
A Content–Addressable Network for Similarity
Search in Metric Spaces�

Fabrizio Falchi1, Claudio Gennaro1, and Pavel Zezula2

1 ISTI-CNR, via G. Moruzzi 1, 56124 Pisa, Italy
{fabrizio.falchi,gennaro}@isti.cnr.it

2 Masaryk University, Brno, Czech Republic
zezula@fi.muni.cz

Abstract. In this paper we present a scalable and distributed access
structure for similarity search in metric spaces. The approach is based
on the Content–addressable Network (CAN) paradigm, which provides
a Distributed Hash Table (DHT) abstraction over a Cartesian space. We
have extended the CAN structure to support storage and retrieval of
generic metric space objects. We use pivots for projecting objects of the
metric space in an N-dimensional vector space, and exploit the CAN
organization for distributing the objects among the computing nodes of
the structure. We obtain a Peer–to–Peer network, called the MCAN,
which is able to search metric space objects by means of the similarity
range queries. Experiments conducted on our prototype system confirm
full scalability of the approach.

1 Introduction

The proliferation of digital contents such as video, images, or text imposes the
use of access methods for efficiently storing and retrieving this information. The
concept of similarity searching based on relative distances between a query and
database objects has become a solution for a number of application areas, e.g.
data mining, signal processing, geographic databases, information retrieval, or
computational biology. This approach formalizes the problem by the mathemati-
cal notion of the metric space [1], so the data elements are assumed to be objects
from a metric space domain where only pairwise distances between the objects
can be determined by respective distance function.

However, the need to deal with larger and larger, possibly distributed, archives
requires an access structure to speedup the retrieval. Unfortunately, the use of
single–site access structures is becoming prohibitive due to the lack of scalability
of such systems, however fast they are. In fact, as the current literature demon-
strates, see for example [2], the response time of access structures for metric
spaces is linearly increasing with the size of the searched file.

� This work was partially supported VICE project (Virtual Communities for Edu-
cation), funded by the Italian government, and by DELOS NoE, funded by the
European Commission under FP6 (Sixth Framework Programme).

G. Moro et al. (Eds.): DBISP2P 2005/2006, LNCS 4125, pp. 98–110, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A CAN for Similarity Search in Metric Spaces 99

The approach proposed in this paper is to use a Peer–to–Peer (P2P) structure
composed of a network of nodes whose number can vary on the basis of the size
of the data-set. The aim is to maintain the global response time stable as the
data-set size grows. In this respect, the P2P paradigm is quickly gaining in
popularity due to their scalability and self-organizing nature, forming bases for
building large-scale similarity search indexes at low costs. However, most of the
numerous P2P search techniques proposed in the recent years have focused on
the single-key retrieval [3,4,5].

In particular, we present a distributed storage structure for similarity search in
metric spaces that is based on the original idea of the Content–Addressable Net-
work (CAN) [4], which is a distributed hash table abstraction over the Cartesian
space. Our distributed storage structure, called MCAN, is able to index objects
of a generic metric space. The advantage of the metric space approach to the
data searching is its “extensibility”, since in this way, we are able to perform the
exact match, range, and similarity queries on any collection of metric objects.
More in general, our proposal can be seen as a Scalable and Distributed Data
Structure, (SDDS) – original proposal LH* [6] is intended for the primary key
retrieval – which uses the P2P paradigm for the communication in a Grid-like
computing infrastructure. A fundamental property of this paradigm is that in-
sertion of an object, even if it implies a node split, does not require immediate
update propagation to all network nodes.

The rest of the paper is organized as follows. In Section 2, we summarize the
necessary background information. Section 3 presents the MCAN distributed
structure and its functionality. Section 4 reports the results of performance eval-
uation experiments. Section 5 concludes the paper and outlines directions for
future work.

2 Background

2.1 Content–Addressable Network (CAN)

The CAN is a distributed hash table that uses a function for mapping “keys”
onto “values” in order to assign them a position into the table. In the CAN, the
table is composed of a finite set of individual network nodes. Each node of the
network is dynamically associated with a partition of a d-dimensional Cartesian
space. Usually, the Cartesian space is a d-torus (in the sense that the coordinate
space wraps), and is targeted to store (K, V) pairs, where K is an identifer of
the object and V is a pointer to a copy of the object. The basic operations of
the CAN are insertion, lookup and deletion of respective (K, V) pairs. In order
to be compatible with the metric space, we generically refer to these pairs as
“objects”, and we use the notation X ∈ S, for indicating an object X of an
arbitrary space S of all possible pairs (or objects) X ≡ (K, V).

