other side, we are working with partners of the ECD
[12] project on the automatization of the mapping between different metadata
schemas, by using thesaurus and cross-language vocabularies [16].

References

1. DBLP computer science bibliography. http://www.informatik.uni-
trier.de/ ley/db/.

2. Dublin Core Metadata Initiative. http://dublincore.org/.
3. Echo: European CHronicles On-line. http://pc-erato2.iei.pi.cnr.it/echo/.
4. Helix Universal Server. http://www.realnetworks.com/products/server/index.html.
5. Motion picture experts group. http://mpeg.cselt.it.
6. Real Time Streaming Protocol. http://www.rtsp.org/.
7. Reuters corpus. http://about.reuters.com/researchandstandards/corpus/.
8. Sigmod record, xml edition. http://www.acm.org/sigs/sigmod/record/xml/.
9. Tamino XML Server. http://www.softwareag.com/tamino/.

10. IFLA study on the functional requirements for bibliographic records, 1998.
http://www.ifla.org/VII/s13/frbr/frbr.pdf.

11. Shareable content object reference model initiative (scorm), the xml cover pages,
October 2001. http://xml.coverpages.org/scorm.html.

12. ECD - Enhanced Content Delivery, 2002. http://ecd.isti.cnr.it/.
13. P META, the EBU metadata exchange scheme, 2003.

http://www.ebu.ch/en/technical/publications/Tech 3000 series/tech3295/.
14. G. Amato, D. Castelli, and S. Pisani. A metadata model for historical documentary

films. In J. L. Borbinha and T. Baker, editors, Proc. of the 4th European Conference
ECDL, pages 328–331. Springer, 2000.

15. G. Amato, F. Debole, F. Rabitti, and P. Zezula. YAPI: Yet another path index
for XML searching. In ECDL 2003, 7th ECDL Conference, Trondheim, Norway,
August 17-22, 2003, 2003.

16. D. Beneventano and al. Semantic integration and query optimization of heteroge-
neous data sources. In OOIS Workshops, pages 154–165, 2002.

17. C. Böhm, S. Berchtold, and D. Keim. Searching in high-dimensional spaces: Index
structures for improving the performance of multimedia databases. ACM Comput-
ing Surveys, 33(3):322–373, September 2001.

18. W. W. W. Consortium. XML path language (XPath), version 1.0, W3C. Recom-
mendation, November 1999.

19. W. W. W. Consortium. XQuery 1.0: An XML query language. W3C Working
Draft, November 2002. http://www.w3.org/TR/xquery.

20. N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines.
Cambidge University Press, 2000.

21. D. J. Gemmell, H. M. Vin, D. D. Kandlur, P. V. Rangan, and L. A. Rowe. Multi-
media storage servers: A tutorial. IEEE Computer, 28(5):40–49, May 1995.

22. G. Salton and M. J. McGill. Introduction to Modern Information Retrieval.
McGraw-Hill Book Company, 1983.

23. P. Zezula, G. Amato, F. Debole, and F. Rabitti. Tree signatures for xml querying
and navigation. In Database and XML Technologies, XSym 2003, volume 2824 of
LNCS, pages 149–163. Springer, 2003.


