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1 INTRODUCTION

Artificial Intelligence (AI) has intrigued and puzzled many generations of scientists and largely fueled novelists

imaginations. The modern definition of AI – as the ensemble of computer systems empowered with the ability to

learn from data through statistical techniques – dates back to 1959. Machine Learning (ML), a subclass of AI, is a

discipline that aims to study algorithms that can learn from data to perform tasks without following explicit instructions.

Often, these algorithms are based on a computational model that belongs to differentiable programming techniques,

called Neural Networks (NNs). The success of such algorithms resides in their ability to learn to achieve a specific

goal [93, 116], i.e., they learn to discover hidden patterns and relations among data to fulfill the task at hand [87, 115].

Mathematically, NNs are made of a sequence of transformations, called layers, composed of linear operators and

elementwise nonlinearities. Then, the goal of learning is to modify the transformations’ parameters to fulfill a task

successfully. Whenever a model accounts for more than a couple of such layers, it is called a Deep Learning (DL) model

or a Deep Neural Network (DNN). Thanks to their representation power and the development of new technologies and

training algorithms, DL models obtained astonishing results in the last two decades, achieving superhuman performance
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on certain tasks [174]. However, higher performances require more complex models and larger datasets to train them,

thus constantly increasing the hunger for resources and power to learn to solve a given problem.

In this regard, quantum computers might offer new solutions that exploit quantum phenomena such as interference,

superposition, and entanglement. Such a characteristic is expected to speed up the computational time and to reduce the

requirements for extensive resources, yielding the concepts of quantum advantage and quantum supremacy [134, 145].

The mentioned quantum phenomena are described within the framework of quantum mechanics [61, 91, 159], a

“young” physics theory formalized at the beginning of the 20th century. Such a theory unveils the intrinsic statistical

characteristic of nature, a behavior that unfortunately is hidden from us, at least in the macroscopic world.

The quest for a quantum computer started with the ideas of Benoff [23] and Feynmann [73, 121], in the 1980s,

pointing out that quantum computers should be more efficient in solving specific problems. For example, quantum

devices might help in studying very complex, e.g., entangled, systems by emulating or simulating [66, 74] their behavior

in chips that are quantum by their nature [150, 193].

From a computer science point of view, a quantum computer represents a computational model based on the

principles and postulates of quantum mechanics. Such techniques aim at embracing the power of quantum theory into

a device that can be conveniently “programmed” to fulfill a given task. Moreover, the result of the computation itself

might represent a quantum object encoding different answers, each solving a specific problem [59]. It is only recently

that researchers have succesfully realized a quantum processor capable of performing controllable computations

based on quantum phenomena. Several industrial applications already benefited from such a technology, such as:

chemistry [104], optimization problems [132], finance [67], quantum sensing [56], and quantum imaging [48], among

others. Besides the mentioned applications, quantum computers might offer advantages in terms of energy management

compared to classical ones. Indeed, quantum computers are expected to be more energy-efficient than supercomputers

considering [10]. For that reason, hybrid approaches might offer exciting solutions to lower the energy consumption

for a given computation by moving the high-energy portion of the computation on the Quantum Processing Unit

(QPU) while leaving the low-energy one to the cloud [182]. A fundamental result of quantum information theory is the

observation that, although quantum phenomena allow solving some classical problems more efficiently than classical

computations [27], quantum computers cannot compute any function which is not turing-computable [58].

Concerning the context of Quantum Machine Learning (QML) [30], a relevant contribution comes from the ability

of quantum devices to speed up linear algebra-related tasks. For example, it has been shown that using the Harrow-

Hassidim-Lloyd (HHL) quantum algorithm [85, 198] to sample solutions for a system of linear equations offers an

exponential speedup over its classical counterpart. Furthermore, Shor’s algorithm [171, 172] for integer factorization

and Grover’s algorithm [80] for searching unstructured databases are additional examples of procedures that benefit

from a quantum formulation. Although general QML is of great interest, it is not the central topic of our work as it

has already been covered extensively in the literature. Therefore, we focus on the QML sub-area concerning recent

Quantum Neural Networks (QNNs) approaches. Despite the fact that their name recalls the neural network structure

mentioned earlier, they are characterized by a completely different design.

Concerning quantum computations, the most commonly adopted paradigms are the Gate Model (GM) [134] and

the Adiabatic Quantum Computation (AQC) [11]. In Inspite of being equivalent up to a polynomial overhead, they

represent two profoundly different computation approaches. The first one is based on the concept of “gate”: a unitary

transformation applied to one or more quantum bits (qubits), i.e., the basic units of quantum information (see section 3).

Instead, in the AQC, one typically encodes the desired objective function into a quantum system and then lets it evolve.

However, in both paradigms, the QPU state at the end of the evolution embodies the answer to the given problem.
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Thus, we can highlight the main differences between the two approaches as follows. The GM allows users to control

the transformation to apply on the qubits directly and is discrete in time, while AQC does not allow to control single

qubits directly and does not discretize the time property of the system.

Unfortunately, quantum technologies are still at their dawn, having minimal computational capacity. Furthermore,

significant technological challenges arise from the requirement for quantum systems to be isolated from the environment

in order to avoid decoherence, which causes lack of information stored in the quantum device. Therefore, researchers

typically rely on quantum simulators to test their ideas while waiting for the next generation of quantum computers.

Whether quantum supremacy is real or not is still an open question. For example, we do not expect quantum computers

to solve efficiently worst-case NP-hard problems like combinatorial ones. Instead, we do expect that we will be able to

find a better approximation to the solution or find it faster than a classical computer [109, 146].

Stemming from those considerations, we conceived this survey to offer both the neophyte and the more experienced

reader insights into several fundamental topics in the quantum computation field. Moreover, noticing that the literature

lacks a detailed discussion about the latest achievements concerning Quantum Perceptrons (QPs) and QNNs, we gather,

analyze and discuss state-of-the-art approaches related to those topics. Notably, we can summarize our work as follows:

• we review the current state-of-the-art regarding QPs and QNNs by discerning among theoretical formulations,

simulations, and implementations on real quantum devices;

• we report the main achievements by different research groups concerning the topic of quantum supremacy;

• we provide a gentle introduction to several basic notions about quantum mechanics, quantum information, and

quantum computational models;

• we collect and organize the most relevant papers to this survey on a GitHub
1
page allowing the interested readers

to easily and quickly browse through the literature.

Moreover, to ease the understanding of the paper’s content, in Appendix B we summarize basic notions about the

Dirac notation, postulates of quantum mechanics, the physical realization of qubits, the Bloch Sphere representation,

the Variational Principle, and the Adiabatic Theorem. We suggest the reader who is unfamiliar with these topics to

peruse the Appendix B before reading any further.

Concerning the remaining part of the paper, it is organized as follows. In section 2, we report on other surveys

on the topic at hand. In section 3, we introduce the fundamental concept of a qubit, and we give the reader a brief

overview of the currently most widespread quantum computational models. Then, in section 4, we tackle the concept of

quantum speedup. Subsequently, in section 5, we move to the core topic of this survey, i.e., QNN approaches. Finally, the

conclusions are drawn in section 6. In Table 1, we report a summary of the notations used throughout the manuscript,

while a summary of the used abbreviations is available in Table 5 in the Appendix A.

2 OTHER SURVEYS

In the literature, many review papers have been devoted to the realm of quantum computation and information. Several

surveys address quantum ML and its applications. However, very little has been said about QNNs, and reviews that

include this topic often cover it marginally or lack a detailed discussion on the most recent achievements. For this reason,

we devote our work mainly to reviewing Variational Learning approaches which encompass Quantum Approximate

Optimization Algorithms, Variational Quantum Eigensolver, Quantum Perceptrons, and Quantum Neural Networks.

1
https://github.com/fvmassoli/survey-quantum-computation
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Table 1. Summary of notation used throughout this paper.

Symbol Definition

Re(𝑧) , Im(𝑧) Real and imaginary parts of the complex number 𝑧

𝑧∗ Complex conjugate of the complex number 𝑧.

𝐴∗
Complex conjugate of the matrix𝐴.

𝐴𝑇
Transpose of the matrix𝐴.

𝐴†
Complex conjugate transpose of the matrix𝐴, i.e.𝐴† = (𝐴∗)𝑇 .

𝐴 ⊗ 𝐵 Kronecker product of the matrix𝐴 with the matrix 𝐵 .

𝐴̂ Linear operator whose matrix representation is𝐴

𝐼 , 𝐼 Identity matrix and Identity operator

𝐻̂ Hamiltonian

𝜉𝑖 Eigenvalues of the Hamiltonian

¤𝑓 Newton’s notation for the derivative of a function 𝑓 (𝑡 ) with respect to 𝑡

|𝜓 ⟩ Vector of a Hilbert space, also called ket.
⟨𝜓 | Vector dual to |𝜓 ⟩, also called bra.
⟨𝜓 |𝜙 ⟩ Inner product between |𝜓 ⟩ and |𝜙 ⟩ whose results in scalar.

|𝜓 ⟩ ⟨𝜙 | Outer product between ⟨𝜓 | and |𝜙 ⟩ whose results in a matrix.

∥ |𝜙 ⟩ ∥ =
√︁
⟨𝜙 |𝜙 ⟩ Norm of |𝜙 ⟩.

𝛿𝑖 𝑗 Kronecker delta that is defined to be equal to 1 whenever 𝑖 = 𝑗 , and 0 otherwise

|𝜓 ⟩ ⊗ |𝜙 ⟩, |𝜓 ⟩ |𝜙 ⟩, |𝜓,𝜙 ⟩, |𝜓𝜙 ⟩ Tensor product between |𝜓 ⟩ and |𝜙 ⟩ and its abbreviated notations

|𝜓 ⟩⊗𝑛 Tensor product between 𝑛 identical states |𝜓 ⟩, i.e. |𝜓 ⟩⊗𝑛 = |𝜓 ⟩ ⊗ · · · ⊗ |𝜓 ⟩
⟨𝜓 |𝐴̂ |𝜙 ⟩ Inner product between |𝜓 ⟩ and 𝐴̂ |𝜙 ⟩ where 𝐴̂ is a linear operator

⟨𝐴̂⟩ Average value of an operator w.r.t. to a given state |𝜓 ⟩ : ⟨𝜓 |𝐴̂ |𝜓 ⟩
{ |0⟩, |1⟩ } or { |↑⟩, |↓⟩ } Computational basis

|+⟩, |−⟩ Hadamard basis states, defined by |+⟩ = 1√
2

( |0⟩ + |1⟩) , and |−⟩ = 1√
2

( |0⟩ − |1⟩)
𝜌 Density matrix describing a given system’s state: 𝜌 =

∑
𝑖 𝜆𝑖 |𝜓𝑖 ⟩ ⟨𝜓𝑖 |

𝜎̂𝑥 , 𝜎̂𝑦 , 𝜎̂𝑧 Pauli operators

𝐻 , 𝐻 Hadamard opertator/gate

Tr trace operator

Gyongyosi and Imre [82] reviewed the technological status of quantum computation and information systems by

discussing several papers that can be useful for researchers interested in delving deep into specific aspects of quantum

computations. Savchuk and Fesenko [158] reported a brief analysis of some of the fundamental principles beneath

quantum computing. McGeoch [130] presented a comparison between expected results based on a purely theoretical

calculation about complexity theory and what is currently achievable and achieved on the modern physical realization

of quantum processors based on quantum annealing. They also gave interesting insights on basic notions concerning

the quantum annealing process, which is at the heart of the D-Wave quantum platforms. Preskill [145, 146] debated the

concept of “quantum supremacy” and the potential of quantum computing.

In the last two decades, there has been a strong interest and commitment in the scientific community to develop

quantum algorithms to solve ML problems, giving life to the field of QML. Hitherto, there is not a universally accepted

definition of QML yet. However, Aïmeur et al. [8] and Adcock et al. [5] provided useful categorizations based on the

employed learning paradigms. For example, in [5], the term QML is used to refer to two learning categories. The first

one concerns learning processes performed using classical computations aided by sub-routines relying on quantum

computations. The second one concerns approaches that exploit quantum computations only and for which there

are no sub-routines that can be performed equally well on a classical computer. Notwithstanding, this categorization

excludes from the QML class all the learning approaches performed on a classical machine but that use data coming

from quantum devices.

A viable approach to QML stems from the quantum algorithms that speedup linear algebra-related tasks (see, e.g.,

[30, 88, 164, 196]). In this context, several quantum extensions of classical algorithms have already been proposed, for

example, for clustering [105, 137], Support Vector Machines [149], semidefinite programs [36], gradient descent for
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linear systems [107], PCA [122], and variational generation for adversarial learning [151], just to cite some. Biamonte

et al. [30], and Schuld et al. [164] gave an overview of the achievements and challenges of quantum-enhanced machine

learning algorithms, considering aspects of both gate and adiabatic computational models. Basic algorithms for QML,

such as Grover’s algorithm [80], quantum state "similarity" estimation, and the HLL algorithm [85], are reviewed in

[197]. The authors also illustrate how these algorithms (based on the quantum gate model) have been used in literature

to speed up standard ML algorithms, like Support vector machine, 𝑘-means clustering, PCA, and Linear discriminant

analysis. Furthermore, in [2, 3] the authors review quantum solutions for binary classification and k-Nearest Neighbour

problems. Ciliberto et al. [50] covered quantum machine learning approaches with emphasis on theoretical aspects,

such as computational complexity analysis, discussion on limitations of QML, and challenging aspects like learning

under noise. Theoretical aspects of ML using quantum computers are also discussed in [15]. Many other survey papers

overview quantum algorithms for ML and their applications, see for example [9, 29, 64, 65, 125, 148, 162] and references

therein.

Benedetti et al. [22] reviewed parametrized quantum circuits, which are arguably the quantum analogous of NN

models. The Variational Quantum Algorithms, which employ parameterized quantum circuits, are also discussed in [44].

Kamruzzaman et al. [103] reviewed the status of (theoretical) Quantum Neural Networks and their limitations. Allcock

and Zhang [13] focused on quantum generalizations and applications of some popular neural-network concepts, like

Boltzmann machine, generative adversarial networks, and autoencoders. Recently, Magini et al. [124] gave a concise

overview of the main directions that have been taken to develop quantum artificial neural networks.

3 QUBIT AND QUANTUM COMPUTATIONAL MODELS

In this section, we first introduce the concept of qubit and then give a brief overview of the two main paradigms of

quantum computation: theGate Model (GM), or Universal QuantumComputing, and theAdiabatic QuantumComputation

(AQC). A comprehensive analysis of the mentioned approaches is out of scope for our work. However, in what follows,

we try to empower the reader with a basic grasp of those two types of computations.

3.1 Qubit

The qubit, short for “quantum bit”, represents the fundamental unit of information for quantum devices. It is the

quantum correspondent of the bit. However, apart from the last part of its name, the qubit does not share much with its

classical cousin. Similar to the bit, which assumes two values only (0 or 1), the qubit can be “observed” (i.e., measured) in

two possible states, typically indicated as |0⟩ and |1⟩. However, differently from the bit, a qubit can also be in a so-called

superposition of states before the measurement. Intuitively, that means that the qubit can be in either the state |0⟩ or |1⟩
with a certain probability. Notwithstanding, when measured, the qubit state “collapses” into one of them. The qubit is a

rather abstract concept since such an object does not exist in the real world. Instead, we relate it with artificial atoms,

i.e., physical systems able to emulate the behavior of an atom. Specifically, we are typically interested in emulating the

behavior of two-state systems that satisfy a certain number of hard constraints such as small dissipation and isolation

from the environment.

From a mathematical point of view, a qubit state |𝜓 ⟩ is a unit vector in C2. The symbol |·⟩ we just used is inherited

from Dirac [60] formalism
2
employed in the quantum mechanics. In a nutshell, the object |𝜓 ⟩, called ket, represents a

vector in a Hilbert space. Similarly, ⟨𝜓 |, called bra, is defined as the adjoint (or dual) of such a ket. We remind the reader

2
please refer to subsection B.1 in the Appendix B for an extensive introduction to this formalism.
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unfamiliar with the Dirac formalism that the symbol within a ket or bra, e.g., the “𝜓” used above, can be an arbitrary

label (e.g., a letter or a number). Note that often binary labels are used, especially to indicate the vectors of a space basis.

For example, the basis

{[
1

0

]
,

[
0

1

]}
of C2, referred to as the computational basis, is typically indicated as {|0⟩, |1⟩}, or

sometimes also as {|↑⟩, |↓⟩}. Using this formalism, a qubit state can be represented as |𝜓 ⟩ = 𝛼 |0⟩ + 𝛽 |1⟩, where 𝛼 and 𝛽 ,

called amplitudes, are complex numbers such that |𝛼 |2 + |𝛽 |2 = 1
3
. Therefore, a qubit state is a coherent superposition

of the computational basis states |0⟩ and |1⟩. However, this does not mean that a qubit has a value between |0⟩ and |1⟩
but rather that it is not possible to say whether the qubit is definitively in the state |0⟩, or definitively in the state |1⟩.
In fact, when we measure a qubit we observe either |0⟩ with probability |𝛼 |2, or |1⟩ with probability |𝛽 |2. After the
measurement, the qubit state collapses to whatever value (|0⟩ or |1⟩) was observed, irreversibly losing memory of the

former 𝛼 and 𝛽 amplitudes. Please note that different kinds of measurements exist; the one we referred to above is

called measurement concerning the computational basis, which is among the most widely used.
4

We now turn our attention from the theoretical definition to a more physical one. Any physical system whose state

space can be described by C2 can serve as a qubit’s physical realization.
5
These systems are referred to as quantum

two-level systems, as their state can be described by a vector in a 2-dimensional Hilbert space. The state of an isolated

quantum mechanical system composed by 𝑛 two-level system, called quantum 𝑛-register, is described by a vector in a

2
𝑛
-dimensional Hilbert space (H2

𝑛
). This means that a state of an 𝑛-register can represent the superposition of 2

𝑛
basis

states, which is the cornerstone of quantum parallelism. Formally, an n-register state can be described by the linear

combination of the basis vector {|0⟩, . . . |2𝑛 − 1⟩}:

|𝜓 ⟩ =
2
𝑛−1∑︁
𝑖=0

𝛼𝑖 |𝑖⟩, with

2
𝑛−1∑︁
𝑖=0

|𝛼𝑖 |2 = 1. (1)

If we measure the state |𝜓 ⟩ with respect to the computational basis, we get one of the basis state labels 𝑖 with probability

𝑝 (𝑖) = |𝛼𝑖 |2 and the corresponding post-measurement state is |𝑖⟩. Usually, binary labeling is used to denote the 2
𝑛
basis

states. For example, the state of a two-qubit system can be expressed as |𝜓 ⟩ = 𝛼00 |00⟩ +𝛼01 |01⟩ +𝛼10 |10⟩ +𝛼11 |11⟩ with∑
𝑖, 𝑗 |𝛼𝑖 𝑗 |2 = 1.

The composition of two or more quantum systems is represented by the tensor product. For example if two systems

A and B have the states |𝜓𝐴⟩ = 𝛼 |0⟩ + 𝛽 |1⟩ and |𝜓𝐵⟩ = 𝛾 |0⟩ + 𝛿 |1⟩, respectively, then the system C composed by A

and B has the state |𝜓𝐶 ⟩ = |𝜓𝐴⟩ ⊗ |𝜓𝐵⟩ = 𝛼𝛾 |00⟩ + 𝛼𝛿 |01⟩ + 𝛽𝛾 |10⟩ + 𝛽𝛿 |11⟩. Finally, note that a state |𝜓 ⟩ ∈ H2
𝑛
of an

𝑛-register is called entangled if it that cannot be decomposed as the tensor product of 𝑛 single qubit states.

3.2 Gate Model

At the heart of the GM, there is the concept of circuit model, i.e., a sequence of building blocks that realize elementary

operations. Such building blocks are called gates. Thus, a gate encodes a well-controlled operation acting on a single

qubit or a subset of qubits [134, 146] in a given system. When acting on more than one qubit, these gates can give rise

to the phenomenon of entanglement establishing a strong correlation among qubits.