From the formal point of view, we can define the mapping function of the
CAN as:

G : S → PN , (1)

100 F. Falchi, C. Gennaro, and P. Zezula

where PN is an hyper–rectangle of R
N defined as:

PN = [0, D1] × [0, D2] × . . . × [0, DN] , (2)

with Di denoting the i − th side length of the CAN structure.
The principle of the CAN is to divide the hyper-rectangle PN into a finite

number of distinct rectangular zones, each of them associated to one and only
one node of the network. The nodes are responsible for storing and searching of
objects covered by their zone. Moreover, each node is aware of the nodes that
cover adjacent zones, i.e., its neighbors. More precisely, for an N -dimensional
space, two zones are neighbors if their sides overlap along N − 1 dimensions and
are adjacent along one dimension.

The basic operation in CAN is the lookup(key) function, which returns the
corresponding “value” (the IP address of the node, for instance) for the given
“key” (the coordinates of the point). This is useful for insertion, deletion, and
retrieval purposes. The search starts from an arbitrary node of the CAN, and
proceeds by routing a message towards its destination by simple greedy forward-
ing to the neighbor with coordinates closest to the destination coordinates. In
general, if we divide PN uniformly into n zones, each node maintains 2N neigh-
bors. Furthermore, the average routing path length is given by (N/4)n(1/N). In
a real scenario, since the objects are not uniformly distributed, the space will be
not uniformly divided and these values could vary significantly (see Section 4).

2.2 Metric Spaces

The mathematical metric space is a pair M = (D, d), where D is the domain
of objects and d is the distance function able to compute distances between any
pair of objects from D. It is typically assumed that the smaller the distance, the
closer or more similar the objects are. For any distinct objects X, Y, Z ∈ D, the
distance must satisfy the following properties:

d(X, X) = 0 reflexivity
d(X, Y) > 0 strict positiveness
d(X, Y) = d(Y, X) symmetry
d(X, Y) ≤ d(X, Z) + d(Z, Y) triangle inequality

2.3 Pivot-Based Filtering

In general, the pivot-based algorithms can be viewed as a mapping F from the
original metric space M = (D, d) to a N -dimensional vector space with the L∞
distance. The mapping assumes a set T = {P1, P2, . . . , PN} of objects from D,
called pivots, and for each database object O, the mapping determines its charac-
teristic (feature) vector as F (O) = (d(O, P1), d(O, P2), . . . , d(O, PN)). We obtain
a new metric space as MN (RN , d∞). At search time, we compute for a query
object Q the query feature vector F (Q) = (d(Q, P1), d(Q, P2), . . . , d(Q, PN)) and
discard for the search radius r an object O if

d∞(F (O), F (Q)) > r (3)

A CAN for Similarity Search in Metric Spaces 101

In other words, the object O can be discarded if for some pivot Pi,

| d(Q, Pi) − d(O, Pi) |> r (4)

Due to the triangle inequality, the mapping F is contractive, that is all discarded
objects do not belong to the result set. However, some not-discarded objects may
not be relevant and must be verified through the original distance function d(·).
For more details, see for example [7].

3 MCAN

The basic idea of our approach is to extend the CAN architecture in order to
manage objects X of a generic metric space M = (D, d). However, in metric
spaces it is not possible to exploit any knowledge of coordinate information, and
only distances between objects can be computed. To cope with this problem, we
use the pivots paradigm for mapping the objects of the metric space to an N
dimensional vector space. In particular, let P1, . . . , PN be the number of pivots
selected from the metric data-set, we map an object O ∈ D, by means of the
function F () (introduced in the previous section) defined as:

F (O) : D → R
N = (d(O, P1), d(O, P2), . . . , d(O, PN)) (5)

This virtual coordinate space is used to store the object O into the MCAN
structure, specifically into the node that owns the zone where the point F (O)
lies. Note that, the coordinate space of the MCAN is not Cartesian since the
distance between two objects in MCAN is evaluated by means of the L∞ distance
(instead of the Euclidean distance). Routing in MCAN works in the same manner
as for the original CAN structures. An MCAN node maintains a coordinate
routing table that holds the IP address and virtual coordinate zones of each of
its immediate neighbors in the coordinate space.

3.1 Notation

In this section we provide a number of definitions required to present our results.
We use the capital letter for indicating metric space objects X ∈ D, the over-
line small letter for denoting the corresponding vector in the coordinate space
x ∈ R

N , and xi for representing the values of its i-th coordinate. Moreover, we
denote a node of MCAN by the bold symbol n. Since there is no possibility
of confusion, we use the same symbol d(.) for indicating the distance between
metric objects and for indicating the L∞ distance between the corresponding
point in the coordinate space, e.g., d(x, y) = d∞(F (X), F (Y)), where x = F (X)
and y = F (Y). As we already explained, the MCAN is contractive, therefore
d(x, y) ≤ d(X, Y) always holds.

Each node n maintains its region information referred as n.R. Moreover, since
the region n.R is an hyper–rectangle it can be uniquely identified by its vertex
closer to the origin, denoted as n.R.x = (n.R.x1,n.R.x2, . . . ,n.R.xN), and by

102 F. Falchi, C. Gennaro, and P. Zezula

the lengths of the relative sides, i.e., n.R.l1,n.R.l2, . . . ,n.R.lN . More precisely,
the region n.R is defined as follows

n.R = {∀x ∈ R
N | ∀ i, n.xi ≤ xi < n.xi + n.li}

The node n also maintains the set of the neighbor nodes’ information n.M =
{m1, . . . ,mh}.

Given a point x = F (X), the predicate X ∈ n allows us to check if the
corresponding point x lies in the zone maintained by the node n. More formally:

X ∈ n ⇔ x ∈ n.R

A range query of radius r and centered in the object C is denoted as Q = (c, r).
The predicate Q ∩ n allows to check if the query region Q intersects the zone
associated with n. Note that, the range query in the L∞ space is given by an
hypercube of side 2r centered in c.

We can now introduce the formal definition of an N -dimensional MCAN struc-
ture, referred as MCANN , which is composed of a set of k (k > 0) network nodes
{n1, . . . ,nk} such as:

1. ∀ i, j | i 	= j ni.R ∩ nj .R = ∅
2. PN =

⋃k
i=1 ni.R

3. n ∈ m.M ⇔
∃k | 1 ≤ k ≤ N, (n.R.xk +n.R.lk = m.R.xk)∨(m.R.xk +m.R.lk = n.R.xk),
∀w 	= k [n.R.xw,n.R.xw + n.R.lw[∩[m.R.xw,m.R.xw + m.R.lw[= ∅

In the definition, Point 1. states that the zones covered by the network nodes do
not overlap. Point 2. states that the union of the zones cover the whole MCANN

space PN (there are no holes). Finally, Point 3. declares the condition for a
network node n to be a neighbor of m (as explained in Section 2).

3.2 Construction

An important feature of the CAN structure is its capability to dynamically
adapt to data-set size changes. As we will see in the experimental evaluation, we
are interested in preserving the scalability of the MCAN, which means that we
want to maintain stable the response time of the queries. Since the size of the
space allocated to store objects in each node is limited, when a node exceeds its
limit it splits by sending a subset of its objects to a free node and by assigning
its part of original region. Note that, limiting the storage space, and then the
number of objects each node can maintain, we also limit the number of distance
computations a node have to evaluate during a range query computation.

It is important to observe that in some cases we might want to use all the nodes
available in the network. Previous work like [4] have studied this possibility in a
generic CAN structure by allowing a node to split even if it does not exceed it
storage space. Obviously, such methodology can also be applied in our MCAN.
On the other hand, in a P2P environment, we would like to leave the nodes

A CAN for Similarity Search in Metric Spaces 103

the possibility to freely join and leave the network, without corrupting it. As
explained in [4], this is possible with a CAN, even providing some fault-tolerance
capabilities [8].

Since the pivots needed to be determined before the insertion starts, we as-
sume a characteristic subset of the indexed data-set (about 500 objects) is known
at the beginning. In the MCAN, we use the Incremental Selection algorithm de-
scribed in [7]. In principle this algorithm tries to maximize the average L∞

distance between arbitrary pairs of vectors of the N–dimensional space (i.e.
d∞(F (X), F (Y))).