3
since a qubit has more states available than simply two levels, often it is useful to visualize it as a point on the so-called Bloch sphere, which is a unit

sphere in a three-dimensional Euclidean space with the north and south pole corresponding to the computational basis states |0⟩ and |1⟩, respectively
(see subsection B.4 in the Appendix ).

4
other measurements are discussed in the appendix (subsubsection B.2.3).

5
some physical realizations of qubits are discussed in the appendix (subsection B.3).
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As a direct consequence of the postulates of quantum mechanics
6
, quantum gates are represented by unitary

operators 𝑈 , i.e.,𝑈 †𝑈 = 𝐼 [18, 134]. This property automatically translates into saying that all the quantum gates must

be reversible, unlike classical logic gates. However, there are exceptions to such a rule. For example, measurements are

transformations on qubits that are allowed not to be reversible.

Being unitary operators, gates can be represented in different ways. Although it might be easier to formalize them as

matrices, typically the Dirac notation, or the outer product among state vector, is leveraged:

𝑈 =


𝑢00 · · · 𝑢

0(2𝑛−1)
.
.
.

. . .
.
.
.

𝑢 (2𝑛−1)0 · · · 𝑢 (2𝑛−1) (2𝑛−1)

 =
2
𝑛−1∑︁
𝑖=0

2
𝑛−1∑︁
𝑗=0

𝑢𝑖 𝑗 |𝑖⟩⟨ 𝑗 | (2)

where {|𝑖⟩}𝑖=0,...,2𝑛−1 is the currently used basis. Hence, in the simplest case of a single-qubit gate, it is represented

by a 2 × 2 unitary matrix whose coordinates are completely specified by its action on the basis states. More formally,

single-qubit gates describe transformations that belong to the Lie group of 2 × 2 unitary matrices with determinant 1,

called special unitary group of degree 2 (𝑆𝑈 (2)) [18].
A particularly useful set of one-qubit gates are the Pauli gates7 that, together with the identity operator, span the

vector space formed by all one-qubit unitary operators. In other words, any one-qubit gate can be expressed as a linear

combination of the Pauli gates. It is worth mentioning that the Pauli gates 𝜎̂𝑥 , 𝜎̂𝑦 , and 𝜎̂𝑧 correspond to rotations around

the 𝑥-, 𝑦- and 𝑧-axes of the Bloch sphere, respectively. As an example, the 𝜎̂𝑥 matrix represents an operation called the

“bit flip”, or NOT gate, which maps the |0⟩ to |1⟩ and vice versa, in the computational basis:

𝜎̂𝑥 |0⟩ =
[
0 1

1 0

]
|0⟩ = ( |0⟩⟨1| + |1⟩⟨0|) |0⟩ = |0⟩⟨1|0⟩ + |1⟩⟨0|0⟩ = |1⟩ (3)

Interestingly, we can notice that the operation in Equation 3 resembles the NOT gate in classical computations.

Apart from the single-qubit gates, there are unitaries that involve two or more qubits. Perhaps, the most famous

ones are the Controlled-NOT (CNOT) and Toffoli gates. Note that many multi-qubit gates are designed to perform

“controlled” operations, meaning that an operation is executed on a qubit, named the target qubit, if another qubit

(called control qubit) is in a specific state. For example, the CNOT gate applies the NOT gate operation to the target

qubit only when the control one is in the state |1⟩. It is formalized as: 𝐶𝑁𝑂𝑇 ( |𝜓 ⟩ ⊗ |𝛾⟩) = |𝜓 ⟩ ⊗ |𝜓 XOR 𝛾⟩ where |𝜓 ⟩
and |𝛾⟩ are the control and target qubit, respectively.

An exciting result coming from the GM paradigm is that not all gates are “fundamental” for computations. Indeed,

as it happens in the classical case, there is a set of quantum gates, named universal, that can be used to approximate

to arbitrary accuracy any quantum circuit [134]. The Hadamard (H), Controlled-NOT (CNOT), phase (S), and 𝜋/8 (T)
gates constitute a universal quantum computation set of gates. Although the S-gate can be constructed from the T-gate,

it is typically considered an element of the universal set due to its extensive usage in fault-tolerant circuit construction.

As mentioned above, a circuit is made of a sequence of gates acting on a given set of qubits. To characterize a circuit,

two metrics are typically reported, namely, the width and the depth. The first one refers to the number of qubits involved

in the calculations, while the second one represents the longest path in the circuit, resembling the largest number

of operations applied to a given qubit from the beginning to the end of the computations. In Figure 1, we report an

example of a circuit in which we applied single- and two-qubit gates. Specifically, the circuit represents one of the

6
postulates of quantum mechanics are summarized in the Appendix (subsection B.2)

7
Please refer to the Appendix (Table 6 and Table 7 in subsection B.5) for the definition of the Pauli gates and other single- and multi-qubit gates mentioned

in this manuscript.
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most famous algorithms in the scientific community called the Deutsch’s algorithm [59], which determines if a given

Boolean function 𝑓 : {0, 1}𝑛 → {0, 1} is balanced or constant.

Fig. 1. Quantum circuit implementing Deutsch’s algorithm [59, 134].

As we can see from Figure 1, a quantum circuit is depicted as a set of qubits, represented by lines, to which the gates

(squares) are applied, and where the order from left to right represents the flow of time. However, it is worth noting that

there is not an actual “flow” of the qubits in a quantum device. Indeed, the state of qubits at each given time represents

the state of the QPU, while gates are the transformations applied to them to change the device’s status.

3.3 AdiabaticQuantum Computation

In the previous section, we introduced the GM in which a qubits’ state is evolved by applying a series of gates. In such a

design, the time evolution is discretized since the different operations are performed at subsequent time instants. Quite

differently, the Adiabatic approach to quantum computation [71] leverages a time-continuous evolution of the qubits’

state according to the Schrödinger equation [159]. Moreover, it does not require nor allow to apply any transformations,

such as gates, directly on qubits. Instead, everything is encoded into a quantum operator, called Hamiltonian (𝐻̂ ), that

describes the forces to apply to a given system of qubits to move it into the desired state over time. However, it is

possible to show that these two approaches are polynomially equivalent [7, 71] by using the technique introduced

in [121]. Such a goal is reached by discretizing the evolution time interval and applying the Trotter formula [71] to

each time segment.

For a deep dive into the AQC, we refer the reader to the comprehensive and fascinating review by [11]. In what

follows, we assume that the reader knows what a Hamiltonian is or at least its definition in classical mechanics. For our

purposes, we need to consider that 𝐻̂ can be interpreted as the energy operator, in the sense that its eigenvectors are

the energy eigenstates, and its eigenvalues are the energies of the corresponding eigenvectors. Hence, as it will become

obvious from the following discussion, in the AQC, any problem is recast as an energy minimization one. The key

ingredient of the AQC is that 𝐻̂ is not constant, rather it varies with time: 𝐻̂ → 𝐻̂ (𝑡). The AQC derives its name from

the Adiabatic Theorem [131] which asserts how to follow the evolution of a system when 𝐻̂ (𝑡) varies slowly enough

over time.
8, 9

[6, 35, 70].

We now briefly report what a “slowly enough varying” Hamiltonian means. As previously mentioned, AQC exploits

the continuous time-evolution of a system of qubits within a time interval [0,𝑇 ], where 𝑇 represents the end of the

adiabatic evolution. Commonly, the varying Hamiltonian is expressed as a one-parameter function, given by 𝐻̂ (𝑠)
where 𝑠 = 𝑡/𝑇 ∈ [0, 1]. Note that the eigenvalues of 𝐻̂ (𝑠), indicated as 𝜉𝑖 (𝑠), represent different energy levels of the

system ordered with increasing values of 𝑖 ≥ 0 (e.g. the ground state energy is 𝜉0 (𝑠)). To ease the understanding of

8
for the formal definition and proof of the Adiabatic Theorem, we refer the reader to subsection B.7 in the Appendix.

9
the Adiabatic Theorem states that if a system is initially in the 𝑘𝑡ℎ state of well-defined energy, it will stay in this state when the Hamiltonian is changed

sufficiently slowly [31]. However, we focus our attention on the ground state because, in adiabatic quantum computing, a problem is typically encoded as

a Hamiltonian whose ground state is the problem solution.
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the following concepts, we indicate the eigenstate for 𝐻̂ (𝑠) related to the energy eigenvalue 𝜉𝑖 (𝑠) as |𝜙𝑖 (𝑠)⟩, where
we stressed the time dependence through the parameter 𝑠 . Therefore, the instantaneous eigenstates for 𝐻̂ (𝑠) are
the states satisfying 𝐻̂ (𝑠) |𝜙𝑖 (𝑠)⟩ = 𝜉𝑖 (𝑠) |𝜙𝑖 (𝑠)⟩. For example, the ground state of 𝐻̂ (𝑠), |𝜙0 (𝑠)⟩, is characterized by

𝐻̂ (𝑠) |𝜙0 (𝑠)⟩ = 𝜉0 (𝑠) |𝜙0 (𝑠)⟩. Given such definitions and restricting our interest to the ground state of 𝐻̂ (𝑠), the adiabatic
theorem ensures that if it is guaranteed that the difference among the ground and the first excited state energies,

Δ = min

0≤𝑠≤1
(
𝜉1 (𝑠) − 𝜉0 (𝑠)

)
, remains large enough throughout the entire adiabatic evolution, then the system is likely to

lie in the ground state of the instantaneous Hamiltonian. Specifically, such a requirement directly affects the length of

the adiabatic evolution since𝑇 ∝ Δ−2
. As mentioned above, 𝐻̂ (𝑠) is interpolated between an initial (𝐻̂𝐼 ) and a final (𝐻̂𝑃 ),

also called the problem, Hamiltonians. Specifically, the “problem” operator encodes the solution to a given problem in

such a way that its ground state configuration, |𝜙0 (𝑠 = 1)⟩, expresses the solution to the optimization problem at hand.

Concerning the AQC, the strategy is first to prepare the qubits in the ground state of 𝐻̂𝐼 , and then the operator is evolved

towards 𝐻̂𝑃 by following the so-called adiabatic path 𝐻̂ (𝑠) = (1 − 𝑠)𝐻̂𝐼 + 𝑠𝐻̂𝑃 . From a mathematical perspective, 𝐻̂𝐼 and

𝐻̂𝑃 can be defined in terms of the Pauli-matrices. Concerning a system made by 𝑛-qubits, the initial Hamiltonian can be

defined as: 𝐻̂𝐼 =
∑𝑛−1
𝑖=0

1

2
(1 − 𝜎̂𝑖𝑥 ) where 𝜎̂𝑥 is the Pauli-𝑥 operator. The ground state of 𝐻̂𝐼 is characterized by all qubits

aligned with the 𝑥-axis, i.e., the state |+⟩⊗𝑛 = 1

2
𝑛/2

∑
𝑧1

∑
𝑧2 · · ·

∑
𝑧𝑛 |𝑧𝑖 ⟩⊗𝑛 , where |𝑧𝑖 ⟩ ∈ {|0⟩, |1⟩}, which resembles the

uniform superposition of the computational basis states. To obtain such a state, one couples a magnetic field, called

the transverse or disordering field, in the 𝑥-direction to each quantum bit. The choice of such a shape for 𝐻̂𝐼 relates to

specific symmetries that the operator must satisfy to allow for the sought computations. For example, such a choice is

mandatory to avoid the so-called “level crossing” [71]. Moreover, 𝐻̂𝑃 is typically expressed in terms of the 𝜎̂𝑧 operator

so that the final configuration of the qubit system is represented by eigenvectors of 𝜎̂𝑧 , i.e., each qubit can be found

either in the |0⟩ or |1⟩ state. Such a configuration is nothing more than a classical sequence of bits. Thus, by starting

from an initial quantum superposition, the adiabatic process evolves the state into a classical configuration which can

then be read to return the solution to the problem at hand. One of the first “proof of concenpt” to show the effectiveness

of such a computation model was first realized in [70] for solving instances of the satisfiability problem. Apart from

such a first example, many optimization problems can be recast as an energy minimization problem, such as the Grover

search algorithm [71, 72, 80]. We report in Figure 2 a schematic representation of an adiabatic path representing the

Deutsch’s algorithm [59]. The reader might compare such an image with Figure 1 to notice the difference between the

two designs.

Fig. 2. Schematic adiabatic evolution for the Deutsch’s algorithm [59].

4 THE QUEST FOR QUANTUM SUPREMACY

The first claim about an attainable advantage with a hypothetic quantum computer upon a classical one is attributed to

Feynmann [73]. However, at that time, such an idea concerned quantum simulations of physical systems rather than

universal computations. Indeed, considering the simulation of a dynamical system characterized by 𝑁 = 2
𝑑
degree of
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freedoms, one can immediately see that a classical simulation living in a 2
𝑑
-dimensional Hilbert space requires resources

that grow exponentially with the size of the problem, while only polynomially if using a quantum device [121].

However, soon after, researchers started to think about gaining an advantage over generic classical computations

by leveraging quantum effects. Thus, the concepts of “quantum advantage” (or “quantum speedup”) and “quantum

supremacy” [86, 145] appeared in the literature. Despite the fact that both terms refer to the same principle, loosely

speaking, one can distinguish them considering what follows. The first one typically refers to the ability of a quantum

computer to perform a given computation faster than a classical one. Differently, the second one assesses the ability of a

quantum computer to find solutions to a problem not resolvable by a classical computer (or at least not in a reasonable

amount of time). Thus, even though both terms express the same principle, sometimes they are used with slightly

different purposes.

One of the most important phenomena for quantum computations is the entanglement, which allows propagating

the action on a qubit to others and compressing the resource requirements to describe a given state. Highly entangled

states cannot be simulated efficiently by classical systems, therefore proving the advantage of quantum devices over

classical ones. Interestingly, assuming the existence of computational tasks beyond any classical computer’s capability

that can be solved with a universal quantum computer, then in that case, it could be possible to refute the “extended

Church-Turing thesis”. As we mentioned previously, concerning an algorithmic point of view, the size of the Hilbert

space grows exponentially for a classical algorithm while only polynomially in the quantum case. Moreover, quantum

phenomena such as entanglement, superposition and tunnelling, help to navigate such a vast space and should allow

for a quantum speedup [4, 85, 121]. Concerning the GM, Deutsch [58] was among the first ones to show that a quantum

circuit can be built of reversible quantum logic gates to compute any classical function 𝑓 defined on 𝑛 bits. In 1992, the

first example of quantum advantage in computation was formalized in [59] in which the authors showed that for a

specific class of problems, a quantum device required exponentially less time to solve them than any deterministic

classical approach.

When talking about quantum advantage or speedup, two algorithms are typically cited: Grover’s search [80] and

Shor’s factoring [171] algorithms. However, there is a fundamental difference in how they obtain the advantage. Indeed,

while for the first one the “modest” quadratic speedup over the classical formulation is mathematically demonstrated,

concerning the second one this is not the case. Specifically, all that can be said about Shor’s algorithm is that it reaches

an exponential speedup over the most efficient classical analogous available today. However, nothing forbids that a new

classical formulation might reduce or eliminate such a gap.

Generally speaking, there are several definitions of quantum speedup. “Provable quantum speedup” stems from the

existence of a mathematical proof that there is not any classical algorithm that can perform better than the quantum

one [25, 80]. A different concept is expressed by the “strong quantum speedup” [139] which considers the performance

of the best classical algorithm. Shor’s algorithm [171] is an instance of such a definition. Indeed, although classical

algorithms require super-polynomial cost in the number of digits, the proof of an exponential lower bound for classical

factorization has not been found yet. Thus, one typically adopts the concept of quantum speedup by referring to the

comparison among the best known classical algorithm, which might not be the best possible one, and its quantum

counterpart.

Another class of problems probed to prove and harness a quantum advantage is the sampling problems’ class [86],

such as: constant-depth circuits [181], boson sampling [1], and random quantum circuits containing commuting and

non-commuting gates [33, 38, 169]. Such examples are somehow in between the factoring algorithm [171] and analog

quantum simulators [49, 51, 74].
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In [153], the authors performed experiments on a “D-Wave Two” quantum annealer. As a benchmark, they tasked the

QPU with finding the ground state of a 2D planar graph of an Ising spin glass model, which is known to be an NP-hard

problem [17]. The authors compared the results from simulated annealing [112], simulated quantum annealing [127, 157],

and the actual quantum device from D-Wave [26, 84, 98, 99]. However, they did not observe any evidence for a genuine

quantum speedup from the experiments. Recently, Google claimed to have reached quantum supremacy [16]. In their

work, the authors proposed an ad-hoc experiment involving a QPU containing 53 qubits and a circuit depth of 20 and

claimed that a classical computer would have required thousands of years to simulate the obtained results. However,

several research groups immediately replied to such a claim by showing that it was possible to simulate such a quantum

computer in just slightly more than two days [140] or even less [199]. Such profoundly different results witness the

difficulty that researchers typically face when trying to estimate the real power of Noisy Intermediate-Scale Quantum

(NISQ) devices.

We conclude this brief overview over the concept of quantum supremacy and the various attempts to harness it by

observing that, despite the tremendous efforts that scientists are devoting to embracing the quantum phenomena, such

a goal is still far from being reached. Moreover, it is clear that any claim about quantum supremacy must undertake a

detailed analysis based on the most recent achievements in classical simulation algorithms [39, 102, 147].

5 QUANTUM LEARNING

The research on Quantum Neural Networks is a quest started more than twenty years ago [14, 68, 163, 165]. Studies

from Behrman et al. [21] and Toth et al. [184] are examples of seminal works that introduced the concept of QNNs.

Behrman et al. [21], described a mathematical model based on quantum dot molecules and showed by simulations that

such a model was able to realize any classical logic gate. Instead, Toth et al. [184], proposed a more biologically inspired

architecture, where quantum dots were coupled to form a cellular structure in which near-neighbor connectivity

allowed the information to flow. The realization of a quantum analogue of an Artificial Neural Network (ANN), as

an algorithm able to combine features from both the classical and quantum worlds, is a long-standing dream for

the scientific community [163]. In the classical realm, a feedforward ANN is a universal approximator of continuous

functions [95]. Thus, a QNN should at least satisfy such a requirement.

Classically, an ANN is made by a sequence of layers. Each of them applies a specific mathematical transformation

to its input and produces an output taken as input by the subsequent layer in the network. Moreover, the various

layers are typically interleaved by non-linear functions to enhance the ANN representation power. Indeed, if only linear

operations are considered, one could reduce the entire network to a single affine mapping. ANNs owe their name to

their structure loosely inspired by the human brain. Moreover, still based on a biological analogy, the basic building

block of ANNs is the artificial neuron, called perceptron, a computational model proposed initially by Rosenblatt [154].

These algorithms typically deal with large amounts of data aiming at finding patterns to describe them by surfing the

parameters’ space. Thus, they are perfect candidates to leverage the advantage of quantum phenomena that allows

navigating more efficiently high dimensional spaces.

It is worth mentioning that classical deep ANNs have been exploited to solve quantum problems in disciplines

such as chemistry [118, 144, 167] and physics [40, 47, 135] among others. In such contexts, a DL model can be trained,

for example, to predict the quantum mechanical wavefunction for a given many-body system [42], to predict the

interatomic potential energy surfaces [176], to identify distinct phases of matter and the transitions between them [43],

to mention some. In spite of this topic being fascinating, a detailed discussion about these techniques is out of scope for

our work. Thus, in what follows, we will focus on approaches based on quantum models only.
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Concerning the quantum realm, in 1994, Lewenstein [117] was among the first ones to propose a quantum-mechanical

perceptron as an ideal basic element that processes input quantum states through unitary transformations. Since then,

several studies have been conducted to formulate QNNs as made up of basic cells such as QPs or as entirely new

computing architectures. Indeed, the design of QNNs can be much different from that of classical ANNs meaning that

the first ones do not require to be made of several layers of QPs. For example, they can be realized as variational circuits

(see subsection 5.4) without relying on direct implementation of a basic cell resembling the quantum analogue of a

perceptron.