3.3 Insertion

An insert operation can start from any node of the MCAN. It starts by mapping
the inserted object X to the virtual coordinate space using function F (), then
it checks if x = F (X) lies in the zone maintained by the node n itself (i.e.
X ∈ n). If this is not the case, the node has to forward the insertion request.
From this point, the insertion proceeds with the greedy routing algorithm used
for standard CAN structures: the inserting node forwards the insertion operation
to the neighbor node which is closer to the point x by using the L∞ distance.
The objective is to find the node n for which X ∈ n, minimizing the number of
messages. If x lies in the region maintained by the receiving node, the object X
is stored there, otherwise a neighbor node is selected with the same technique
and the insert operation is forwarded again until the object X is inserted.

The node m which stores the object X must reply to the node who started
the insert operation. If the node m exceeds its capacity it is split. Eventually,
the object X is inserted into m or into the new allocated node.

3.4 Split

In MCAN, we apply a balanced split, that is the resulting regions contain prac-
tically the same amount of data (object occupancy). During this process, the
splitting node will just request a node from a free node list to join the network,
and one half of the data, in terms of occupancy, is reallocated there.

If we define n1 as the splitting node, n1.R as the old region, n1.R
′ as the

new one, and n2 as the new node, the split regions must satisfy the following
equations:

n1.R
′ ∪ n2.R = n1.R , n1.R

′ ∩ n2.R = 0

Moreover, to respect these constrains, we create the new two regions by dividing
the original one along one coordinate of the space. Therefore, the new regions,
n1.R

′ and n2.R, must satisfy the following two equations:

n1.R
′.xs = n1.R.xs, n2.R.xs = n1.R.xs +n1.R

′.ls, n2.R.ls = n1.R.ls −n1.R
′.ls

Note that that we only have to chose s and n1.R
′.ls. In order to decide s, for

each dimension i we find n1.R
′.li that divide the objects into two halves. To

avoid regions with small sides we chose s as the dimension i for which |n1.R
′.li −

n1.R.li/2| is minimum.

104 F. Falchi, C. Gennaro, and P. Zezula

After the splitting process, the node n1 sends a message to all its neighbors
informing them about the update of its region. To those neighbors, which are also
neighbors of n2, it sends also information about the new node. The new node is
informed by n1 about its neighbors that are a subset of the n1 neighbors. At the
end, n1 can discard information about the nodes that no more are its neighbors.

3.5 Range Query

A range query operation can start from any MCAN node. As shown in Figure 1,
for a given query object and range radius, there is a certain number of nodes
whose regions intersect the query region (which is an hypercube Q = (c, r)
as defined in Section 3.1). Obviously, only the intersecting nodes must process
the range query operation. The requesting node maps the query object into the
virtual coordinate space using the function F (). Then it checks if it is involved in
the range query operation (i.e., when it intersects Q). If the node is not involved
in the query, it forwards the range query operation to the neighbor node that
is closest to region Q, using the L∞ distance. This operation is performed in a
similar way as described for the insert operation.

Fig. 1. Example of range query in a two dimensional space. The darker square is the
query region, while the brighter rectangles correspond to the involved nodes.

When a node that is involved in the range query is reached by the query
request, it forwards it to each neighbor that is also involved and then it starts
processing the range query over its local data-set. During the range query ex-
ecution inside a single node, a local access structure can also be used. In this
paper, we used the same pivots chosen to define the MCAN space to reduce
the number of distance evaluations performed inside a single node. Using the
pivot-based filtering, we are able to significantly reduce the number of distance
evaluations inside the nodes. In a more sophisticated implementation of MCAN,
each node could have its own local data structure to efficiently search inside a
single node.

A CAN for Similarity Search in Metric Spaces 105

0

20

40

60

80

100

120

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

n Objects

n
 N

o
d

es

Vector Dataset Text Dataset

Fig. 2. Number of nodes for increasing
data-set size

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

n Objects

lo
ad

 f
ac

to
r

Vector Dataset Text Dataset

Fig. 3. Average number of objects per
node for the MCAN3 and for increasing
data-set size

In order to allow the requesting node to know when all the nodes involved in
the query have finished to work, the MCAN proceeds as follows:

– A node involved in the range query:
• it receives the range query request Q = (c, r) and a (possibly empty) list

of the nodes already involved in the query (which we refer to as INL),
• it forwards the query request to its neighbors involved in the query which

are not included in INL adding them to the list and sending the new INL*
to them,

• it computes the query over its local data,
• it replies with a message containing its result set (if any) and the INL*.

– The requesting node as it receives the reply messages, updates a local list
of the involved nodes in the query, and marks the ones that have already
answered.

– The requesting node will know that the operation is terminated when all
nodes of the local list will have replied (i.e., when all the nodes of the list
have been marked). The result set of the query is given by union of the result
sets of the replying nodes.

Note that, the first node involved in the query receives an empty INL. Another
important observation is that with this scheme we do not guarantee that a node
does not receive multiple requests for the same query. However, this is not a
problem since each distinct query is associated with a unique identifier, so that
a node ignores multiple requests.

4 Performance Evaluation

In this section we present a preliminary experimental evaluation of MCAN. The
metric data-sets used are: 100,000 of 45-dimensional vectors of color features
extracted from images; 100,000 Czech sentences of length between 20 and 300

106 F. Falchi, C. Gennaro, and P. Zezula

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80 90 100

n Nodes

n
u

m
b

er
 o

f
h

o
p

s

d1 d2 d3

d4 d5

Fig. 4. Average number of hops for dif-
ferent dimensions as the number of nodes
grows (vector data-set)

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80

n Nodes

n
u

m
b

er
 o

f
h

o
p

s

d1 d2 d3

d4 d5

Fig. 5. Average number of hops for dif-
ferent dimensions as the number of nodes
grows (text data-set)

characters. Vectors are compared by the Euclidean distance measure while for
sentences we use the Edit distance.

We analyze the behavior of the structure in different dimensional spaces: from
1–d (i.e., involving one pivot), to 5–d space (i.e., involving five pivots). As already
explained, we use the pivots also to reduce the number of distance computations
during the query evaluation on individual nodes. However, independently of the
number of dimensions N used by MCANN , we always generate 10 pivots in
the experiments and we use the first N pivots for creating the MCANN zones.
Moreover, all 10 pivots are used for filtering during a range query execution
internally in nodes.

To study the scalability of the system, we fix the storage space available for
each node and then, starting from a single server, we add objects into the system.
When a server reaches its storage space limit, it splits. The limit was chosen in
a way that after all the 100,000 objects have been inserted, the MCANN is com-
posed of around 100 nodes. The node from which an insert operation or a range
query starts is randomly selected. Moreover, in order to study the scalability of
the system we perform a range query operations every 5,000 insertions.

In Figure 2, we report the number of nodes in the system as the data-set
grows, for the MCAN3 case (the other cases are very similar). Note from these
experiments that, the number of nodes exhibit a stepwise behavior. This is due
to the fact that the objects are randomly ordered, therefore the nodes are filled
uniformly and then they tend to split at the same time. This is particularly
evident for the vector data-set, where the objects have a fixed size, while the
size of objects of the text data-set (strings) is variable.

In Figure 3, we report the average load factor for both the data-sets. We define
the load factor as the total number of objects stored into the MCAN structure
divided by the capacity of storage available on all nodes. As can be seen in the
figure, the values are always between 0.5 and 1. This is always guaranteed, because
when a node is split, half of the objects are migrated to the new node, therefore
the node occupation cannot be less than 50%.

A CAN for Similarity Search in Metric Spaces 107

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100

n Nodes

n
u

m
b

er
 o

f
n

ei
g

h
b

o
rs

d1 d2 d3

d4 d5

Fig. 6. Average number of neighbors for
different dimensions as the number of
nodes grows (vector data-set)

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80

n Nodes

n
u

m
b

er
 o

f
n

ei
g

h
b

o
rs

d1 d2 d3

d4 d5

Fig. 7. Average number of neighbors for
different dimensions as the number of
nodes grows (text data-set)

In Figures 4 and 5, we report the average number of hops an insert opera-
tion travels, starting form a random node. For a given number of nodes, the
number of hops is strictly correlated to the average number of neighbors each
node has: the more the neighbors, the less the hops. In Figures 6 and 7, we
report the average number of neighbors as a function of the total number of
nodes for different space dimensionality. Comparing the number of hops with
the number of neighbors, we can see that a good choice for the space dimen-
sionality could be N = 3. In fact, by using more than 3 dimensions we do not
reduce significantly the number of hops but significantly increase the number
of neighbors and correspondingly the complexity of choosing the next node
during the forwarding operations.

4.1 Range Query

For the performance evaluation of range queries, we selected 100 random objects
from the data-set and for each of them we performed 8 different range queries
every 5,000 insert operations. Due to lack of space, we do not report the average
result set size for the different query radii, since they are linear to the data-set
size. However, the heaviest range queries return around 3% of the objects for
both vector and text data-sets. Note that, these results are independent from
the type of access structure but depend on specific characteristics of the given
data-sets.