In the following sections, we first introduce the concept of quantum embedding (subsection 5.1) and then we describe

variational algoritmhs (subsection 5.2). Subsequently, we report several designs for QPs (subsection 5.3) and QNNs

(subsection 5.4). Finally, we discuss trainability issues, e.g., barren plateaus (subsection 5.5). We focus primarily on

the GM computational paradigm since it is currently the most widely adopted approach in such a context, and it

offers a closer analogy to classical approaches, especially from a computer scientist’s point of view. We also report

some interesting formulations based on AQC. We leave a more detailed analysis of the results obtained with the AQC

paradigm for future work.

5.1 Encodings of data

A quantum machine learning algorithm
10
, such as a QNN, accepts quantum states as input by its nature. Hence, classical

data must be translated into quantum states and transferred from a classical memory to the quantum device, a process

called “state preparation”.

The basis and the quantum amplitudes encodings [160] are two fundamental examples of quantum data embeddings.

The basis encoding (also called bit encoding) associates each data input with a computational basis state of a qubits

system. This is equivalent to saying that each data item x ∈ R𝑑 is first transformed to a binary string b of length

𝑛 and that each binary string is uniquely associated with a computational basis state of an 𝑛-qubit system, |b⟩. For
example, given a vector x = [0.3,−0.4] we may use a bit to encode the sign and 𝑇 bits to encode each number in

the interval [0, 1) according to a binary fraction representation

∑𝑇
𝑘=1

𝑏𝑘
1

2
𝑘
of precision 𝑇 . In the case of 𝑇 = 4 we

obtain 0.3 → 0 0100 and −0.4 → 1 0110, therefore the vector x is mapped to the binary string b = 0010010110 that

is represented by the quantum state |0010010110⟩ of 10 qubits. Amplitudes encoding, instead, associates real vector

components with quantum amplitudes with the only caveat that the original real vectors must be normalized. Formally,

given a vector 𝑥 ∈ R𝑑 , where 𝑑 = 2
𝑛
, we have the following mapping:

x =



𝑥0

𝑥1
.
.
.

𝑥𝑑−1


→ |𝑥⟩ = 1

∥x∥

𝑑−1∑︁
𝑖=0

𝑥𝑖 |𝑖⟩ (4)

where |𝑖⟩ represents the 𝑖-th computational basis state for an 𝑛-qubit system. For example, if x = [0.3,−0.4] then
|𝑥⟩ = (0.3 |0⟩ − 0.4 |1⟩) /0.5, upon normalization. Note that the amplitude encoding requires exponentially fewer qubits

than the base encoding to embed a vector into a quantum state. An entire dataset can be represented in the computational

basis by considering the amplitude encoding of the concatenation of all the input data. Hence, the main advantage of

this encoding is that it only requires log2𝑀𝑑 qubits to encode a dataset of size𝑀 and dimensionality 𝑑 [160].

10
Following the categorization used in [8, 160] we use the term quantum machine learning for approaches that use a quantum device to process classical

or quantum data.
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5.2 Variational Algorithms

Currently, the leading approach to the optimization of quantum circuits [22] exploits Variational Quantum Algorithms

(VQA) [44, 81, 129, 142], hybrid quantum-classical algorithms that leverage both quantum as well as classical components.

Their name is inspired by the well known result from physics called the Variational Principle, which provides an upper

bound of the ground state’s energy of a quantum system
11
. Generally speaking, the Variational Principle gives a recipe

to construct a trial state (i.e., a quantum state parameterized by learnable parameters) for optimization purposes.

From a computer science point of view, one can formulate a VQA as follows. A hybrid quantum-classical architecture

comprising a set of quantum operations, the ansatz, that are applied to the initial qubits state to produce a final state,

called trial state. The ansatz is characterized by a set of gates controlled by some classical parameters 𝜽 whose values

are modified with the help of a classical procedure, e.g., gradient descent. Therefore, the design of such algorithms

typically relies on three main components. The first one is the ansatz, also referred to as "parametrized quantum circuit"

or "variational circuit", which sometimes includes the embedding of classical data into a quantum state. Subsequently,

one must specify an objective function L𝜽 , whose value is used to drive the optimization procedure, and finally a

classical optimization procedure is used to modify the ansatz’s parameters 𝜽 that define the transformations applied on

qubits. Hence, it is clear that VQAs represent the practical embodiment of the idea of training quantum computers as

we train classical neural networks. We report in Figure 3 a schematic view of a VQA.

Parameters Initialization: θ0 = {θ0
j | j = 0, 1, …, m}

1   1   0   1
1   0   1   0
0   0   1   1
0   1   0   1

Updated Parameters: 
{θi-1

 → θ
i}

Gradient Evaluation

State Preparation

Quantum Classical

 U(θi).
.
.

.

.

.
.
.
.

Fig. 3. Schematic view of a VQA. The quantum device implements a parametrized quantum circuit𝑈 (𝜽 ) that given an initial state |Ψ0 ⟩
prepares the trial state |Ψ(𝜽 ) ⟩ = 𝑈 (𝜽 ) |Ψ0 ⟩. Observable measurements on the trial state are used to return estimates of expectation
values (e.g., the state of a certain qubit), which are used to evaluate an objective function L𝜽 . A classical optimization algorithm (e.g.,
gradient descent) is employed to update the circuit parameters.

The first application of such class of methods is the Variational Quantum Eigensolver (VQE) [104, 142, 191], initially

proposed to find the lowest energy state (the ground state) of a quantum system. Given the Hamiltonian 𝐻̂ of a

system, the Variational Principle tells us that the ground state |𝜓∗⟩ corresponds to the normalized state |𝜓 ⟩ that
minimizes the quantity ⟨𝜓 |𝐻̂ |𝜓 ⟩ expressing the energy of the system in the state |𝜓 ⟩. That is |𝜓∗⟩ = argmin

|𝜓 ⟩
⟨𝜓 |𝐻̂ |𝜓 ⟩, and

𝐸𝑚𝑖𝑛 = ⟨𝜓∗ |𝐻̂ |𝜓∗⟩. Therefore, the ground state can be approximated by optimizing the parameters 𝜽 of an ansatz 𝑈 (𝜽 )
in order to minimize the expectation value L𝜽 = ⟨𝜓 (𝜽 ) |𝐻̂ |𝜓 (𝜽 )⟩, where |𝜓 (𝜽 )⟩ = 𝑈 (𝜽 ) |Ψ0⟩ for a given initial state

|Ψ0⟩. In other words, given 𝜽 ∗ = argmin

𝜽
L𝜽 , the state |𝜓 (𝜽 ∗)⟩ approximates |𝜓∗⟩ and L𝜽 ∗ provides an upper bound

for 𝐸𝑚𝑖𝑛 . VQE can solve general optimization problems as long as the problem is formulated using an Hamiltonian

11
we refer the interested reader to subsection B.6 in the Appendix where we report the formal definition and proof of the Variational Principle.
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such that its ground state corresponds to the solution of the original problem. For example, to find the binary solution

𝑥 that minimizes a cost function 𝐶 (𝑥) one may first find an Hamiltonian 𝐻𝐶 that encodes the cost function 𝐶 (𝑥), i.e.
𝐻𝐶 |𝑥⟩ = 𝐶 (𝑥) |𝑥⟩, and then use the VQE to approximate the ground state of this Hamiltonian.

The Quantum Approximate Optimization Algorithm (QAOA) [69] is a famous variational algorithm that defines an

ansatz to generate approximate solutions to a given problem. It was initially proposed to solve combinatorial optimization

problems, and then it was generalized as a standard ansatz [44, 83]. QAOA finds the trial state by repeatedly applying

unitary evolutions according to a two-terms Hamiltonian [69], namely, 𝐻̂𝐶 and 𝐻̂𝐵 . The first one encodes the classical

cost function 𝐶 (𝑥) to be minimized, and it is typically diagonal in the computational basis. In contrast, the second one

is the mixing Hamiltonian which coherently moves the system through different configurations in the Hilbert space

seeking the ground state of 𝐻̂𝐶 . Typically, 𝐻̂𝐵 is a global transverse field, i.e., 𝐻̂𝐵 = −∑
𝑖 𝜎̂

𝑖
𝑥 . Thus, given the problem

Hamiltonian 𝐻̂𝐶 , one can use QAOA to find its ground state by applying the evolution operator𝑈 :

|𝜓 (𝜷,𝜸 )⟩ = 𝑈 (𝜷,𝜸 ) |𝜓0⟩ =
𝑝∏
𝑖=0

𝑒−𝑖𝛽𝑖𝐻̂𝐵𝑒−𝑖𝛾𝑖𝐻̂𝐶 |𝜓0⟩ = 𝑒−𝑖𝛽𝑝𝐻̂𝐵𝑒−𝑖𝛾𝑝𝐻̂𝐶 · · · 𝑒−𝑖𝛽1𝐻̂𝐵𝑒−𝑖𝛾1𝐻̂𝐶 |𝜓0⟩ (5)

where the set of angles {𝜷,𝜸 } are the parameters to be optimized. Starting from an initial state |𝜓0⟩, e.g., the uniform
superposition of the basis states 𝐻 ⊗𝑛 |0⟩, one can evolve it by using Equation 5 and obtain |𝜓 (𝜷,𝜸 )⟩. The parameters

are then adjusted such as to minimize the objective function expressed as:

L(𝜷,𝜸 ) = ⟨𝜓 (𝜷,𝜸 ) |𝐻̂𝐶 |𝜓 (𝜷,𝜸 )⟩ = ⟨𝜓0 |𝑈 † (𝜷,𝜸 )𝐻̂𝐶𝑈 (𝜷,𝜸 ) |𝜓0⟩ (6)

The parametrized evolution operator𝑈 (𝜷,𝜸 ) can be viewed as a layerized variational circuit:

|𝜓0⟩ 𝑈𝐶 (𝛾1) 𝑈𝐵 (𝛽1) · · · 𝑈𝐶 (𝛾𝑝 ) 𝑈𝐵 (𝛽𝑝 ) (7)

with 𝑝 repetitions of alternating cost layers, 𝑈𝐶 (𝛾𝑖 ) = 𝑒−𝑖𝛾𝑖𝐻̂𝐶
, and mixing layers, 𝑈𝐵 (𝛽𝑖 ) = 𝑒−𝑖𝛽𝑖𝐻̂𝐵

. Note that

alternating the cost layers with the mixer layers allows enlarging the space of quantum states that can be generated

with the circuit (since a circuit consisting of only cost layers is equivalent to a circuit with only one parameterized

cost layer). The layers of QAOA correspond to the trotterized segments of the time evolution operator associated to

the adiabatic evolution 𝐻̂ (𝑠) = (1 − 𝑠)𝐻𝐵 + 𝑠𝐻𝐶 , 𝑠 ∈ [0, 1]. The initial QAOA state |𝜓0⟩ is set as the ground state of the

initial Hamiltonian 𝐻𝐵 (e.g., |𝜓0⟩ = 𝐻 ⊗𝑛 |0⟩ if 𝐻̂𝐵 = −∑
𝑖 𝜎̂

𝑖
𝑥 ) so that the adiabatic process evolves to the ground state of

the problem Hamiltonian 𝐻𝐶 .

A fundamental ingredient for QAOA is the parameter 𝑝 in Equation 5 since it regulates the precision of the approximate

solution. Growing 𝑝 means reducing the “distance” from the optimal solution. However, for large 𝑝 , decoherence starts

to play a significant role in the computation since the ansatz will contain more gates. We recommend the reader the

original paper [69] for a complete discussion about the impact of the 𝑝 parameter and QAOA in general.

In the following two sections, we move to the topics of QPs and QNNs. Unlike classical learning approaches, quantum

ansatzes are typically specialized to build perceptrons or represent an entire network. From such an observation, we

first delve deep into the QPs and then to full QNNs proposals.

5.3 Quantum Perceptron

From the classical perspective, a perceptron is a computational model characterized by a non-linear response to its

input and is parametrized as:

𝑠 𝑗 = 𝑓

(
w𝑇

𝑗 x + 𝑏 𝑗
)

(8)
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where x ∈ R𝑑 is the input, w𝑗 ∈ R𝑑 and 𝑏 𝑗 ∈ R are learnable parameters (weights and bias), and 𝑓 is a non-linear

activation function. Depending on the value of 𝑠 𝑗 , the perceptron is said to be either active or at rest. One of the simplest

forms of an artificial neural network is the Multilayer Perceptron (MLP), i.e., a network composed of multiple layers of

perceptrons (called inner-product or fully-connected layers). Each layer is composed of many perceptrons whose action

is a linear projection of the input followed by a non-linear element-wise activation function, i.e., s = 𝑓

(
W𝑇 x + b

)
∈ R𝑚 ,

where W ∈ R𝑑×𝑚 and b ∈ R𝑚 are the weight matrix and the bias vector, respectively. The fully-connected layer is one

of the basic building blocks for Deep Neural Networks, so the perceptron can be considered a "fundamental unit" of

classical NNs. Therefore, the research in the field of QNN initially focused on defining quantum algorithms capable of

reproducing the functionalities of classical perceptrons, e.g., for classification tasks.

The implementation of the Quantum Perceptron is still an active research topic. We know that classically there is one

reference implementation of such objects (Equation 8). However, due to the intrinsic differences among the available

quantum hardware platforms, different formulations report advantages and disadvantages depending on the context in

which they are used, thus allowing for distinct implementations equally valid in the respective fields of application. To

ease the reader’s understanding of the current state-of-the-art QPs, we report a summary in Table 2. It should be noted

that some approaches have been implemented on real QPUs (e.g., IBM Q 5), while other methods have only been tested

using numerical simulations so far.

Due to the linear, unitary, and non-dissipative nature of the quantum transformations, one of the hardest challenges

to design a QP resides in designing and implementing non-linear activation functions for quantum computations. Schuld

et al. [165] proposed one of the first designs for a quantum perceptron model imitating the step-activation function of a

classical binary perceptron. Their main idea was to encode a normalized version𝜓 ∈ [0, 1) of the input signal w𝑇 x into

the phase of a quantum state of 𝑛 qubits and then use a phase estimation algorithm with a precision of 𝜏 , implemented

using an inverse quantum Fourier transform. They proved that measurements on the first qubit of the output quantum

state could have been used to estimate if𝜓 was larger than 1/2, hence reproducing the behavior of a step activation

function.

In 2017, Cao et al. [41] proposed an approach based on the Repeat-Until-Success (RUS) [32, 138] technique to

synthesize quantum gates. As we mentioned previously, the classical perceptron evaluates the non-linear transformation

𝑠 = 𝑓 (w𝑇 x + 𝑏) that, once thresholded, defines the activation status of the perceptron. In such a context, 𝜃 = w𝑇 x + 𝑏 is

the input signal to the neuron and 𝑓 represents the non-linear operation whose output 𝑠 lies in [𝑙, 𝑢], where typically
𝑙 = −1 or 0 and 𝑢 = 1. In [41], such an operation is mapped to the quantum realm by defining the perceptron as a qubit

whose state is defined as: 𝑅𝑦 (𝑠 𝜋
2
+ 𝜋

2
) |0⟩ = cos(𝑠 𝜋

4
+ 𝜋

4
) |0⟩ + sin(𝑠 𝜋

4
+ 𝜋

4
) |1⟩, where 𝑠 ∈ [−1, 1] and 𝑅𝑦 represents a

rotation around the 𝑦-axis as described by 𝜎̂𝑦 . Note that as far as the extreme values of 𝑠 are concerned, they recover a

classical behavior being the system in the state |0⟩ or |1⟩. Instead, in all other cases it behaves quantum-mechanically.

The quantity 𝑠 = 𝑓 (𝜃 ) = 𝑓 (w𝑇 x + 𝑏) is computed using a quantum circuit where the input data is encoded into a state

vector |𝑥⟩ = |𝑥1 · · · 𝑥𝑑 ⟩ acting as the control register over an ancilla qubit. Initially, a rotation 𝑅𝑦 (2𝑤𝑖 ) conditioned on

|𝑥𝑖 ⟩ followed by a rotation 𝑅𝑦 (2𝑏) is applied on the ancilla qubit, that is equivalent to say that 𝑅𝑦 (2𝜃 ) is applied on the

ancilla qubit conditioned on the state |𝑥⟩. Then, the non-linearity is realized by using the rotation 𝑅𝑦 (2𝑓 (𝜃 )) which is

approximated by a class of RUS [138] circuits each implementing a rotation with an angle equal to arctan(tan2 (𝜃 )).
Repeating the RUS circuit 𝑘 times gives a rotation with an angle arctan(tan2𝑘 (𝜃 )) that is a sigmoid-like, tangent-based,

non-linear function. Stemming from the same approach, Hu [96] implemented a different RUS circuit to represent

a sigmoid-based activation function, 𝑓 (𝑥) = arcsin(
√︁
sigmoid(𝑥)), thus avoiding the drawbacks of using periodic
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Table 2. Summary comparison among various quantum perceptron proposals. The symbol “nr” stands for “not reported” meaning
that the authors did not explicit reported that specific information. In the column “Impl.” we reported whether the method was
implemented on an actual QPU or tested using numerical simulations only (reporting in brackets the library used when the information
was available).

Work Formulation Impl. Code

Using the Gate Model

Schuld et al. [165] Quantum circuit using inverse quantum Fourier transform to reproduce a step

activation function. The input is encoded into an 𝑛-qubit state

Simulation ✗

Cao et al. [41] Circuit based on RUS (using a tangent-based non-linear function). The

𝑑-dimensional input data is encoded into an 𝑑-qubit state

Simulation ✗

Hu [96] Circuit based on RUS (using a sigmoid-based non-linear function). The

𝑑-dimensional input data is encoded into an 𝑑-qubit state.

IBM Q 5 ✗

Du et al. [62] Variational quantum circuit based on a parametrized Grover oracle learned with

a classical optimization approach.

Simulation

(pyQuil)

✗

Wiebe et al. [194] Quantum search problem, based on the version space interpretation of the

perceptron, based on the Grover’s algorithm.

nr ✗

Liu et al. [120] Given a supervised dataset, construct the weights’ matrix as the tensor product

of input and target and then apply SVD to it.

nr ✗

Wiersema et al. [195] Qubit represented as a density matrix that describes the classifier as a

Boltzmann-like finite-temperature distribution.

Simulation

(Tensorflow)

✓ ∗

Tacchino et al. [180] Quantum variational circuit in which the 𝑑-dimensional input datum is encoded

into the 𝑑 coefficients of an 𝑛-qubit state (𝑑 = 2
𝑛) .

IBM Q 5

“Tenerife”

✓ ◦

Using the Adiabatic Model

Soloviev et al. [178] Perceptrons and synapses are implemented as JJ-based superconducting circuits. nr ✗

Torrontegui et al. [183] Two-level system (qubit) with a non-linear excitation response to the input field. Simulation

(Tensorflow)

✓ •

Code: ✗ the code is not publicly available, ✓ the code is available either on GitHub (∗), upon request to the authors of the original work (◦), or in
the supplementary material of the original work (•).

functions, such as the tangent. Wiebe et al. [194] adopted a very interesting and completely different perspective.

Indeed, the authors reported that the only way to unveil a quantum advantage is to formalize approaches that do not

try to emulate classical algorithms in the quantum world. Instead, a new point of view is needed. Thus, they based

their approach on the Version Space interpretation of the perceptron and Grover’s search algorithm [80]. Specifically,

they exploited a general method referred to as amplitude amplification [37] for which Grover’s algorithm represents a

particular case. Using the Version Space, the authors posit the problem of training a perceptron as a search problem (i.e.,

search for the optimal parameters rather than “learn” them), hence fully exploiting the quantum advantage offered by

the amplitude amplification technique. Wiersema et al. [195] exploited the formalism of density matrices to cast the

perceptron learning problem in terms of a quantum cross-entropy:

L𝑞 = −
∑︁
x
𝑞(x)Tr{𝜂x ln 𝜌x} (9)

where 𝑞(x) is the empirical distribution of observing the datum x ∈ {1,−1}𝑑 , 𝜂x ≡ |Ψ⟩⟨Ψ|, with |Ψ⟩ =
√︁
𝑞(𝑦 |x) |0⟩ +√︁

𝑞(−𝑦 |x) |1⟩, is the density matrix associated with the distribution 𝑞(𝑦 |x) of observing the label 𝑦 ∈ {1,−1} given x,
while 𝜌x ≡ 𝜌 (x,w; y) is the density matrix associated to the model conditional distribution 𝑝 (𝑦 |x;w). Note that such
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a formulation resembles the classical cross-entropy objective: L𝑐𝑙 = −∑
x 𝑞(x)

∑
𝑦 𝑞(𝑦 |x) ln𝑝 (𝑦 |x;w). The matrix 𝜌x,

which embodies the perceptron’s description, represents a finite-temperature description of a qubit formulated as:

𝜌x = exp (−𝛽
∑︁

𝑘∈{𝑥,𝑦,𝑧 }
ℎ𝑘 𝜎̂𝑘 )/𝑍, (10)

where the inverse temperature 𝛽 is set equal to −1, 𝜎̂𝑘 are the Pauli matrices, the term ℎ𝑘 ∈ R is evaluated as w𝑇
𝑘
x (i.e.,

for each Pauli matrix there is one set of weights), and 𝑍 is such that Tr{𝜌x} = 1. Thus, there is a direct dependence

from the classical input data of the perceptron state. When the dataset {x} is linearly separable, the convergence point

is similar to the classical case. Instead, in the presence of label noise, there is a contribution also from Pauli operators

other than 𝜎̂𝑧 that allow the quantum perceptron to perform better than its classical counterpart.

Torrontegui et al. [183] based their approach on the similarity between the classical perceptron and a single qubit

interpreted as a two-levels system. Indeed, they implemented a perceptron with sigmoid non-linear activation as a

qubit that undergoes a unitary transformation, parametrized by an external input field
ˆ𝜃 𝑗 , given by

𝑈 𝑗 ( ˆ𝜃 𝑗 ; 𝑓 ) = exp

(
i arcsin

(
𝑓 ( ˆ𝜃 𝑗 )1/2

)
(𝜎̂𝑦) 𝑗

)
with

ˆ𝜃 𝑗 =
∑︁
𝑘< 𝑗

𝑤 𝑗𝑘 (𝜎̂𝑧)𝑘 − 𝑏 𝑗 (11)

where 𝑗 is the label of 𝑗-th perceptron of a layer,
ˆ𝜃 𝑗 is the quantum field generated by neurons in earlier layers, 𝜎̂𝑦 and 𝜎̂𝑧

are the Pauli matrices, and 𝑓 (·) encodes the non-linear activation function. The authors formalized the implementation

of such a model using an adiabatic process. Specifically, they proposed implementing the system’s evolution as a single

adiabatic path for an Ising model of interacting spins. The authors proved that such a perceptron acts as a universal

approximator with such a definition. Moreover, they report how it is possible to treat such objects as the basic building

block for large neural networks.

In Liu et al. [120], the authors proposed a quantum algorithm based on unitary weights, suitable to implement

a one-iteration learning approach. The weights’ operator is constructed as the tensor product 𝑤̂ =
∑

𝑗 |𝑦 𝑗 ⟩ ⊗ ⟨𝑥 𝑗 |,
where ⟨𝑥 𝑗 | represents the conjugate transpose matrix of a training input and |𝑦 𝑗 ⟩ is the desired output. The Singular

Value Decomposition procedure is then applied to 𝑤̂ to decompose it as the product 𝐹Σ𝑤̂new, where 𝐹 and 𝑤̂new are

unitary matrices, and Σ is the diagonal matrix of singular values. Since Σ may not be unitary it is replaced with a

diagonal unitary matrix and the output of the quantum perceptron on an input |𝑥⟩ is defined as 𝐹Σnew𝑤̂new |𝑥⟩. The
authors showed how to approximate several quantum gates with such an algorithm in their work. A similar approach

is also exploited by Khan et al. [108]. Du et al. [62] proposed a variational QP implementing a parametrized oracle

for a Grover-like search algorithm. The parametrized quantum circuit learns features from the input dataset, and a

classical optimization algorithm guides the parameters update. Differently from the previously introduced approaches,

Soloviev et al. [178] reported a discussion about how to exploit superconducting circuits equipped with Josephson

junctions (JJ) [100, 101] to physically realize perceptrons and synapses to build up a neural network. Specifically, the

authors exploited the operational principles of adiabatic superconducting cells to implement multilayer perceptrons.

The current-phase relation is used to implement the non-linear response in such a design. Instead, the system’s input is

supplied through magnetic fluxes to which the circuits, operating at a few kelvins, couple.

Finally, in 2019, Tacchino et al. [180] proposed a binary perceptron model (where both input and weight vectors

are limited to binary values) that can be implemented on NISQ [146] devices. To reduce the resource demand of the

algorithm, the authors formalized a new procedure to generate multipartite entangled states based on the so-called

hypergraph states [75, 155]. First, the input vector x ∈ {−1, 1}𝑑 and the weight vector w ∈ {−1, 1}𝑑 are encoded on the
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quantum states |𝜓x⟩ and |𝜓w⟩, respectively, using 𝑛 = log
2
𝑑 qubits (see Eq. Equation 4). Then, given the preparation

state as |0⟩⊗𝑛 , the authors evolved the state employing two unitaries, 𝑈x and 𝑈w, such that 𝑈x |0⟩⊗𝑛 = |𝜓x⟩ and
𝑈w |𝜓w⟩ = |1⟩⊗𝑛 . The authors proved the final N-qubit state |𝜓x,w⟩ = 𝑈w |𝜓x⟩, obtained by applying 𝑈w after 𝑈x,

contains the scalar product among the input and the weight vectors, up to a normalization factor, in its last amplitude

coefficient, i.e., ⟨1 · · · 1|𝜓x,w⟩ = ⟨𝜓w |𝜓x⟩ = 1

𝑛w
𝑇 x. Finally, the non-linearity was implemented as a measurement whose

output represented the probability for the system of being activated by the given input pattern. The authors successfully

proved that for any given weight vector, w, the perceptron was able to single out from the 16 possible input patterns

only i = w (with output probability of 1, i.e., the perfect activation of the neuron), while all other inputs gave outputs

smaller than 0.25.

5.4 Quantum Neural Networks

Before delving deep into the most recent achievements in the field of QNNs, we briefly mention a few seminal works

that, although published several years ago, played a relevant role in advancing the discipline at hand. One of the first

proposals concerning a hybrid algorithm for QNNs, dates back to 2000 with the work of Narayanan and Menneer [133].

Using simulations, the authors compared the performance of a classical artificial network in which, from one experiment

to the following, different components were substituted with their quantum analogous. Interestingly, the authors found

that a fully quantum network did not report any tangible advantage compared to a “partially” quantum one. Ventura

and Martinez [185] proposed a quantum version of associative memories to harness the exponential increase in storage

capacity, originated from superposition effects that quantum mechanics allows, concerning classical algorithms. To

their aim, the authors exploited a generalization of Grover’s algorithm [80] able to fulfill the search and completion

tasks.

Parametrized Quantum Circuits (PQCs), which include variational quantum algorithms, are the most commonly

adopted choice to design quantum neural networks. In such a context, the qubits’ states are manipulated by unitaries

characterized by a set of parameters that are classically learned at training time. Finally, the value of a given observable is

accessed through a measurement that outputs a discrete quantity. Even if we focus on those algorithms in what follows, it

is worth mentioning that another class of quantum algorithms exploits continuous variables, namely Continous-Variable

(CV) [34, 110] models. These models do not use qubits to store quantum information. Instead, they exploit continuous

degrees of freedom such as the amplitude of the electromagnetic field, thus making them suited for photonic hardware.

In what follows, we review the state-of-the-art QNN models. To ease the comparison among the analyzed approaches,

we report in Table 3 a summary of the most relevant properties of the models.

5.4.1 The expressivity of PQC models. Classical feedforward networks have a layered structure where each layer

processes the previous layer’s output using functions depending on some trainable parameter. Since a layered structure

with learnable parameters also characterizes PQC-based algorithms, they have been widely used as quantum versions

of neural networks. Typically, each layer of a PQC accounts for three types of blocks: data-encoding circuit blocks

𝑆𝑖 (x) (depending on the input variable), parametrized circuit blocks𝑈𝑖 (𝜽 𝑖 ) (depending on a set of trainable parameters),

and non-parametrized circuit blocks 𝑉𝑖 (e.g., entangling operators). Given these blocks, a PQC with 𝐿 layers is usually

described by a unitary
ˆU(x;Θ) =

∏𝐿
𝑖 𝑉𝑖𝑈𝑖 (𝜽 𝑖 )𝑆𝑖 (x). The prediction from such a model is then evaluated as the

expectation value of an observable 𝑂 , over𝑚 runs of the circuit, with respect to the final state of the quantum circuit,

e.g., 𝑦out (x;Θ) = ⟨𝜓0 | ˆU(x;Θ)†𝑂 ˆU(x;Θ) |𝜓0⟩ where |𝜓0⟩ is some initial state of the quantum system. Different choices

for the implementation of the data encoding, parametric and non-parametric circuit blocks, and their mutual interaction
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Table 3. Comparison among the analyzed quantum neural networks designs. The symbol “nr” stands for “not reported” meaning that the authors did not explicit reported
that specific information or that the specific attribute cannot be applied to the referred work.

Work Aim Loss Function
Variational
Parameters
(𝑛-qubits)

Optimization
Impl. Appl.

Field
Input
Type

Test
DatasetsSim. QPU

Perez et al. [141] PQC as a Universal

Quantum Classifier

∑𝐷
𝑖=1

(
1 −

���⟨𝜓 true

𝑖
| ˆU(𝑥𝑖 ;Θ) |𝜓0 ⟩

���2) nr L-BFGS-B ✓ ✗ CS C

Schuld et al. [161] PQC for Binary

Classification

1

2

∑𝐷
𝑖=1 |𝑦out (𝑥𝑖 ;Θ) − 𝑦𝑖 |2 O( (log 𝑛)𝑘 ) Gradient

Descent

✓ ✗ CS C MNIST
∗
,

CANCER,

SONAR, WINE,

SEMEION

Macaluso et al. [123] Quantum MLP for Binary

Classification

∑𝐷
𝑖=1 |𝑦out (𝑥𝑖 ;Θ) − 𝑦𝑖 |2 nr Nesterov ✓ § ‡ ✓ •

CS C

Beer et al. [20] Quantum Dissipative

Multilayer Perceptron

1

𝐷

∑𝐷
𝑖=1 ⟨𝜓 true

𝑖
|𝜌out

𝑖
|𝜓 true

𝑖
⟩ O (22𝑁 ) Gradient

Descent

✓ ✗ QI Q

Verdon et al. [187] PQC for Learning

Hamiltonian Dynamics
+

1 − 1

𝐵

∑𝐵
𝑗=1 | ⟨𝜓 true

𝑗
|𝑈 𝑗 (Θ) |𝜓0 ⟩ |2 ★ nr Adam ✓ ✗ Phys. Q

Li et al. [119] Quantum CNN for image

recognition

−∑𝐶
𝑘
(y𝑖 )𝑘 log (𝑔 (𝑥𝑖 ;Θ)𝑘 ) †

nr Adam ✓ ✗ CS C MNIST, GTSRB
∗

Henderson et al. [92] Hybrid classical-quantum

CNN for image

recognition

nr nr nr ✓ †† ✗ CS C MNIST

Cong et al. [52] CNN-inspired QNN for

quantum data analysis

1

𝐷

∑𝐷
𝑖=1 |𝑦out ( |𝑥𝑖 ⟩;Θ) − 𝑦𝑖 |2 O(log 𝑛) Gradient

Descent

✓ ✗ Phys. Q

Grant et al. [78] Hierarchical Quantum

Classifiers

1

𝐷

∑𝐷
𝑖=1 |𝑦out ( |𝑥𝑖 ⟩;Θ) − 𝑦𝑖 |2 nr Adam ✗ ✓ ∗

CS,

Phys.

C, Q MNIST, IRIS

Jaderberg et al. [97] Quantum Self-Supervised

Learning

1

𝐷

∑𝐷
𝑖=1 log

−exp(z1
𝑖
·z2
𝑖
/𝜏 )

exp(z1
𝑖
·z2
𝑖
/𝜏 )+∑𝛼 exp(z1

𝑖
·z𝛼
𝑖
/𝜏 )

nr Adam ✓ ✓ ◦
CS C CIFAR10

∗

Mari et al. [126] Transfer Learning − 1

𝐷

∑𝐷
𝑖=1 𝑝𝑖 [𝑦𝑖 − log(∑𝐶

𝑘
𝑒𝑦𝑘 ) ] nr Adam ✓ § ✓ ∗⋄

CS C ImageNet
∗
,

CIFAR10
∗

Wan et al. [190] Quantum Feedforward

Networks

∑
3

𝑖=1

∑
𝑗∈{qout} 𝜂𝑖 𝑗

(
⟨𝜎 ( 𝑗 )

𝑖
⟩out − ⟨𝜎 ( 𝑗 )

𝑖
⟩true

)
2 ‡ nr Gradient

Descent

✓ ✗ QI Q

Chen et al. [46] Quantum State

Discrimination

𝐽 (𝑃succ ( |𝜓0 ⟩), 𝑃err ( |𝜓0 ⟩), 𝑃inc ( |𝜓0 ⟩)) • O(𝑛𝑘 ) Adam ✓ ✗ Inf.

Theory

Q

Romero et al. [152] QAE for quantum data

compression

∑𝑆−1
𝑖=0 𝑝𝑖 · 𝐹

(
Tr𝐴

[
𝑈𝜃 |𝑥𝑖 ⟩ ⟨𝑥𝑖 |𝐴𝐵𝑈

†
𝜃

]
, |𝜙 ⟩𝐵

)
§ O(𝑛2) L-BFGS-B,

Basin-

Hopping

✓ † ✗ Chem. Q

Loss Function:𝐷 : training dataset size, 𝐵: batch size,𝐶 : number of the output classes,Θ: QNN parameters, |𝜓0 ⟩: initial state of the quantum system, 𝑥𝑖 : 𝑖-th classical training data, |𝑥𝑖 ⟩: 𝑖-th quantum training data, 𝑦𝑖 : the ground

truth label of the 𝑖-th training data, |𝜓 true

𝑖
⟩ is the ground truth label state of the 𝑖-th training data, 𝑦out (𝑧;Θ) : the expected QNN output value for the input 𝑧 (𝑧 may be a quantum input |𝑥𝑖 ⟩ or a classical input 𝑥𝑖 depending on

the considered case),★ average fidelity evaluated over a batch of size 𝐵, † y𝑖 = [ (𝑦𝑖 )1, . . . , (𝑦𝑖 )𝐶 ] is the one-hot encoding of the ground truth label of the 𝑖-th training data and 𝑔 (𝑥𝑖 ;Θ) ∈ R𝐶 is the probability distribution of

the QNN output for the 𝑖-th classical training data, ‡ 𝑗 runs on the output qubits only, • 𝑃succ ( |𝜓0 ⟩), 𝑃err ( |𝜓0 ⟩), and 𝑃inc ( |𝜓0 ⟩) are the probabilities of correct/erroneous/inconclusive measurement outcome,§ sum runs over

an ensemble 𝑆 of input states.

Implementation - Sim.: Numerical Simulation. † QuTiP library, †† QxBranch library, § PennyLane library, ‡ QASM library. Implementation - QPU.: • IBM Q 5 “Vigo”, ◦ IBM Q Paris, ∗ IBM Q 4, ⋄ Rigetti Q 4.

Application Field: Quantum Information (QI), Chemistry (Chem.), Computer Science (CS), Physics (Phys.), Information Theory (Inf. Theory). Input Type: Quantum (Q). Classical (C)

Test Datasets: we reported only real-world and publicly available datasets (synthetic datasets are omitted in the table), ∗ a subset of the dataset is used.
+
We only considered the Quantum Graph Recurrent Neural Networks

M
a
n
u
s
c
r
i
p
t
s
u
b
m
i
t
t
e
d
t
o
A
C
M



20 Massoli, et al.

correspond to different QNN architectures. Hereafter, to ease the notation, we merge the non-parametrized blocks with

the parametrized ones, i.e., we will use𝑈𝑖 (𝜽 𝑖 ) to denote the composition 𝑉𝑖𝑈𝑖 (𝜽 𝑖 ) referred to as a trainable block.

An important difference between this type of QNNs and classical NNs is that the information does not flow from

one layer to the next only. Instead, the input data x is uploaded at each input layer 𝑆𝑖 (x) (see, e.g., Figure 4a). Such a

design directly impacts the class of functions the PQC can approximate [76, 141, 166]. Indeed, note that a PQC made by

only trainable blocks would be equivalent to a circuit made by a single trainable layer (since all the 𝑈𝑖 (𝜽 𝑖 ) are linear
unitary operators, thus their composition is a linear unitary operator as well). To draw a parallel with deep learning,

data-encoding layers play a role reminiscent of the non-linearity of activation functions in classical DNNs, increasing

the expressive power of models as function approximators. Indeed, a classical NN composed only of linear layers is

equivalent to a network consisting of only one linear layer. In order to have a "deep" network, i.e. a network composed

of multiple layers potentially able to generate progressively more abstract features with a higher representation power,

the linear operations must be interleaved with non-linearities.

Recently, Schuld et al. [166] proved that if the data-encoding block 𝑆 (x) of a PQC can be expressed via a Hamiltonian

time evolution, i.e., 𝑆 (x) = 𝑒−i𝐻1𝑥1 ⊗· · ·⊗𝑒−i𝐻𝑑𝑥𝑑
, and it is the same in every layer, then the PQC is capable of computing

a partial Fourier sum, 𝑦out (x;Θ) = ⟨𝜓0 | ˆU(x;Θ)†𝑂 ˆU(x;Θ) |𝜓0⟩ =
∑
𝜔 𝑐𝜔 (Θ)𝑒 i𝜔𝑇 x

. Thus, it is able to approximate any

square integrable function in a given interval. In such a context, the output of the PQC model is a linear combination

of complex exponential functions with a set of frequencies 𝜔 and coefficients 𝑐𝜔 determined by the topology of the

network. In particular, trainable blocks determine the expressiveness of Fourier coefficients 𝑐𝜔 , while the spectrum

Ω = {𝜔} ⊂ R𝑑 of the available frequencies is determined only by the data-encoding blocks of the circuit. In particular,

the available frequencies are a combination of the eigenvalues of the Hamiltonians {𝐻 𝑗 } defining the data-encoding
blocks. Moreover, the size of the spectrum, defined as the number of independent non-zero frequencies, increases

linearly with the number of data encoding repetitions: the more times the original data is loaded, the richer the frequency

spectrum will be. Finally, note that there are mainly two ways of repeating the data encoding: in series (by uploading

several times the inputs while quantum computations proceed, as discussed above) or in parallel (by repeating the

encoding on different subsystems at the same layer, so the depth of the circuit will be less but more qubits will be used)

[166]. Connections between Fourier series and PQC models with repeated data encoding have also been established by

Gil Vidal, and Theis [76].

Similar results on the expressivity of PQCs were reported by Perez-Salinas et al. [141], who showed that it is possible

to use a single-qubit quantum circuit to implement a universal quantum classifier. The Universal Approximation

Theorem (UAT) [95] represents a milestone in the context of machine learning. Practically speaking, it ensures that

a neural network comprising a single hidden layer with enough units can approximate any continuous function.