In Figures 8 and 9 we report the average percentage of nodes involved during
a range query operation for different radii as the data-set size grows. Observe
that the bigger is the radius of the range query, the more the nodes involved
in the query evaluation are. In a naive distributed system we could randomly
distribute the objects among the nodes but in this case we would always involve
all the nodes even for small radii.

For simple operations like the exact match, the standard CAN has been
proved to be scalable. MCAN extends CAN by allowing similarity operations

108 F. Falchi, C. Gennaro, and P. Zezula

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 20000 40000 60000 80000 100000

n Objects

p
er

ce
n

ta
g

e
o

f
n

o
d

es
 in

vo
lv

ed

0.0 250.0 500.0 750.0 1000.0

1250.0 1500.0 1750.0 2000.0

Fig. 8. Percentage of nodes involved in
the range query as function of the data-
set size for different radii (vector data-set)

0

0,1

0,2

0,3

0,4

0,5

0,6

0 20000 40000 60000 80000 100000

n Objects

p
er

ce
n

ta
g

e
o

f
n

o
d

es
 in

vo
lv

ed

0.0 5.0 10.0 15.0 20.0

25.0 30.0 35.0 40.0

Fig. 9. Percentage of nodes involved in
the range query as function of the data-
set size for different radii (text data-set)

over generic metric space data-sets. In this scenario, we must be able to per-
form more complex operations such as similarity range queries. To preserve
scalability also for such operations, we need more nodes as the complexity of
the query grows. This aspect is evident in the plots of Figures 8 and 9, where
the percentage of nodes involved for a small radius is smaller then the ones
we obtains for greater radii. Note that, for a given range query, the percent-
age of nodes involved is almost constant. In fact, for a given range query the
number of results is linearly dependent on the number of objects in the data-
set and then the number of nodes involved is proportional to the number of
results.

To study the complexity of the range queries, we use the number of distance
computations. However, for the case of the edit distance (i.e., the Czech-sentences
data-set) we must consider the fact that the complexity of a single distance
computation is not constant but it is proportional to the string lengths. In this
case we decided to use the equivalent complexity of the edit distance defined as
L(a)L(b)/μ(L)2, where a, b are two strings evaluated with the edit distance, L(.)
is the length of the string, and μ(L) is the average length of the strings of the
data-set.

In Figures 10 and 11, we report the average complexity of the range query
operations as function of the number of equivalent distance computations of the
most stressed node. This quantity measures in a way the intraquery parallelism as
the parallel response time of a range query, if we neglect the message latency. In
fact, the requesting node will have to wait the answer of all the involved nodes
and then the response time of the query will be proportional to the number
of distance computations of the most stressed node. Obviously this quantity
is upper bounded by the capacity of the nodes of the MCAN. However, our
experiments show that for most of the ranges, the intraquery parallelism remains
quite lower than this upper bound, which, for example, in the case of the vector
data-set is 1,542.

A CAN for Similarity Search in Metric Spaces 109

0

200

400

600

800

1000

1200

1400

1600

0 20000 40000 60000 80000 100000

n Objects

d
is

ta
n

ce
 c

o
m

p
u

ta
ti

o
n

s

0.0 250.0 500.0 750.0 1000.0

1250.0 1500.0 1750.0 2000.0

Fig. 10. Average number of distances
evaluated by the most stressed node for
each query and for different query range
(vector data-set)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 20000 40000 60000 80000 100000

n Objects

eq
u

iv
al

en
t

d
is

ta
n

ce
 c

o
m

p
u

ta
ti

o
n

s

0.0 5.0 10.0 15.0 20.0

25.0 30.0 35.0 40.0

Fig. 11. Average number of equivalent
distances evaluated by the most stressed
node for each query and for different
query range (text data-set)

5 Related Work and Conclusions

There have been several recent attempts to propose distributed structures for
multi-dimensional or vector-based data. The MAAN structure [9] uses locality
preserving hashing to support multi-attribute and range queries under the Chord
protocol. The kd-trees and space-filling curves have been used by Prasanna, Yang
and Garcia-Molina in [10] to support multi-dimensional range queries in P2P
environments. A P2P system for information retrieval based on the vector space
model and the latent semantic indexing together with the CAN P2P protocol has
been proposed by Tang, Xu and Dwarkadas [11]. The problem of vector-based
similarity search in P2P Data Networks has nicely been formalized by Banaei-
Kashani and Shahabi [12] as the family of Small-World based Access Methods,
SWAM. So far, the only native metric-based distributed data structure is the
GHT* [13,14].