Interestingly, Perez-Salinas et al. [141] presented an equivalence between UAT and the data re-uploading strategy. In

their framework, data are uploaded by single-qubit rotations followed by another set of unitaries representing the

evolution of the quantum state. These two operations can be compressed into one by defining quantum layers with

tunable parameters as:
ˆL(𝑖) = 𝑈 (𝜽 𝑖 +w𝑇

𝑖
x), where x represents the input data, w𝑖 are weights that play a similar role

as in artificial neural networks, while 𝜽 𝑖 are a set of variational parameters. Although, at first sight, it seems that there

is no non-linearity in such a construction, the authors reported that they come directly from the structure of the used

gates. The output state generated by the circuit is
ˆU(x;Θ) |𝜓0⟩, where ˆU(x;Θ) = ∏𝐿

𝑖=1
ˆL(𝑖) and Θ = {𝜽 𝑖 ,w𝑖 }𝑖 is the

set of all circuit parameters. To train their classifier, the authors employed the L-BFGS-B optimization algorithm and

used the average fidelity among the output state and the expected one, |𝜓 true⟩.
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(a) PQC as a universal function approximator
[141, 166] (b) QDCNN (direct quantum implementation of a CNN) [119]

(c) Quantum Dissipative Multilayer Perceptron [20] (d) Example of aQuanvolutional Neural Network (QVNN) [92]

(e) Quantum AutoEncoder (QAE)[152] (f) Quantum Convolutional Neural Network (QCNN) [52]

Fig. 4. Schematic circuit representations of some representative QNNs.
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In 2018, Schuld et al. [161] proposed a low-depth parametrized quantum circuit acting as a binary classifier. Their

approach is particularly relevant since it was among the first ones to apply a quantum ansatz to solve machine learning

problems using variational circuits. The proposed circuit uses a data-encoding block 𝑆 (x), based on the amplitude

encoding technique, to embed classical input data into the state of a quantum system, which is then evolved by a

trainable ansatz𝑈 (𝜽 ). The circuit ansatz accounted for a set of single- and single-controlled qubit gates divided into

the so-called “cyclic codes”. Once the initial state is evolved, the first qubit is measured, and the probability of finding it

in the state |1⟩ is used to infer the input label. Specifically, such a probability is given by:

𝑝 (𝑞0 = 1, x;𝜽 ) =
2
𝑑∑︁

𝑘=2𝑑−1+1

���(𝑈 (𝜽 ) |𝜙 (𝑥)⟩
)
𝑘

���2 (12)

where |𝜙 (𝑥)⟩ = 𝑆 (x) |0⟩ is the state prepared by the data-encoding block, and

(
𝑈 (𝜽 ) |𝜙 (𝑥)⟩

)
𝑘
is the 𝑘-th entry of

the result after the application of the operator 𝑈 (𝜽 ) to |𝜙 (𝑥)⟩. The sum over the second half of the resulting vector

corresponds to the single-qubit measurement resulting in state 1. Postprocessing adds the bias 𝑏 and thresholds to

compute a binary prediction: 𝑓 (𝑥 ;𝜽 , 𝑏) = 𝑝 (𝑞0 = 1, 𝑥 ;𝜽 ) + 𝑏. To estimate such a probability, the circuit must be run

several times. The overall operation is equivalent to evaluate the expectation value of the 𝜎̂𝑧 operator acting on the

first qubit of the evolved state: E(𝜎̂𝑧) = ⟨𝜙 (𝑥) |𝑈 (𝜽 )† (𝜎̂𝑧 ⊗ I ⊗ ... ⊗ I)𝑈 (𝜽 ) |𝜙 (𝑥)⟩. To validate their ansatz, the authors’

employed numerical simulation on several UCI datasets, namely CANCER, SONAR, WINE, and SEMEION, and on the

MNIST dataset. While the first two are binary classification problems, the last three are multiclass problems. In such

last cases, the authors employed the “one-vs-all” approach, thus allowing them to use their binary classifier in these

cases too.

Building on top of [161], Macaluso et al. [123] are among the first ones to propose a learning framework for a

quantum Single Layer Perceptron (qSLP) that is implemented on an actual quantum device, representing the quantum

analogous of a single layer perceptron containing two neurons. Thus, resembling the first attempt at a quantum neural

network. Specifically, the circuit computes linear operations in superposition, each characterized by a different set

of parameters. The approach is based on three quantum registers: control, data, and temporary. At the end of the

computation, the second one stores the results of the two linear operations in superposition. The final response of the

qSLP can be obtained as the expected value of 𝜎̂𝑧 acting on the data register. Notably, a non-linear activation function is

not implemented in the quantum circuit in such a work. Instead, it is part of post-processing operations. Finally, to train

the qSLP, the authors used the Sum of Squared Errors (SSE) loss and the Nesterov [156] accelerated gradient method.

Instead, Beer et al. [20] proposed a quantum MLP, also referred to as quantum dissipative neural network. In their

model, each quantum perceptron is formulated as a unitary operator acting on 𝑛 input and𝑚 output qubits. The idea

was to stack this kind of perceptrons to form “layers” which emulated the behavior of a classical deep model. Each layer

interacts with the following one before being dissipated (discarded); the interaction is implemented by coupling the

qubits in the 𝑖-th layer to some ancillary qubits in the (𝑖 + 1)-layer (Figure 4c). The overall QNN can be then described as

follows:
ˆU =

∏𝐿
𝑙
𝑈 𝑙

, where𝑈 𝑙 =
∏

𝑖 𝑈
𝑙
𝑖
represents the set of unitaries of layer 𝑙 , i.e., the QPs of that specific layer. The

QNN is applied to the input state, 𝜌 in and produces an output state, 𝜌out. To assess the performance of their approach,

the authors used numerical simulations with a QNN concerning input and output spaces of 2 and 3 qubits. To train

their model, they employed a gradient descent technique, while as a loss function, they employed the fidelity among

the output state and the desired (ground-truth) state averaged over the training data.
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Graph Neural Networks [179] were introduced to exploit the geometrical structure in the input data and accounted

for the application of neural networks to acyclic graphs. Based on a similar principle, a general PQC was proposed by

Verdon et al. [187], namedQuantum Graph Neural Networks (QGNN), consisting of a sequence of𝑄 different Hamiltonian

evolutions repeated 𝑃 times:

𝑈 (𝜼;𝜽 ) =
𝑃∏
𝑝

[ 𝑄∏
𝑞

𝑒−𝑖𝜂𝑝𝑞𝐻̂𝑞 (𝜽 )
]

(13)

where the 𝜼 and 𝜽 are the sets of variational parameters, and the 𝐻̂𝑞 (𝜽 ) are the Hamiltonians encoding the problem to

be solved. The authors proposed different variants for the general QGNN ansatz concerning the following tasks: learning

Hamiltonian dynamics of quantum systems, learning how to create multipartite entanglement in a quantum network,

unsupervised learning for spectral clustering, and supervised learning for graph isomorphism classification. Concerning

the first task, they specialized the ansatz, naming it Quantum Graph Recurrent Neural Network (QGRNN), by tying the

temporal parameters between iterations (𝜂𝑝𝑞 → 𝜂𝑞), thus resembling the classical sequence networks in which the

parameters are shared among the various time step of the representation evolution. Given a target Hamiltonian 𝐻̂target

the authors train the model parameters by using the Adam [111] optimizer to minimize the average infidelity :

1 − 1

𝐵

𝐵∑︁
𝑗=1

|⟨𝜓𝑇𝑗
|𝑈 𝑗 (Δ, 𝜃 ) |𝜓0⟩|2 (14)

where the |𝜓𝑇𝑗
⟩ = 𝑒−𝑖𝑇𝑗 𝐻̂target |𝜓0⟩ is the state evolved from |𝜓0⟩ for a time 𝑇𝑗 , 𝑈

𝑗 (Δ, 𝜃 ) |𝜓0⟩ is the state obtained by

evolving |𝜓0⟩ according to the QGRNN for 𝑃 ∼ 𝑇𝑗/Δ iterations with Δ being a hyperparameter determining the Trotter

step size, and the average is evaluated over batch sizes of 𝐵 different times 𝑇𝑗 .

5.4.2 CNN-inspiredQuantum Neural Networks. Convolutional Neural Networks (CNNs) are feedforward networks

particularly suitable for data that have a grid-like topology such as images or time-series data. This class of models

owes its name to the use of convolutional operations in at least one of their layers. A convolutional layer takes a

tensor as input and processes it using a set of trainable kernels (filters) that slide along the input tensor, computing the

inner product between the filter and the input entries, producing as output the so-called feature map. Each element of

the output is then transformed by applying a non-linear activation function. Finally, a pooling operation is typically

used to replace portions of the feature map with a summary statistic (e.g., max, average, sum) - which makes it more

manageable in the successive layers (since the dimension is reduced), the network more resilient to small input changes,

and helps to avoid overfitting issues. Convolutional layers can then be followed by fully-connected layers where each

perceptron receives information from all the units of the previous layer. This latter typology of a layer is also used

to produce the output of the network, e.g. a vector containing the probabilities that the input data belong to certain

classes for classification tasks or real values for regression tasks.

Given the success of deep CNNs on the task of pattern recognition [113, 114], many researchers proposed quantum

algorithms inspired by these models. In [106, 119], the authors proposed quantum models, running on an actual

quantum hardware, capable of performing all the classical CNN operations. The main limitation of these approaches is

that they usually require a QRAM [77] to interface classical data and quantum states and may suffer from classical data

encoding bottleneck. Moreover, the overall algorithm may require subroutines that are not easy to implement with

many qubits (e.g., quantum phase estimation). For example, Li et al. [119] proposed the Quantum Deep Convolutional

Neural Network (QDCNN), based on a PQC, whose architecture consists of several successive quantum convolutional

layers and a quantum classifier layer (Figure 4b). Their model does not implement a quantum version for the pooling
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layer, however the dimension of the generated feature maps is reduced by preserving some qubits in the location

register and disentangling the other ones. Quantum measurement is performed to output a category prediction, and

a hybrid quantum-classical training algorithm is used to optimize the parameters of the circuit. The classical input

(e.g. an image) and the convolutional kernels are prepared using a QRAM. Similarly, Kerenidis et al. [106] proposed

to vectorize the convolution operations in a CNN to exploit linear-algebra subroutines to carry out the calculation

exploiting quantum phenomena. To their aim, the authors proposed algorithms both for the forward and backward

passes while training a QNN. Data and convolutional kernels are stored into QRAMs registers that are resumed when

needed.

Henderson et al. [92] proposed a hybrid classical-quantum approach to empower a classical CNN with layers

containing filters implemented as quantum circuits, called quanvolutional layers, that can be stacked on top of any layer

of a traditional CNN (see Figure 4d). The resulting architecture was named Quanvolutional Neural Network (QVNN).

Such a proposal stemmed from the observation that, on the one side, machine learning algorithms benefit from random

non-linear features in terms of accuracy and training time, while on the other, quantum circuits can model complex

functional relationships. Each quanvolutional layer is characterized by a certain number of filters, designed as a sequence

of single- or single-controlled qubit gates, and produces feature maps by locally transforming input data. Specifically,

each circuit is built by considering each qubit as a node in a graph and assigning what the authors named a “connection

probability” between each pair of qubits. A key difference of such a formulation of QVNN compared to others is the

lack of a variational tuning of the circuits’ parameters (they use random quantum circuits in the quanvolutional filters).

Interestingly, such an architecture does not require a QRAM, thus reducing the overhead due to its usage, and it is

compatible and directly integrable with existing classical architectures. QVNNs were tested against the MNIST dataset

using the QxBranch Quantum Computer Simulation System, and, unfortunately, the authors did not find any advantage

over the classical counterpart. Indeed, the performance of the QVNN was indistinguishable from that of a model using

a classical random non-linear transformation instead of the quanvolutional layer.

In Cong et al. [52] a variational ansatz, named Quantum Convolutional Neural Network (QCNN), is proposed for

analysing quantum data (Figure 4f). As typically happens for variational circuits, hyperparameters such as the number of

gates are fixed, while the parameters characterizing them are learned by classical optimization. The similarity between

CNN and QCNN stems from the interpretation given to each “layer” of the last one. However, it is fundamental not

to confuse the concept of layer between the classical and quantum architectures. Indeed, concerning the last one, a

layer is represented by a unitary operator applied to the data register. With such a difference in mind, one can think

of the QCNN structure as a sequence of layers as follows. The first layer applies a single quasilocal unitary, 𝑈𝜃 , in

a translationally invariant manner followed by a measurement on a subset of the input qubits, which resembles the

pooling operation. The outcome of such an operation determines the unitary operation,𝑉𝛾 , applied to the nearby qubits.

These two operations are applied a few times until the system is small enough. A final unitary, 𝐹𝛽 , is then applied to

emulate the action of a fully connected layer. Finally, the outcome of the QCNN is obtained by measuring a specific set

of output qubits. Such a model was applied successfully to solve the problem of Quantum Phase Recognition, which

aims at recognizing whether a given input quantum state 𝜌𝑖 belongs to a particular quantum phase of matter. Given

a QCNN, the training set comprised training vectors {(|𝜓𝑖 ⟩, 𝑦𝑖 ) |𝑖 = 1, . . . , 𝐷}, where the binary labels 𝑦𝑖 identified a

given input state vector. As objective, the authors exploited the mean squared error between the label 𝑦𝑖 and the QCNN

output. Thus, the learning process consisted of initializing all the unitaries and then optimizing them until convergence,

for example, via gradient descent.
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In Grant et al. [78], the authors exploited the tensor networks’ hierarchical structure to represent quantum circuits
12
.

Specifically, they employed tree tensor networks [170] and the multi-scale entanglement renormalization ansatz

(MERA) [188] to implement a quantum classifier subsequently tested against the Iris, MNIST, and synthetic quantum

datasets. The classifiers were implemented on the ibmqx4 quantum computer and trained using the mean squared

error loss evaluated between the circuit’s output and the expected one. Specifically, concerning the first quantity, it

represented the outcome of a measurement on the target qubit: ⟨𝑀̂𝜃 ( |𝜓 ⟩)⟩ = ⟨𝜓 |𝑈 †
𝜃
𝑀̂𝑈𝜃 |𝜓 ⟩. To minimize the objective

function, the authors employed the Adam [111] optimizer. As an example of hierarchical structure, the tree tensor

networks-inspired circuit begins by applying a set of two-qubit unitaries among the nearest qubits. After each operation,

one qubit is discarded, thus halving the total number of qubits to the next layer. After a sequence of such unitaries, the

state of the final remaining qubit is measured.

5.4.3 Hybrid approaches for different learning paradigms. Jaderberg et al. [97] proposed a VQA to solve a classification

task by employing a self-supervised training approach [55]. They formulated the ansatz to be part of a hybrid encoder

network tested against the classification task on five classes of the CIFAR10 dataset. To train the model, the authors

exploited the contrastive learning procedure [89, 136] applied to the representations generated by their models. As

the objective function, they used the normalized temperature-scaled cross-entropy loss [177]. As mentioned, the

QNN was part of a hybrid network whose first part was classical. Specifically, the overall architecture began with a

ResNet-18 [90] followed by a single-layer convolutional network that compressed the features representation down

to an eight-dimensional vector, v, such that it was encoded in an entangled state |𝜓v⟩ comprising 𝑛 = 8 qubits. The

quantum data encoding is achieved by applying a single qubit rotation 𝑅𝑥 (as generated by the 𝜎̂𝑥 operator) to each

qubit of the register, i.e., |𝜓v⟩ = ⊗𝑛
𝑖
𝑅𝑥 (𝑣𝑖 ) |0⟩, where 𝑣𝑖 is the 𝑖-th element of the 𝑛-dimensional features vector v. The

state is evolved using an ansatz made by parametrized controlled qubit rotations. Finally, to get the output from the

QNN, the authors measured the qubits state in the computational basis. The authors tested their approach on quantum

state vector simulations and real quantum devices. In both cases, they observed that the hybrid architecture reported

performance similar or higher than the full classical implementation, thus giving an interesting hint about the capability

of such hybrid models applied to computer vision-related tasks.

Transfer learning is a widely used technique in deep learning that exploits pre-trained neural models on a different

task. Interestingly, such an approach can be “hybridized” by combining classical and quantum algorithms. Indeed, Mari

et al. [126] considered three different scenarios for transfer learning, namely, classical-to-quantum, quantum-to-classical,

and quantum-to-quantum. In what follows, we focus on the classical-to-quantum configuration. In such a case, a

ResNet-18 [90] network trained on the ImageNet dataset [57], was used as a features extractor for the quantum circuit.

The parametrized quantum circuit was interpreted as made by three components: 𝑄 = M ◦Q ◦ E. The first component,

E, represents the quantum embedding of the classical features vector into the Hilbert space depending on x. The second
one, Q, is a variational circuit of a given depth composing single and two-qubit gates, while theM term represents

the measurement on the circuit’s output that maps a quantum state to a classical vector. The authors trained such a

circuit to classify images of bees and ants utilizing the Adam [111] optimizer and the cross-entropy loss. The authors

assessed the performance of their models through numerical simulations by using the PennyLane framework and then

implemented the quantum circuit on the ibmqx4 and the Aspen-4-4Q-A quantum processors from IBM and Rigetti,

12
This method can be interpreted as a CNN-inspired model since tensor networks with hierarchical structure exhibit many similarities with neural

networks and in some cases have been shown to be equivalent to CCNs with rectified linear activation [78]
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respectively. The authors’ results demonstrated that there was already the possibility to investigate efficient algorithms

to process high-resolution images in the NISQ era [146] concerning the classical-to-quantum transfer learning scheme.

5.4.4 Other approaches. Differently from the variational approach, a quantum generalization of the classical feedfor-

ward neural networks was proposed by Wan et al. [190]. The quantum neural network accounted for a reformulation

of the perceptron model by making each transformation reversible and unitary. Although different from VQA, such

networks have shown, by employing numerical simulation, to be trainable using gradient descent for a given objective

function. In such a case, the goal was to minimize the difference between the quantum circuit’s output and the expected

one. A viable way to physically realize such an architecture was employing quantum photonics. For example, to prove

the effectiveness of their approach, the authors proposed a quantum autoencoder to compress two quantum states with

high accuracy.

Quantum State Discrimination (QSD) [19] requires the design of measurements to optimally identify the 𝜌 that

represents the unknown state of a quantum device which is believed to belong to a non-orthogonal set of states {𝜌𝑖 }.
Such a capability has a broad range of applications. For example, quantum state discrimination by itself plays a crucial

role in quantum information processing protocols and is used in quantum cryptography [24], quantum cloning [63],

quantum state separation, and entanglement concentration [19]. Typically, distinguishing among non-orthogonal

states is challenging, and specialized measurements are required. An exciting approach for solving such a problem

was proposed by Chen et al. [46], who formalized a framework to learn to simulate the unknown structure of the

generalized quantum measurement, or Positive-Operator-Value-Measure (POVM) [134]. The circuit designed by the

authors contained only a single-qubit and CNOT gates, and the proper non-linearities were introduced by measuring

qubits states. Specifically, they assessed the performance of their circuits by employing numerical simulation on

classical machines and by using the Adam [111] optimizer to learn the circuit’s parameters. However, differently

from the previously cited variational approaches, in the current case, the authors aimed at maximizing their circuit’s

generalization performance given a specific range of the parameters rather than looking through all the available space.

Classical AutoEncoders are tasked with data reduction, i.e., given an (𝑛 +𝑘)-bit representation, the encoder generates
a compressed 𝑛-bit datum with the same discrimination power of the original input. Romero et al. [152] proposed a

Quantum AutoEncoder (QAE) as a solution to the compression problem concerning quantum states represented by (𝑛+𝑘)-
qubits. Specifically, they were meant to facilitate quantum data compression, especially concerning quantum simulations.

Such models should recognize patterns due to quantum phenomena, such as superposition and entanglement, not

accessible to classical algorithms. The authors tested their architecture to compress ground states of the Hubbard

model and molecular Hamiltonians. The task of a QAE was then to get rid of a certain number of qubits, say 𝑘 while

maintaining the same amount of quantum information in the remaining ones. Thus, the QAE must entangle qubits,

and for such an aim, the authors exploited unitary gates to build the variational circuit (Figure 4e). As a cost function,

QAE leverages the expected fidelity [134], 𝐹 ( |𝜓𝑖 ⟩, 𝜌𝑜𝑢𝑡𝑖
), which quantifies the deviation from the initial state |𝜓𝑖 ⟩ to the

output one 𝜌𝑜𝑢𝑡
𝑖

. The authors used a hybrid approach to train the model in which the quantum device took care of the

state preparation and the measurement while the optimization procedure was carried out through classical techniques.

The authors exploited two different optimizers to train the circuit, namely, L-BFGS-B and Basin-Hopping. After training,

the authors proved that QAE could compress the ground state of the two-sites Hubbard model from 4 qubits down to 1

with an error of below 10
−4
. It is relevant to notice that such a compression allows moving from a space of size 2

4
to

one of size 2.
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Finally, it is worth mentioning that there exist approaches based on an optimization procedure different from the

variational approaches we have seen so far. For example, Silva et al. [53, 173] proposed a learning algorithm in which

all the input patterns were presented concurrently in superposition to the neural networks. Their model was based on

a quantum version of the RAM-based neural networks [12], termed quantum-RAM (q-RAM) node [54], a weightless

network in which the learning procedure consisted upon simply writing the proper output value in the corresponding

look-up table entries of the q-RAM node. The model was designed as a quantum circuit based on the gate model

paradigm. Moreover, the authors commented on the possibility of stacking mode nodes to form a deeper network. A

fundamental step in the training procedure accounted for Grover’s algorithm [80] applied to the input until the desired

output was returned.

5.5 Trainability Issues and Barren Plateau

As discussed in the previous section, the most common approach for implementing a QNN is using a PQC characterized

by a set of parameters 𝜽 that are typically learned by optimizing a cost function 𝐶 (𝜽 ) using a classical optimization

algorithm. One of the main issues with the trainability of a QNN is that the gradient of the cost function with respect to

𝜽 may exponentially vanish during the training as a consequence of the progressive flattening of the cost function’s

landscape - a phenomenon referred to as barren plateaus. This phenomenon is particularly present when using a

random initialization for “deep” circuits, or more precisely, for circuits characterized by a number of layers that depend

polynomially on the number 𝑛 of qubits [128]. Indeed, McClean et al. [128] stated that for a wide class of PQCs with

a sufficient depth and number of qubits, the probability that the gradient along any reasonable direction is non-zero

to some fixed precision is exponentially small as a function of the number of qubits. In other words, the expected

value of
𝜕𝐶 (𝜽 )
𝜕𝜃𝑖

is zero and its variance decreases exponentially with 𝑛. Unfortunately, the region where the gradient is

zero does not correspond to local minima of interest. Instead, it corresponds to a large plateau of states for which no

interesting search direction can be pursued to exiting the barren plateau, or more precisely, an exponential precision

is required to determine a minimizing direction in order to navigate the cost landscape. The use of a shallow circuit

does not solve the problem a priori because as long as a global cost function is used, i.e. a measure obtained using an

observable that involves all the qubits of the circuits, the barren plateau can occur in any layer of the circuit [128]. This

is one of the main differences between the gradient vanishing problem for classical DNNs versus QNNs: in the case of

classical DNNs, the gradient can vanish exponentially in the number of layers, while for QNNs, the gradient can vanish

exponentially in the number of qubits [128].

Cerezo et al. [45] showed that a promising approach to overcome the problem of exponentially vanishing gradients

is to use shallow circuits with local cost functions, which are constructed by observing only a limited set of qubits

at a time. Indeed, they demonstrated that local cost functions lead, at worst, to a polynomially vanishing gradient

if the circuit depth is 𝑂 (log𝑛), with 𝑛 being the number of qubits, and therefore the circuit will be trainable with a

polynomial scaling with the system size (i.e. a polynomial number of shots per optimization step are needed to estimate

the gradient). However, note that using local cost functions alone is not sufficient to avoid the problem: deep networks

with local observables can still give rise to barren plateaus.

Interestingly, some QNNs have not exhibited barren plateau in the cost function landscape, such as dissipative

quantum neural networks with shallow local perceptrons [20, 168] and Quantum Convolutional Neural Networks

[52, 78, 143]. Moreover, several strategies have been proposed for mitigating barren plateaus, including the use of

local cost function [45], specific parameter initialization/pre-training [79, 186], clever problem-inspired ansatz [28, 83],

layerwise learning [175], and parameter correlation [94, 189], just to name a few.
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All the methods mentioned so far concern the problem of noise-free barren plateaus since they do not consider

quantum hardware noise. However, a different kind of barren plateau can occur in the presence of noise. Wang et al.

[192] provided an analytical study on noise-induced barren plateaus for a generic variational ansatz. They proved that in

the presence of local noise, the magnitude of the gradient decays exponentially with the depth of the circuit. Therefore,

while noise-free barren plateaus are mainly connected to the structure of the ansatz (number of qubits, parameter

initialization, locality of the cost function), the noise-induced barren plateaus are mainly affected by the ansatz depth.

Moreover, for noise-induced barren plateaus, the magnitude of the cost function’s minimum is also flatting, in addition

to its gradient. Due to the diverse nature of noise-induced barren plateaus, strategies to mitigate noise-free barren

plateaus, e.g. [45, 79, 175, 189], do not solve the problem, and the strategies to adopt should rather rely on simplifying

the complexity of the circuit by reducing its depth or reducing the hardware noise level.

Table 4. Performance comparison between some QNNs on the MNIST dataset. The original MNIST dataset contains 70,000 (60,000
training and 10,000 test) 28-by-28 greyscale pixel images of handwritten digits (10 classes). The test accuracy of the QNNs is reported
from the original papers.

Reference Impl. Input dim
(after preprocessing) # Samples # Classes Accuracy (%)

Schuld et al. [161]
∗

Simulation 256 real values 2,766 (train/test split

not reported)

10 67.00

Li et al. [119] Simulation 28×28 (784 real values) 60,000 train/10,000 test 10 98.97

Henderson et al. [92]
◦

Simulation 28×28 (784 real values) 60,000 train/10,000 test 10 ∼ 98.00

Grant et al. [78]
★

QPU (IBM Q4) 8 real values 60,000 train/10,000 test

2 (is > 4 or < 4 ) 79.10 ± 0.90

2 (is even or odd) 84.85 ± 0.20

2 (is 0 or 1) 99.87 ± 0.02

2 (is 2 or 7) 98.86 ± 0.07

∗
multilabel classification problems casted as a set of “one-versus-all” binary classification subtasks; fivefold cross-validation with one repetition was carried out

◦
approximate accuracy estimated from the graph of test accuracy versus training iterations available in the original paper

★
four distinct binary classification tasks were considered in the paper

5.6 Final Remarks

As we have seen, PQC currently represents the most adopted approach to QNNs. Perhaps, their capability to allow

implementing learning circuits on NISQ devices and the similarities between the ansatz and the architecture of classical

neural networks are two of the reasons for the variational algorithms’ success. However, other research lines try to

exploit intrinsic properties of quantum systems without the necessity of emulating a classical procedure, such as in the

work of [194]. Hence, as we have seen so far, the research for QNNs that one day will be applied to real-world problems

represents a very exciting and active field.

Unlike the literature on classical neural networks, identifying state-of-the-art QNNs for solving a given task is not

easy. This issue is mainly due to the lack of benchmark procedures for comparing these algorithms. Many approaches

have only been tested on synthetic data generated by authors, and only a few have publicly released their code.

Furthermore, the use of different implementations (simulations or different QPUs) makes a direct comparison among the

various approaches very difficult. Even when the same benchmark dataset is used, see, for example, the MINST dataset

for handwritten recognition in Table 4, it is not easy to compare the performance of the various methods because there

is a variety in the number of samples used, the classes or the specific tasks considered.
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Due to the limitations of current quantum platforms, several works have remained only theoretical, waiting for

QPUs to become powerful enough and less noisy to allow the exploitation of a large number of entangled units. Indeed,

the dragon of decoherence is always on the hunt and, unfortunately, qubits easily fall prey, thus strongly limiting the

number of computations that can be performed. Perhaps, future quantum devices will open the frontiers to a new

generation of neural networks based on quantum phenomena.

6 CONCLUSIONS

Artificial intelligence has played a central role in academic and industrial debates in the last couple of decades, especially

concerning machine learning and neural network techniques. Although these algorithms have shown an incredible

generalization capability when adequately trained to solve a given problem, how and why these algorithms behave

as they do is a topic that still dazzles scientists worldwide. Nevertheless, notwithstanding astonishing results, these

algorithms will always and irremediably be tied to the classical interpretation of the real world.

Differently, quantum computations might overcome such a limit and exploit phenomena such as superposition

and entanglement that belong to the quantum realm. Although still at their dawn, quantum technologies represent a

promising and fascinating alternative to classical computing techniques, perhaps realizing practical quantum supremacy

soon.

Stemming from these considerations, we conceived this survey to offer both the neophyte and the more experienced

reader insights into several fundamental topics in the quantum computation field such as the qubit, the Gate Model,

and the Adiabatic Quantum Computation paradigms, to mention some. Moreover, noticing that the literature lacks a

detailed discussion about the latest achievements concerning Quantum Perceptrons and Quantum Neural Networks, we

gather, analyze and discuss state-of-the-art approaches related to these topics. From our work, it is clear that quantum

neural networks and algorithms, in general, are still far from proving decisive supremacy over the classical ones. Too

often, such a goal has been claimed. Nevertheless, it is still an open quest. It is not clear if quantum devices will replace

classical chips, becoming the core of a new generation of personal computers. However, recent improvements for

quantum hardware and algorithms have opened the gates towards a new world, the quantum world, characterized by

phenomena that were completely unknown until the last century.
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A APPENDIX: TABLE OF ABBREVIATIONS USED

Table 5. Summary of abbreviations and acronyms used throughout this paper.

Acronym Definition Section Introduced

AI Artificial Intelligence section 1

ANN Artificial Neural Network section 5

AQC Adiabatic Quantum Computation section 1

AT Adiabatic Theorem subsection 3.3

CNN Convolutional Neural Network subsection 5.4

DL Deep Learning section 1

DNN Deep Neural Network section 1

NISQ Noisy Intermediate-Scale Quantum section 4

GM Gate Model section 1

ML Machine Learning section 1

NN Neural Network section 1

PQC Parameterized Quantum Circuits subsection 5.4

QAE Quantum AutoEncoders subsection 5.4

QAOA Quantum Approximate Optimization Algorithm subsection 5.2

QCNN Quantum Convolutional Neural Network subsection 5.4

QGNN Quantum Graph Neural Networks subsection 5.4

QML Quantum Machine Learning section 1

QNN Quantum Neural Network section 1

QP Quantum Perceptron section 1

QPU Quantum Processing Unit section 1

QRAM Quantum Random Access Memory subsection 5.4

QVNN Quanvolutional Neural Networks subsection 5.4

RUS Repeat-Until-Success subsection 5.3

qSLP Single Layer Perceptron subsection 5.4

TI Trapped Ions subsection B.3

UAT Universal Approximation Theorem subsection 5.4

VQA Variational Quantum Algorithm subsection 5.2

VQE Variational Quantum Eigensolver subsection 5.2
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B APPENDIX: BACKGROUND ON QUANTUMMECHANICS AND COMPUTATION

B.1 |ket⟩, ⟨bra|, andH
ilbert

spaces

The Dirac or bra-ket notation [60] is a convenient and concise formalism introduced by the physicist Paul Dirac in

quantum mechanics to aid algebraic manipulations on Hilbert spaces and their dual space. Before describing this

notation, we recall the inner product and Hilbert space concepts.

An inner product on a complex vector space V is a binary operation (·, ·) : V ×V → C that satisfies the following

properties
13

(v, 𝛼w1 + 𝛽w2) = 𝛼 (v,w1) + 𝛽 (v,w2) linearity in the second argument

(v,w) = (w, v)∗ conjugate symmetry

(v, v) ≥ 0 (The equality holds if and only if v = 0) positive definiteness

For example, in C𝑛 the most used inner product between two column vectors v = [𝑣1, . . . , 𝑣𝑛]𝑇 and w = [𝑤1, . . . ,𝑤𝑛]𝑇

is defined as

∑𝑛
𝑖=1 𝑣

∗
𝑖
𝑤𝑖 , which is equivalent to the matrix multiplication between the transpose-conjugate vector of v

and the vector w.

An inner product naturally induces a norm | |v| | =
√︁
(v, v) and a metric 𝑑 (v,w) = | |v −w| | on the vector space on

which it is defined, which is referred to as an inner product space. A Hilbert space H is a inner product space which, as a

metric space, is complete. In the notation introduced by Dirac

• a particular Hilbert-space vector, specified by a label 𝑣 , is denoted by |𝑣⟩ (instead of using arrows ®𝑣 or boldface
letters v);

• the dual vector to a Hilbert-space vector specified by the label 𝑣 is denoted by ⟨𝑣 | (instead of using notation like

v†);
• the inner product between a pairs of vectors, labeled as 𝑣 and 𝑤 , is compactly denoted by ⟨𝑣 |𝑤⟩ (rather than
( |𝑣⟩, |𝑤⟩) or other common notations like (v,w) used above).

Originally, Dirac proposed the words “bra” and “ket” as the names for new symbols ⟨ and ⟩. However, we follow the

common convention of using the terminology ket for vector |𝑣⟩ and bra for dual vector ⟨𝑣 |. It is worth mentioning that

two general rules in connection with the Dirac notation should be noted: "any quantity in brackets ⟨ ⟩ is a number, and

any expression containing an unclosed bracket symbol ⟨ or ⟩ is a vector in Hilbert space" [60]. Therefore |𝑣⟩ is simply a

vector in a Hilbert space, where 𝑣 is the label of the vector, and ⟨𝑣 | is the complex conjugate transpose of |𝑣⟩, which is a

vector of a different Hilbert space
14
. For example, for finite vector spaces, the ket |𝑣⟩ can be identified with a column

vector and the bra ⟨𝑣 | with a row vector. Therefore, expressions like |𝑣⟩ + ⟨𝑣 | are not valid as they have no meaning.

Note that the 𝑣 inside the symbols | ⟩ and ⟨ | is just a label and that any label is valid, although, in the context of

13
We follow the convention of defining an inner product as linear in the second component and conjugate-linear in the first component, as typically done

in physics. However, please note that in mathematics, an inner product is often defined as linear in the first coordinate and conjugate-linear in the second

coordinate.

14
Actually, the symbol ⟨𝑓 | is more generally used to denote a functional 𝑓 : H → C specified by the label 𝑓 . We recall that for a complex vector space

V all the continuous conjugate-linear functional 𝑓 : V → C form the so-called dual space V∗
. By the Riesz representation theorem, any element 𝑓 of the

dual space of a Hilbert space can be represented as an inner product to some fixed vector. Therefore when working on Hilbert space H we can identify

H with its dual H∗
by using the one-to-one antilinear correspondence between vectors and continuous linear functionals |𝑣⟩ → 𝑓𝑣 where 𝑓𝑣 is the

functional

𝑓𝑣 : H → C
|𝑤 ⟩ → ⟨𝑣 |𝑤 ⟩

In other words, ⟨𝑣 | is the functional (named 𝑓𝑣 above) associated to the vector |𝑣⟩. Moreover, using Dirac notation, the inner product between two

vectors with labels 𝑣 and 𝑤 can be easily obtained by the graphically joining of ⟨𝑣 | and |𝑤 ⟩.
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quantum mechanics, we often use Greek letters, such as 𝜙 and 𝜓 , or binary labeling associated to a space basis. For

example, if H has an indexed basis that, using the old notation, is indicated with {e1, . . . , e𝑛}, then we indicate it with

{|𝑒1⟩, . . . , |𝑒𝑛⟩} or more compactly {|1⟩, . . . , |𝑛⟩}. The canonical basis of C𝑛 , also called computational basis, is typically

denoted {|0⟩, . . . , |𝑛 − 1⟩}, where |0⟩ = [1, 0, · · · , 0]𝑇 , · · · , |𝑛 − 1⟩ = [0, · · · 0, 1]𝑇 . To avoid ambiguity between

vector basis and the zero vector, as an exception, we do not use the notation |0⟩ for the zero vector that is denoted

simply by 0.
We also observe that if we restrict our attention on the case of a finite-dimensional vector spaceV and we assume

that for a given orthonormal basis {|𝑒1⟩, . . . , |𝑒𝑛⟩} the vectors |𝑣⟩ has the coordinates
𝑣1

.

.

.

𝑣𝑛


(15)

then

• |𝑣⟩ = 𝑣1 |𝑒1⟩ + · · · + 𝑣𝑛 |𝑒𝑛⟩
• ∥ |𝑣⟩ ∥ =

√︃∑𝑛
𝑖=1 |𝑣𝑖 |2

• {⟨𝑒1 |, . . . , ⟨𝑒𝑛 |} is an orthonormal basis for the dual spaceV∗

• ⟨𝑣 | = 𝑣∗
1
⟨𝑒1 | + · · · + 𝑣∗𝑛 ⟨𝑒𝑛 |, i.e., it has the coordinates

[
𝑣∗
1
, · · · , 𝑣∗𝑛

]
• ⟨𝑒𝑖 |𝑒 𝑗 ⟩ = 𝛿𝑖 𝑗 where 𝛿𝑖 𝑗 is the Kronecker delta, and ⟨𝑣 |𝑤⟩ = ∑𝑛

𝑖=1 𝑣
∗
𝑖
𝑤𝑖

Let V and W two Hilbert spaces with orthonormal basis {|𝑒 𝑗 ⟩} 𝑗=1,...,𝑛 and {|𝑓𝑖 ⟩}𝑖=1,...,𝑚 , respectively. Let |𝑣⟩ =∑𝑛
𝑗=1 𝑣 𝑗 |𝑒 𝑗 ⟩ ∈ V and |𝑤⟩ = ∑𝑚

𝑖=1𝑤𝑖 |𝑓𝑖 ⟩ ∈ W. The outer product of |𝑣⟩ and |𝑤⟩ is calculated as

|𝑣⟩⟨𝑤 | =


𝑣1

.

.

.

𝑣𝑛


[
𝑤∗
1
, · · · , 𝑤∗

𝑚

]
=


𝑣1𝑤

∗
1

. . . 𝑣1𝑤
∗
𝑚

.

.

.
. . .

.

.

.

𝑣𝑛𝑤
∗
1

. . . 𝑣𝑛𝑤
∗
𝑚


and it corresponds to a linear operator that when applied to |𝑢⟩ ∈ V acts as ( |𝑣⟩⟨𝑤 |) |𝑢⟩ = ⟨𝑤 |𝑢⟩ |𝑣⟩. Thus, the outer
product of a vector |𝑣⟩ with itself, that is |𝑣⟩⟨𝑣 |, corresponds to the operator projecting any vector to the 1-dimensional

subspace spanned by |𝑣⟩, i.e. , it is an orthogonal projector.

If 𝐴 : V → W is a linear operator represented by the𝑚 × 𝑛 matrix 𝐴 = (𝑎𝑖 𝑗 ), i.e. , 𝐴( |𝑒 𝑗 ⟩) =
∑𝑚
𝑖=1 𝑎𝑖 𝑗 |𝑓𝑖 ⟩, then for

any ket |𝑣⟩ = ∑𝑛
𝑗=1 𝑣 𝑗 |𝑒 𝑗 ⟩ we have 𝐴( |𝑣⟩) =

∑𝑚
𝑖=1

∑𝑛
𝑗=1 𝑎𝑖 𝑗𝑣 𝑗 |𝑓𝑖 ⟩, which is compactly denoted by 𝐴|𝑣⟩. Note that any

matrix can be expressed as a linear combination of outer product between the basis vector: 𝐴 =
∑𝑚
𝑖=1

∑𝑛
𝑗=1 𝑎𝑖 𝑗 |𝑓𝑖 ⟩⟨𝑒 𝑗 |.

The adjoint of 𝐴 is the linear operator 𝐴†
: W → V represented by the complex conjugate transpose of the matrix 𝐴,

denoted by 𝐴†
.

An operator 𝑇 : V → V , represented by the matrix 𝑇 , is called Hermitian (or self-adjoint) if 𝑇 † = 𝑇 , unitary if

𝑇 † = 𝑇−1
, and normal if𝑇 †𝑇 = 𝑇𝑇 †

. These operators have nice properties that are often exploited in quantummechanics.