To the best of our knowledge, the MCAN structure is the first attempt to
bridge Content–Addressable Networks and the capabilities of metric space in-
dexing. MCAN is based on the concept of choosing pivots to map objects of a
generic metric space in a multidimensional vector space of the MCAN. Since
the mapping is contractive, 100% recall for queries processed by the MCAN is
guaranteed.

The results summarized in Figures 8 and 9 should be considered as the first
attempt to also demonstrate the interquery parallelism ability of MCAN. In fact,
if on the one hand it is important to guarantee fast response time to individual
queries, on the other hand the query should not involve the whole network,
because other queries can be issued to the network at the same time, and not
active nodes can simultaneously start evaluating them. Obviously, queries with
large radii need more computational resources than small queries, but typically,
there is always sufficient space for other queries to run. Also observe that the
computational load on nodes activated by a query is not the same and on some

110 F. Falchi, C. Gennaro, and P. Zezula

nodes the load is really minor. We are planning to fully investigate this issue in
the near future.

Further future directions include the implementation of the Nearest Neigh-
bor queries, more sophisticated leaving and join policies, and transaction
management.

References

1. Chvez, E., Navarro, G., Baeza-Yates, R., Marroqun, J.L.: Searching in metric
spaces. ACM Comput. Surv. 33 (2001) 273–321

2. Dohnal, V., Gennaro, C., Savino, P., Zezula, P.: D-index: Distance searching index
for metric data sets. Multimedia Tools and Applications 21 (2003) 9–13

3. Devine, R.: Design and implementation of DDH: A distributed dynamic hashing
algorithm. In: FODO. (1993) 101–114

4. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content
addressable network. In: Proc. of ACM SIGCOMM 2001. (2001) 161–172

5. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A scal-
able Peer-To-Peer lookup service for internet applications. In: Proc. of the 2001
ACM SIGCOMM Conference. (2001) 149–160

6. Litwin, W., Neimat, M.A., Schneider, D.A.: LH* — a scalable, distributed data
structure. ACM Transactions on Database Systems 21 (1996) 480–525

7. Bustos, B., Navarro, G., Chvez, E.: Pivot selection techniques for proximity search-
ing in metric spaces. In: Proc. of SCCC01. (2001) 33–40

8. Saia, J., Fiat, A., Gribble, S.D., Karlin, A.R., Saroiu, S.: Dynamically fault-tolerant
content addressable networks. In: IPTPS. (2002) 270–279

9. Cai, M., Frank, M., Chen, J., Szekely, P.: Maan: A multi-attribute addressable
network for grid information services. In: GRID ’03: Proceedings of the Fourth
International Workshop on Grid Computing, Washington, DC, USA, IEEE Com-
puter Society (2003) 184

10. Ganesan, P., Yang, B., Garcia-Molina, H.: One torus to rule them all: multi-
dimensional queries in p2p systems. In: WebDB ’04: Proceedings of the 7th Inter-
national Workshop on the Web and Databases, New York, NY, USA, ACM Press
(2004) 19–24

11. Tang, C., Xu, Z., Dwarkadas, S.: Peer-to-peer information retrieval using self-
organizing semantic overlay networks (2002)

12. Banaei-Kashani, F., Shahabi, C.: Swam: a family of access methods for similarity-
search in peer-to-peer data networks. In: CIKM ’04: Proceedings of the Thirteenth
ACM conference on Information and knowledge management, ACM Press (2004)
304–313

13. Batko, M., Gennaro, C., Zezula, P.: A scalable nearest neighbor search in p2p sys-
tems. In: Proc. of the the 2nd International Workshop on Databases, Information
Systems and Peer-to-Peer Computing. Lecture Notes in Computer Science (2004)
To appear.

14. Batko, M., Gennaro, C., Zezula, P.: Scalable similarity search in metric spaces.
In: Proc. of the DELOS Workshop on Digital Library Architectures: Peer-to-Peer,
Grid, and Service-Orientation. (2004) 213–224

	Introduction
	Background
	Content--Addressable Network (CAN)
	Metric Spaces
	Pivot-Based Filtering

	MCAN
	Notation
	Construction
	Insertion
	Split
	Range Query

	Performance Evaluation
	Range Query

	Related Work and Conclusions