For example, all the eigenvalues of a Hermitian operator are real. Unitary operators preserve inner products between

vectors and the norm of the vectors. Both Hermitian and unitary operators are normal. Moreover, every normal operator

acting on a finite-dimensional Hilbert space V is diagonalizable, and the set of its eigenvectors forms an orthonormal

basis ofV (spectral theorem). When discussing the Hamiltonian of a system, observables, and measurements, these
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properties should be kept in mind. For more in-depth coverage of the basic concepts of linear algebra on Hilbert spaces,

the reader is referred to [134? ].
Another operation often used in quantum mechanics is the tensor product, which is crucial to describe quantum states

of multiparticle systems. The tensor product of V and W, denoted by V ⊗ W, is a 𝑛𝑚-dimensional Hilbert space for

which the set {|𝑒1⟩ ⊗ |𝑓1⟩, |𝑒1⟩ ⊗ |𝑓2⟩, . . . , |𝑒𝑛⟩ ⊗ |𝑓𝑚⟩} is an orthonormal basis, where {|𝑒 𝑗 ⟩} 𝑗=1,...,𝑛 and {|𝑓𝑖 ⟩}𝑖=1,...,𝑚
are given orthonormal basis ofV andW. The tensor product of two vectors |𝑣⟩ = ∑𝑛

𝑗=1 𝑣 𝑗 |𝑒 𝑗 ⟩ and |𝑤⟩ = ∑𝑚
𝑖=1𝑤𝑖 |𝑓𝑖 ⟩ is

equal to

|𝑣⟩ ⊗ |𝑤⟩ =
𝑛∑︁
𝑗=1

𝑚∑︁
𝑖=1

𝑣 𝑗𝑤𝑖 |𝑒 𝑗 ⟩ ⊗ |𝑓𝑖 ⟩ (16)

that is the coordinate of the vector |𝑣⟩ ⊗ |𝑤⟩ can be calculated explicitly via the left Kronecker product of the coordinates

of the vectors |𝑣⟩ with the coordinates of |𝑤⟩. Note that the abbreviated notations |𝑣⟩|𝑤⟩, |𝑣,𝑤⟩ or even |𝑣𝑤⟩ are often
used to denote the tensor product |𝑣⟩ ⊗ |𝑤⟩. If 𝐴 : V → V and 𝐵̂ : W → W are linear operators represented by the

matrices 𝐴 and 𝐵, respectively, then 𝐴 ⊗ 𝐵̂ is the linear operator onV ⊗W defined by 𝐴 ⊗ 𝐵̂( |𝑣⟩ ⊗ |𝑤⟩) = 𝐴|𝑣⟩ ⊗ 𝐵 |𝑤⟩,
whose matrix is given by the left Kronecker product of the matrix A with the matrix B. Note that (𝐴 ⊗ 𝐵)𝑇 = 𝐴𝑇 ⊗ 𝐵𝑇 ,

(𝐴 ⊗ 𝐵)† = 𝐴† ⊗ 𝐵†, and thus ( |𝑣⟩ ⊗ |𝑤⟩)† = |𝑣⟩† ⊗ |𝑤⟩† = ⟨𝑣 | ⊗ ⟨𝑤 |.

B.2 Postulates ofQuantum Mechanics

The four postulates of quantum mechanics describe the behavior of an isolated system, which is an ideal physical

system that does not interact with its environment. In particular, they describe the state space of an isolated system, its

evolution with time, how information is extracted from the isolated system by the interaction with an external system,

and the state of a composite system in terms of its parts.

B.2.1 State Space.

Postulate 1. At each instant, the state of any isolated physical system is completely described by a unit vector of a

Hilbert space, also known as the state space.

Quantum mechanics does not describe which is the state space of a particular physical system but rather assure us

that there exists a Hilbert space whose vectors can be used to describe each state of the system. Interestingly, as the

space of the states comes equipped with an inner product, we have a way to associate a complex number to any two

states, and thus, as we see later, a way to extract information from an isolated system. In theory, the state space may be

infinite-dimensional. However, realistic models of quantum computation usually use states described by vectors in

a finite-dimensional Hilbert space. In subsection 3.1, we introduce the concept of a qubit, the basic unit of quantum

information. Here, we observe that any physical system whose state space can be described by C2 can serve as a

physical realization of a qubit. We referred to these kinds of systems as quantum two-level systems, as their state can be

described by a vector in 2-dimensional Hilbert space. A further discussion on the physical realization of the qubit is

provided in subsection B.3.

B.2.2 Time Evolution. Since a physical system changes in time, a state vector 𝜓 of the system can be viewed as a

function of time, i.e. ,𝜓 (𝑡). The second postulate of quantum mechanics asserts that the evolution of a state vector of

an isolated system is linear, and it can be described using unitary operators:

Postulate 2. The time evolution of an isolated system is described by a unitary operator. That is, the state |𝜓 (𝑡1)⟩ of
the system at time 𝑡1 is related to the state |𝜓 (𝑡2)⟩ of the system at time 𝑡2 by an unitary operator𝑈 which depends on the
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times 𝑡1 and 𝑡2:

|𝜓 (𝑡2)⟩ = 𝑈 |𝜓 (𝑡1)⟩

Note that the postulate does not specify how to compute𝑈 . Instead, it asserts that for any discrete-time evolution of

the isolated system, there exists such a unitary operator that describes the dynamics of the system state. Some models,

like the Adiabatic Quantum Computing (discussed in subsection 3.3), allow for continuous-time evolution of an isolated

system described by the Schrödinger equation

𝑖ℏ
𝑑 |𝜓 (𝑡)⟩

𝑑𝑡
= 𝐻̂ |𝜓 (𝑡)⟩, (17)

where 𝐻̂ is the Hamiltonian of the system, which is a Hermitian operator representing the total energy function for

the system, and ℏ is the Planck’s constant. Considering a time-independent Hamiltonian, we have |𝜓 (𝑡)⟩ = 𝑈 (𝑡) |𝜓 (0)⟩
where 𝑈 (𝑡) = exp (−𝑖𝑡𝐻̂/ℏ), and |𝜓 (0)⟩ is the state at 𝑡 = 0. Thus, for those cases, the Evolution Postulate follows from

the Schrödinger equation. Also, note that for the case of a two-level system, the Evolution postulate assures us that a

specific discrete-time evolution of the system is described by a unitary operator on C2 acting on a qubit, referred to as

one-qubit gate.

B.2.3 Measurements. When we perform any measurement/observation on an isolated system, we interact with the

system itself, which is no longer isolated, and thus the Evolution Postulate is no longer appropriate for describing its

evolution. The following postulate explains the effects of measurements of quantum systems:

Postulate 3 (Quantum measurement). A measurement with outcome set 𝑆 is a collection of |𝑆 | measurement

operators {𝑀̂𝑘 }𝑘∈𝑆 , each acting on the state space of the system being measured, that satisfy the completeness equation∑︁
𝑘∈𝑆

𝑀̂
†
𝑘
𝑀̂𝑘 = 𝐼 , (18)

where 𝐼 is the identity operator and each index 𝑘 refers to an outcome that may occur in the measurement process.

If the quantum system is in the state |𝜓 ⟩ immediately before the measurement, then the probability of outcome 𝑘 ∈ 𝑆 is

given by

𝑝 (𝑘) = ⟨𝜓 |𝑀̂†
𝑘
𝑀̂𝑘 |𝜓 ⟩ = ∥𝑀̂𝑘 |𝜓 ⟩∥2 (19)

and the corresponding post-measurement state |𝜓𝑘 ⟩ is

|𝜓𝑘 ⟩ =
𝑀̂𝑘 |𝜓 ⟩
∥𝑀̂𝑘 |𝜓 ⟩∥

(20)

Note that the completeness equation expresses that, for any state |𝜓 ⟩, the probabilities of all the outcomes sum to 1:∑
𝑘∈𝑆 𝑝 (𝑠) =

∑
𝑘∈𝑆 ⟨𝜓 |𝑀̂†

𝑘
𝑀̂𝑘 |𝜓 ⟩ = 1. Moreover, two states that differ only by a global phase, e.g. , |𝜓 ⟩ and 𝑒𝑖𝜑 |𝜓 ⟩ are

equivalent as the statistics of any measurement we could perform on the state 𝑒𝑖𝜑 |𝜓 ⟩ is the same as the one for the

state |𝜓 ⟩ since ∥𝑀̂𝑘𝑒
𝑖𝜑 |𝜓 ⟩∥2 = ∥𝑀̂𝑘 |𝜓 ⟩∥2 for every 𝑘 . The operators 𝑀̂†

𝑘
𝑀̂𝑘 are called Positive-Operator-Valued Measure

(POVM).

An important class of measurements consists of projective measurements based on orthogonal projections. We recall

that a projection is an operator 𝑃 such that 𝑃2 = 𝑃 , and 𝑃† = 𝑃 . A projective measurement is a collection of orthogonal

projections {𝑃𝑘 }𝑘 that decompose the Identity operator as 𝐼 =
∑
𝑘 𝑃𝑘 . Such a measurement outputs 𝑘 with probability

𝑝 (𝑘) = ⟨𝜓 |𝑃𝑘 |𝜓 ⟩ and leave the system in the normalized state

𝑃𝑘 |𝜓 ⟩
∥𝑃𝑘 |𝜓 ⟩∥

. Projective measurements are often described in

terms of an observable, which is a Hermitian operator on the state space of the system being observed. From the Spectral
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Theorem, we know that any observable 𝑀̂ has a spectral decomposition 𝑀̂ =
∑
𝑘 𝜆𝑘𝑃𝑘 , where 𝑃𝑘 is the orthogonal

projection onto the eigenspace of 𝑀̂ with real eigenvalue 𝜆𝑘 . The possible outcomes of the measurements are the

eigenvalues of 𝑀̂ , where the probabilities of getting result 𝜆𝑘 is given by 𝑝 (𝜆𝑘 ) = ⟨𝜓 |𝑃𝑘 |𝜓 ⟩= ∥𝑃𝑘 |𝜓 ⟩∥2. The expected
value of a projective measurement of a state |𝜓 ⟩, i.e., the expected value of the observable 𝑀̂ , can be easily calculated as

⟨𝑀̂⟩ =
∑︁
𝑘

𝜆𝑘𝑝 (𝜆𝑘 ) = ⟨𝜓 |𝑀̂ |𝜓 ⟩. (21)

Equivalently, for a system in a pure state represented by the density 𝜌 = |𝜓 ⟩⟨𝜓 | the expected value of the observable 𝑀̂

can be expressed as ⟨𝑀̂⟩ = Tr{𝜌𝑀̂}, where Tr is the trace operator.
We also mention that the term orthogonal measurement is used to refer to a projective measurement whose operators

are of the type

𝑃𝑘 = |𝑒𝑘 ⟩⟨𝑒𝑘 | (22)

where {|𝑒1⟩, . . . , |𝑒𝑛⟩}𝑖 is an orthonormal basis of the state space. When measuring the state |𝜓 ⟩, the probability of

outcome 𝑘 ∈ {1, . . . , 𝑛} is
𝑝 (𝑘) = |⟨𝜓 |𝑒𝑘 ⟩|2 (23)

and the corresponding post-measurement state is |𝜓𝑘 ⟩ = |𝑒𝑘 ⟩. For example, if the state |𝜓 ⟩ = ∑
𝑘 𝛼𝑘 |𝑒𝑘 ⟩ is provided as

input to the orthogonal measurement, it will output label 𝑘 with probability |𝛼𝑘 |2 and leave the system in state
𝛼𝑘
|𝛼𝑘 | |𝑒𝑘 ⟩,

which is equivalent to the state |𝑒𝑘 ⟩ since 𝛼𝑘
|𝛼𝑘 | has modulus one.

Note that the space state basis used in the measurement can play a crucial role in gaining measurement information.

For example, the Hadamard basis states |+⟩ = 1√
2

( |0⟩ + |1⟩) and |−⟩ = 1√
2

( |0⟩ − |1⟩) cannot be distinguished by

an orthogonal measurement based on the computation basis {|0⟩, |1⟩} since both outcomes “0” and “1” occur with

probability 1/2 (i.e. , |⟨+|0⟩|2 = |⟨−|0⟩|2 = 1/2). However, if we use the states themselves as the measurement basis,

then when measuring |+⟩ we always get the outcome “+” and when measuring |−⟩ we always get the outcome “−”
(i.e. , 𝑝 (+) = |⟨+|+⟩|2 = 1 and 𝑝 (−) = |⟨−|−⟩|2 = 1). In general, it is always possible to consider a measurement that

distinguishes orthonormal states, but it can be proved that there is no quantum measurement capable of distinguishing

non-orthogonal states [134, pp. 87].

B.2.4 Composition of Systems. So far, we have considered the case of a single system only. However, we may be

interested in a composite system of two or more different quantum systems. The fourth postulate of quantum mechanics

describes the state space of composite systems in terms of the states of their component systems.

Postulate 4. The state-space of a composite physical system is the tensor product of the state spaces of the individual

component physical systems. Moreover, if 𝑛 physical system are treated as one combined system and |𝜓𝑖 ⟩ is the state of the
𝑖-th system, then the state of the composite system is

|𝜓1⟩ ⊗ · · · ⊗ |𝜓𝑛⟩ (24)

The joint state is often compactly denoted as |𝜓1, . . . ,𝜓𝑛⟩ where the symbol ⊗ is omitted. The postulate asserts that

given the states of the component systems, we can compute the state of the combined system by using the tensor

product. However, not all states of a combined system can be separated into the individual components’ tensor product:

A combined system is called entangled if it cannot be expressed as the tensor product of states of the component

systems.
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B.3 Physical Realization ofQubits

Since the qubit represents the fundamental information carrier for a quantum computer, its physical design and

realization represented a milestone concerning the outspread of such technologies. Albeit the topic is fascinating, a

comprehensive discussion about all the available technologies and implementations of physical qubits is out of scope for

this survey. Nonetheless, we refer the curious reader to several specialized reviews available in the literature: [? ? ? ? ? ].
However, in what follows, we briefly report about three different qubit designs, namely: trapped ions [? ], transmon [?

], and flux [? ]. We made such a selection based on the following reasons. Trapped ions offer very high fidelity for both

single- and two-qubit entangling gates [82? ? ? ? ? ], while superconducting-based qubits are typically available in

free-access quantum computing platforms
15,16

for researchers.

Trapped Ions (TI) based quantum computation dates back to the ’90 [? ] when qubits were realized as single ions

confined in radiofrequency (RF) traps [? ]. In TI, ions’ internal electronic states are exploited to generate the two-level

system required to represent qubits. Depending on the electronic states used, trapped ions-based qubits are typically

divided into four categories, namely: optical, fine structure, Zeeman, and hyperfine.

As mentioned before, flux [130] and transmon [? ? ] qubits-based QPUs are the most famous in terms of free

availability to end-users to develop custom applications. These two technologies account for a different theoretical

formulation and physical implementation of the two-state system. Indeed, from a theoretical perspective, in the first

case, we talk about the spin interpretation while, in the second case, we find the oscillator interpretation of a quantum

bit.

Compared to flux and transmon qubits, TIs offer much longer coherence times ranging from ∼ 1 up to ∼ 10 minutes

depending on the type of qubit and whether or not dynamical coupling techniques are used [? ? ? ]. Interestingly,
TI-based qubits benefit from the fact that ions of a given isotope are always equal. Thus, all qubits show the very

same properties. Differently, flux and transmon qubits have properties that might change from one another due to

fabrication defects, thus typically requiring a more significant number of calibration steps. Another difference among

these technologies stems from the number of qubits that can be implemented on a single QPU. Indeed, while for

superconducting-based technologies, it has been possible to construct quantum processors with up to several thousands

of qubits, in the case of trapped ions, such a number decreases down to 20 [? ]. However, in [? ], the authors designed a

cryogenic ion trapping system for large-scale quantum simulation of spin models, capable of trapping over 100
171

Yb
+

ions in a linear lattice.

However, it is fundamental to state that the number of qubits itself is not a proper metric to compare the computational

capability for a given quantum processor. There are available in the literature different metrics aiming at such a goal.

For example, IBM proposed the so-called quantum volume [? ? ], a quantity that can be used to quantify the largest

random circuit of equal width and depth that the computer successfully implements [? ].

B.4 The Bloch Sphere representation

A qubit state is a unit vector in C2 that, using the Dirac notation, can be expressed as |𝜓 ⟩ = 𝛼 |0⟩ + 𝛽 |1⟩, where the
amplitudes 𝛼 and 𝛽 are complex numbers such that |𝛼 |2 + |𝛽 |2 = 1. Since a qubit has more states available than simply

two levels, often it is useful to visualize it as a point of a unit sphere in a Euclidean space. As shown in the following,

quantum states can be put in correspondence with the points of the so-called Bloch sphere, which is a unit sphere in a

15
https://quantum-computing.ibm.com/

16
https://cloud.dwavesys.com/leap
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Fig. 5. Bloch sphere representation of a qubit: a quantum state |𝜓 ⟩ = 𝛼 |0⟩ +𝛽 |1⟩, where 𝛼 = |𝛼 |𝑒𝑖𝜑𝛼 and 𝛽 = |𝛽 |𝑒𝑖𝜑𝛽 , is represented
as the point of the Bloch sphere with spherical coordinates given by the angles 𝜃 and 𝜑 , where 𝜃 = arccos ( |𝛼 |2 − |𝛽 |2) ∈ [0, 𝜋 ] and
𝜑 = 𝜑𝛽 −𝜑𝛼 ∈ [0, 2𝜋 ) . Vice versa, a point of the unit sphere with spherical coordinates 𝑥 = sin𝜃 cos𝜑 , 𝑦 = sin𝜃 sin𝜑 , and 𝑧 = cos𝜃

corresponds to the quantum state |𝜓 ⟩ ≡ cos
𝜃
2
|0⟩ + 𝑒𝑖𝜑 sin

𝜃
2
|1⟩.

three-dimensional Euclidean space with the north and south pole corresponding to the computational basis states |0⟩
and |1⟩, respectively.

An immediate geometrical interpretation of a state as a vector of a unit sphere can be obtained by the map

[𝛼, 𝛽] ∈ C2 → [Re(𝛼), Im(𝛼), Re(𝛽), Im(𝛽)] ∈ R4

but this interpretation is not helpful for visualization purposes as it relies on a four-dimensional Euclidean space.

However, since we are interested only in unitary 2-dimensional complex vectors, we can exploit the condition |𝛼 |2+|𝛽 |2 =
1 to reduce the parameters needed to describe the quantum state, obtaining a three-dimensional representation that can

be easily visualized. Specifically, we could use the following transformation
𝑥 = 2 Re(𝛼∗𝛽)

𝑦 = 2 Im(𝛼∗𝛽)

𝑧 = |𝛼 |2 − |𝛽 |2
(25)

It can be easily proved that for |𝛼 |2 + |𝛽 |2 = 1 then 𝑥2 + 𝑦2 + 𝑧2 = 1. Thus, the above transformation maps a state

|𝜓 ⟩ = 𝛼 |0⟩ + 𝛽 |1⟩ onto a point of a unit sphere in R3, which is referred to as the Bloch sphere (Figure 5). Note that any

point of a unit sphere in R3 can be described using the spherical coordinate system
𝑥 = sin𝜃 cos𝜑

𝑦 = sin𝜃 sin𝜑

𝑧 = cos𝜃

𝜃 ∈ [0, 𝜋], 𝜑 ∈ [0, 2𝜋)

which further reduces the number of parameters needed to describe the quantum state. In fact, given the quantum state

|𝜓 ⟩ = 𝛼 |0⟩ + 𝛽 |1⟩, where 𝛼 = |𝛼 |𝑒𝑖𝜑𝛼
, 𝛽 = |𝛽 |𝑒𝑖𝜑𝛽

, and |𝛼 |2 + |𝛽 |2 = 1, the spherical coordinates (𝜃, 𝜑) can be computed
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by solving the system 
sin𝜃 cos𝜑 = 2 Re (𝛼∗𝛽)

sin𝜃 sin𝜑 = 2 Im (𝛼∗𝛽)

cos𝜃 = |𝛼 |2 − |𝛽 |2
(26)

Since |𝛼 |2 − |𝛽 |2 = 2|𝛼 |2 − 1 = 1 − 2|𝛽 |2, from the last condition in Equation 26 we obtain that

|𝛼 | =
√︂

1

2

+ 1

2

cos𝜃 = cos

𝜃

2

, |𝛽 | =
√︂

1

2

− 1

2

cos𝜃 = sin

𝜃

2

(27)

Moreover, by combining Equation 27 and the first two conditions in Equation 26 we obtain 𝜑 = 𝜑𝛽 − 𝜑𝛼 because

2𝛼∗𝛽 = 2|𝛼 | |𝛽 |𝑒𝑖 (𝜑𝛽−𝜑𝛼 ) = 2 cos

𝜃

2

sin

𝜃

2

𝑒𝑖 (𝜑𝛽−𝜑𝛼 ) = sin𝜃𝑒𝑖 (𝜑𝛽−𝜑𝛼 ) . (28)

Therefore, the spherical coordinates associated with the quantum state |𝜓 ⟩ = 𝛼 |0⟩ + 𝛽 |1⟩ are

𝜃 = arccos ( |𝛼 |2 − |𝛽 |2), 𝜑 = 𝜑𝛽 − 𝜑𝛼 (29)

Vice versa, any point of the Bloch sphere with spherical coordinates (𝜃, 𝜑) can be mapped to the quantum state

cos
𝜃
2
|0⟩ + 𝑒𝑖𝜑 sin

𝜃
2
|1⟩. At first thought, since cos 𝜃

2
is a real number, it might seem that such a mapping from the

Bloch sphere to the quantum state space is not surjective because the amplitudes 𝛼 and 𝛽 of a generic quantum state

|𝜓 ⟩ = 𝛼 |0⟩ + 𝛽 |1⟩ are both complex numbers. However, it should be noted that since the magnitudes |𝛼 | and |𝛽 | are
positive real numbers constrained to lie on the unit circle then they can be specified by a single angle, i.e. , there exists a

𝛾 ∈ [0, 𝜋
2
] such that |𝛼 | = cos𝛾 and |𝛽 | = sin𝛾 , or equivalently, |𝛼 | = cos

𝜃
2
and |𝛽 | = sin

𝜃
2
for 𝜃 = 2𝛾 ∈ [0, 𝜋]. Thus,

we have 𝛼 = 𝑒𝑖𝜑𝛼
cos

𝜃
2
and 𝛽 = 𝑒𝑖𝜑𝛽

sin
𝜃
2
for some 𝜑𝛼 , 𝜑𝛽 ∈ [0, 2𝜋). It follows that any state |𝜓 ⟩ can be rewritten as

|𝜓 ⟩ = 𝑒𝑖𝜑𝛼

(
cos

𝜃

2

|0⟩ + 𝑒𝑖 (𝜑𝛽−𝜑𝛼 )
sin

𝜃

2

|1⟩
)

with 𝜑𝛼 , 𝜑𝛽 ∈ [0, 2𝜋), 𝜃 ∈ [0, 𝜋] (30)

where 𝑒𝑖𝜑𝛼
is called global phase factor and 𝑒𝑖 (𝜑𝛽−𝜑𝛼 )

is the relative phase factor. As the global phase has no observable

effect (i.e. , quantum states |𝜓 ⟩ and 𝑒−𝑖𝜑𝛼 |𝜓 ⟩ are indistinguishable when performing a measurement
17
) it can be ignored.

In other words, any quantum state |𝜓 ⟩ can be expressed as

|𝜓 ⟩ ≡ cos

𝜃

2

|0⟩ + 𝑒𝑖𝜑 sin

𝜃

2

|1⟩ (31)

where 𝜃 ∈ [0, 𝜋] and 𝜑 ∈ [0, 2𝜋) are equal, respectively, to the polar and azimuthal angles of the Bloch Sphere

representation.

Note that antipodal points in the Bloch sphere correspond to orthogonal states. In fact, two states |𝜓1⟩ = cos
𝜃1
2
|0⟩ +

𝑒𝑖𝜑1
sin

𝜃1
2
|1⟩ and |𝜓2⟩ = cos

𝜃2
2
|0⟩ + 𝑒𝑖𝜑2

sin
𝜃2
2
|1⟩, with 𝜃1, 𝜃2 ∈ [0, 𝜋] and 𝜑1, 𝜑2 ∈ [0, 2𝜋), are orthogonal if and only

if ⟨𝜓1 |𝜓2⟩ = 0. It can be easily proved that the orthogonality condition holds if and only if either (𝜃1, 𝜃2) = (0, 𝜋),
(𝜃1, 𝜃2) = (𝜋, 0), or 𝜃1 + 𝜃2 = 𝜑2 − 𝜑1 = 𝜋 , which precisely identifies antipodal points in the sphere.

It is worth mentioning that the normalized sum of the computational basis vectors is called diagonal state, which is

indicated by |+⟩ = 1

√
2

|0⟩ + 1

√
2

|1⟩. It corresponds to the intersection of the positive x-axis and the Bloch sphere. The

state |−⟩ = 1

√
2

|0⟩ − 1

√
2

|1⟩ corresponds to the intersection point of the negative x-axis and the sphere. The intersection

17
The quantum states |𝜓 ⟩ and 𝑒𝑖𝛾 |𝜓 ⟩ are indistinguishable when performing a measurement because they have the same probabilities of observing the

computational basis states, i.e. |𝑒𝑖𝛾𝛼 |2 = |𝛼 |2 and |𝑒𝑖𝛾 𝛽 |2 = |𝛽 |2 for any 𝛾 ∈ [0, 2𝜋 ) .
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Fig. 6. Q-sphere for a 4-qubit system. The represented state is the uniform superposition of all possible states of the 4-qubit system.

points of the y-axis and the sphere are the states

1

√
2

|0⟩ ± i

1

√
2

|1⟩. The basis formed by {|+⟩, |−⟩} is referred to as

Hadamard basis.

The Bloch sphere can be generalized to 𝑛-qubit systems and, in such a case, it is named Q-sphere18. Concerning

multi-qubit systems, the states |0⟩⊗𝑛 and |1⟩⊗𝑛 sit at the north and south pole, respectively, analogously to the single-

qubit case. All the other states are placed along parallels with an increasing number of 1’s from top to bottom. For

example, in Figure 6, we report the Q-sphere for a 4-qubit system in the uniform superposition of all the possible states.

Specifically, the size of the colored circles represents the probability amplitude for each state, which is the same for all

of them, while the color represents the phase. Finally, we notice that the states |0000⟩ and |1111⟩ sit at the north and

south pole while all the other states are distributed along parallels grouped by the same number of 1’s (increasing from

top to bottom), as mentioned above.

18
https://quantum-computing.ibm.com/composer/docs/iqx/visualizations
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Table 6. Basic one-qubit gates: Notations typically used in literature, the corresponding matrices with respect to the basis { |0⟩, |1⟩ },
the action on a quantum state, and the corresponding action on the spherical coordinates in the Bloch sphere representation.

Name Symbols Circuit Matrix Action on |𝜓 ⟩ = 𝛼 |0⟩ + 𝛽 |1⟩ Action on coordinates (𝜃,𝜑) of the Bloch sphere
representation

Identity 𝐼 𝐼

[
1 0

0 1

]
𝐼 |𝜓 ⟩ = |𝜓 ⟩ 𝐼 (𝜃,𝜑) = (𝜃,𝜑)

Pauli-X

(bit flip,
NOT )

𝑋 , 𝜎̂𝑥

𝑋
or

[
0 1

1 0

]
𝑋 |𝜓 ⟩ = 𝛽 |0⟩ + 𝛼 |1⟩ 𝑋 (𝜃,𝜑) = (𝜋 − 𝜃, 2𝜋 − 𝜑)

rotation around the 𝑥-axis by 𝜋 radians

Pauli-Y 𝑌 , 𝜎̂𝑦 𝑌

[
0 −i
i 0

]
𝑌 |𝜓 ⟩ = −i𝛽 |0⟩ + i𝛼 |1⟩ 𝑌 (𝜃,𝜑) = (𝜋 − 𝜃, 𝜋 − 𝜑 (mod (2𝜋 ))

rotation around the 𝑦-axis by 𝜋 radians

Pauli-Z

(phase flip)

𝑍 , 𝜎̂𝑧 𝑍

[
1 0

0 −1

]
𝑍 |𝜓 ⟩ = 𝛼 |0⟩ − 𝛽 |1⟩ 𝑍 (𝜃,𝜑) = (𝜃,𝜑 + 𝜋 (mod (2𝜋 ))

rotation around the 𝑧-axis by 𝜋 radians

Phase 𝑆 𝑆

[
1 0

0 i

]
𝑆 |𝜓 ⟩ = 𝛼 |0⟩ + i𝛽 |1⟩ 𝑆 (𝜃,𝜑) = (𝜃,𝜑 + 𝜋/2 (mod (2𝜋 ))

rotation around the 𝑧-axis by 𝜋/2 radians

𝜋/8 𝑇 𝑇

[
1 0

0 𝑒 i𝜋/4

]
𝑇 |𝜓 ⟩ = 𝛼 |0⟩ + 𝑒 i𝜋/4𝛽 |1⟩ 𝑇 (𝜃,𝜑) = (𝜃,𝜑 + 𝜋/4 (mod (2𝜋 ))

rotation around the 𝑧-axis by 𝜋/4 radians

Hadamard 𝐻 𝐻
1

√
2

[
1 1

1 −1

]
𝐻 |𝜓 ⟩ = 𝛼 + 𝛽

√
2

|0⟩ + 𝛼 − 𝛽
√
2

|1⟩ 𝐻 (𝜃,𝜑) =



(𝜑, 3
2
𝜋 ) if 𝜃 = 𝜋

2
, 0 ≤ 𝜑 ≤ 𝜋

(2𝜋 − 𝜑, 𝜋
2
) if 𝜃 = 𝜋

2
, 𝜋 < 𝜑 < 2𝜋(

cos
−1 (sin𝜃 cos𝜑), cos−1

(
cos𝜃

sin(cos−1 (sin𝜃 cos𝜑 ) )

))
otherwise

rotation around the y-axis by 𝜋/2 radians followed by a
rotation about the 𝑥-axis by 𝜋 radians

B.5 Frequently used single and multi-qubit gates

In Table 6 and Table 7, we summarize some frequently used single- and multi-qubit gates, respectively. Please refer to

subsection 3.2 for the definition of gates and Gate Computational Model.
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Table 7. Frequently used multi-qubit gates.

Name Symbol Circuit Matrix representation Action

Controlled-NOT 𝐶𝑁𝑂𝑇 |𝜓 ⟩ •
|𝛾 ⟩


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


𝐶𝑁𝑂𝑇 ( |𝜓 ⟩ ⊗ |𝛾 ⟩) = |𝜓 ⟩ ⊗ |𝜓 XOR𝛾 ⟩

SWAP |𝜓 ⟩ |𝛾 ⟩
|𝛾 ⟩ |𝜓 ⟩


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


It swaps two qubits

Toffoli 𝐶𝐶𝑁𝑂𝑇 |𝜓 ⟩ •
|𝛿 ⟩ •
|𝛾 ⟩



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0



𝐶𝐶𝑁𝑂𝑇 ( |𝜓 ⟩ ⊗ |𝛾 ⟩ ⊗ |𝛿 ⟩)
= |𝜓 ⟩ ⊗ |𝛾 ⟩ ⊗ | (𝜓 AND𝛾 ) XOR𝛿 ⟩

B.6 Variational Principle

The Variational Principle [31, 131? ] allows to set an upper bound to the ground state’s energy of a quantum system

for which we do not know the exact solution to the time-independent Schrödinger equation:

𝐻̂ |𝜓 ⟩ = 𝜉 |𝜓 ⟩ (32)

where |𝜓 ⟩ is an eigenstate, with eigenvalue 𝜉 , of the Hamiltonian operator 𝐻̂ . The eigenvalues of the Hamiltonian

correspond to different energy levels of the system. Thus, they can be ordered using an index 𝑖 ≥ 0 so that 𝜉𝑖 > 𝜉𝑖+1.

We indicate with |𝜓𝑖 ⟩ the eigenstate with egenvalue 𝜉𝑖 . We know that the ground state has the lowest eigenvalue, 𝜉0.

Thus the Variational Principle asserts that, for any given normalized |𝜓 ⟩, one has that:

𝜉0 ≤ ⟨𝜓 |𝐻̂ |𝜓 ⟩ = ⟨𝐻̂ ⟩ (33)

Proof. We start the proof by considering the complete orthonormal set of eigenstates of 𝐻̂ , {|𝜓𝑛⟩}. We can express

a generic quantum state as:

|𝜓 ⟩ =
∑︁
𝑖

𝑐𝑖 |𝜓𝑖 ⟩ (34)

where any |𝜓𝑖 ⟩ satisfies Equation 32. Based on the normalization property of wave functions and the orthonormality of

the eigenfunctions, we have:

1 = ⟨𝜓 |𝜓 ⟩ =
〈∑︁

𝑖

𝑐𝑖𝜓𝑖

����∑︁
𝑗

𝑐 𝑗𝜓 𝑗

〉
=
∑︁
𝑖, 𝑗

𝑐∗𝑖 𝑐 𝑗 ⟨𝜓𝑖 |𝜓 𝑗 ⟩ =
∑︁
𝑖

|𝑐𝑖 |2 (35)
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From Equation 33 and Equation 35, the average value for the energy can be written as:

⟨𝐻̂ ⟩ =
〈∑︁

𝑖

𝑐𝑖𝜓𝑖

���� 𝐻̂ ���� ∑︁
𝑗

𝑐 𝑗𝜓 𝑗

〉
=
∑︁
𝑖, 𝑗

𝑐∗𝑖 𝜉 𝑗𝑐 𝑗 ⟨𝜓𝑖 |𝜓 𝑗 ⟩ =
∑︁
𝑖

𝜉𝑖 |𝑐𝑖 |2 (36)

The energy of the ground state is encoded, by definition, in the smallest eigenvalue of 𝐻̂ . Thus,

⟨𝐻̂ ⟩ ≥ 𝜉0

∑︁
𝑖

|𝑐𝑖 |2 = 𝜉0 (37)

which concludes the proof.

□

Translating into words, what the Variational Principle tells us is the following. Suppose we want to know the energy

of the ground state of a given Hamiltonian operator 𝐻̂ for which we do not know the eigenstates. We can pick a generic

trial state, although with some constraints related to the continuity, characterized by a certain number of adjustable

parameters and use it to evaluate Equation 36. Then, we can tweak the parameters to obtain the lowest possible value

that resembles the best upper limit on the unknown 𝜉0. Unfortunately, there is not an easy way to evaluate how far an

upper bound is from 𝜉0 [? ? ]. We are only guaranteed that what we find is an upper bound.

B.7 Adiabatic Theorem

Generally speaking, if the external conditions of a system of interest are gradually changed, such a process can be

considered adiabatic. Hence, such an approximation is typically named adiabatic approximation. However, one must

pay attention to the definition of what “gradually” means, and the Adiabatic Theorem [31, 131? ] tells us exactly how to

interpret such a term.

Adiabatic Theorem. Given a particle in the generic 𝑖-th eigenstate of the initial Hamiltonian, 𝐻̂𝐼 = 𝐻̂ (𝑡 = 0), it will
follow the instantaneous 𝑖-th eigenstate of 𝐻̂ (𝑡) provided that the rate of change of 𝐻̂ (𝑡) is low enough.

Thus, the theorem deals with Hamiltonians that vary over time, i.e., 𝐻̂ (𝑡). Given such an operator, we have that

eigenstates and eigenvalues change too. However, the orthonormality of the instantaneous eigenfunctions, |𝜓𝑖 (𝑡)⟩, is
preserved. Thus, any solution to the Schrödinger equation can still be expressed as a linear superposition of them.

Proof. Given a time-dependent Hamiltonian, we can write the Schrödinger equation as:

𝑖ℏ
𝜕

𝜕𝑡
|𝜓 (𝑡)⟩ = 𝐻̂ (𝑡) |𝜓 (𝑡)⟩ (38)

where

|𝜓 (𝑡)⟩ =
∑︁
𝑖

𝑐𝑖 (𝑡) |𝜓𝑖 (𝑡)⟩𝑒𝑖𝜃𝑖 (𝑡 ) and 𝜃𝑖 (𝑡) = − 𝑖

ℏ

∫ 𝑡

0

𝜉𝑖 (𝑡 ′)𝑑𝑡 ′ (39)

Note that differently from Equation 32, currently, the energy is not constant. Instead, it is a function of time.

By inserting Equation 39 into Equation 38, we obtain

𝑖ℏ
∑︁
𝑖

[
¤𝑐𝑖 |𝜓𝑖 ⟩ + 𝑐𝑖 | ¤𝜓𝑖 ⟩ + 𝑖𝑐𝑖 |𝜓𝑖 ⟩ ¤𝜃𝑖

]
𝑒𝑖𝜃𝑖 =

∑︁
𝑖

𝑐𝑖𝐻̂ |𝜓𝑖 ⟩𝑒𝑖𝜃𝑖 (40)

where we drop the dependence from the time to compact the notation. By looking at the definition of 𝜃𝑖 in Equation 39

and from the Schrödinger equation, we see that the last term of the left hand side in Equation 40 cancels out with the
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term on the right hand side. Thus, after taking the inner product with ⟨𝜓 𝑗 |, we obtain:∑︁
𝑖

¤𝑐𝑖𝛿𝑖 𝑗𝑒𝑖𝜃𝑖 = −
∑︁
𝑖

𝑐𝑖 ⟨𝜓 𝑗 | ¤𝜓𝑖 ⟩𝑒𝑖𝜃𝑖 =⇒ ¤𝑐 𝑗 (𝑡) = −
∑︁
𝑖

𝑐𝑖 ⟨𝜓 𝑗 | ¤𝜓𝑖 ⟩𝑒𝑖 (𝜃𝑖−𝜃 𝑗 )
(41)

By differentiating the Schrödinger equation we obtain:

¤̂
𝐻 |𝜓𝑖 ⟩ + 𝐻̂ | ¤𝜓𝑖 ⟩ = ¤𝜉𝑖 |𝜓𝑖 ⟩ + 𝜉𝑖 | ¤𝜓𝑖 ⟩ (42)

and by taking the inner product with ⟨𝜓 𝑗 |, we have:

⟨𝜓 𝑗 | ¤̂𝐻 |𝜓𝑖 ⟩ = (𝜉𝑖 − 𝜉 𝑗 )⟨𝜓 𝑗 | ¤𝜓𝑖 ⟩ (43)

By inserting Equation 43 into Equation 41, we obtain:

¤𝑐 𝑗 (𝑡) = −𝑐 𝑗 ⟨𝜓 𝑗 | ¤𝜓 𝑗 ⟩ −
∑︁
𝑖≠𝑗

𝑐𝑖
⟨𝜓 𝑗 | ¤̂𝐻 |𝜓𝑖 ⟩
𝜉𝑖 − 𝜉 𝑗

𝑒𝑖 (𝜃𝑖−𝜃 𝑗 )
(44)

The results in Equation 44 is exact. We can now turn on the adiabatic approximation and consider the meaning of

“gradually". In such a context, we mean that the ratio in the second on the right hand side of Equation 44 is negligible. If

such a condition is satisfied, then ¤𝑐 𝑗 (𝑡) = −𝑐 𝑗 ⟨𝜓 𝑗 | ¤𝜓 𝑗 ⟩ for which the solution is given by:

𝑐 𝑗 (𝑡) = 𝑐 𝑗 (𝑡 = 0)𝑒𝑖𝛾 𝑗 (𝑡 ) where 𝛾 𝑗 (𝑡) = 𝑖

∫ 𝑡

0

〈
𝜓 𝑗 (𝑡 ′) | ¤𝜓 𝑗 (𝑡 ′)

〉
𝑑𝑡 ′ (45)

□

From Equation 45 we can see that if the system begins in the 𝑗-th eigenstate, i.e., 𝑐 𝑗 (𝑡 = 0) = 1 and 𝑐𝑖 (𝑡 = 0) = 0 for

𝑖 ≠ 𝑗 , then it will remain in such a state throughout the entire adiabatic evolution

|𝜓 𝑗 (𝑡)⟩ = |𝜓 𝑗 (𝑡)⟩𝑒𝑖 (𝜃 𝑗 (𝑡 )+𝛾 𝑗 (𝑡 ))
(46)

Thus, the system stays in the |𝜓 𝑗 ⟩ eigenstate and only picks up a phase factor.
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