
Tree Signatures for XML Querying and
Navigation

Pavel Zezula1, Giuseppe Amato2, Franca Debole2, and Fausto Rabitti2

1 Masaryk University, Brno, Czech Republic,
zezula@fi.muni.cz

http://www.fi.muni.cz
2 ISTI-CNR, Pisa, Italy,

{Giuseppe.Amato,Franca.Debole,Fausto.Rabitti}@isti.cnr.it
http://www.isti.cnr.it

Abstract. In order to accelerate execution of various matching and
navigation operations on collections of XML documents, new indexing
structure, based on tree signatures, is proposed. We show that XML tree
structures can be efficiently represented as ordered sequences of preorder
and postorder ranks, on which extended string matching techniques can
easily solve the tree matching problem. We also show how to apply tree
signatures in query processing and demonstrate that a speedup of up to
one order of magnitude can be achieved over the containment join strat-
egy. Other alternatives of using the tree signatures in intelligent XML
searching are outlined in the conclusions.

1 Introduction

With the rapidly increasing popularity of XML, there is a lot of interest in query
processing over data that conforms to a labelled-tree data model. A variety of
languages have been proposed for this purpose, most of them offering various
features of a pattern language and construction expressions. Since the data ob-
jects are typically trees, the tree pattern matching and navigation are the central
issues of the query execution.

The idea behind evaluating tree pattern queries, sometimes called the twig
queries, is to find all the ways of embedding a pattern in the data. Because this
lies at the core of most languages for processing XML data, efficient evalua-
tion techniques for these languages require relevant indexing structures. More
precisely, given a query twig pattern Q and an XML database D, a match of
Q in D is identified by a mapping from nodes in Q to nodes in D, such that:
(i) query node predicates are true, and (ii) the structural (ancestor-descendant
and preceding-following) relationships between query nodes are satisfied by the
corresponding database nodes. Though the predicate evaluation and the struc-
tural control are closely related, in this article, we mainly consider the process of
evaluating the structural relationships, because indexing techniques to support
efficient evaluation of predicates already exist.

Z. Bellahsène et al. (Eds.): XSym 2003, LNCS 2824, pp. 149–163, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

http://www.fi.muni.cz
http://www.isti.cnr.it
Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595.276 841.889] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

150 P. Zezula et al.

Available approaches to the construction of structural indexes for XML query
processing are either based on mapping pathnames to their occurrences or on
mapping element names to their occurrences. In the first case, entire pathnames
occurring in XML documents are associated with sets of element instances that
can be reached through these paths. However, query specifications can be more
complex than simple path expressions. In fact, general queries are represented as
pattern trees, rather than paths. Besides, individual path specifications are typi-
cally vague (containing for example wildcards), which complicates the matching.
In the second case, element names are associated with structured references to
the occurrences of names in XML documents. In this way, the indexed infor-
mation is scattered, giving more freedom to ignore unimportant relationships.
However, a document structure reconstruction requires expensive merging of
lengthy reference lists through containment joins.

Contrary to the approaches that accelerate retrieval through the applica-
tion of joins [10,1,2], we apply the signature file approach. In general, signatures
are compact (small) representations of important features extracted from actual
documents, created with the objective to execute queries on the signatures in-
stead of the documents. In the past, see e.g. [9] for a survey, such principle has
been suggested as an alternative to the inverted file indexes. Recently, it has been
successfully applied to indexing of multi-dimensional vectors for similarity-based
searching, image retrieval, and data mining.

We define the tree signature as a sequence of tree-node entries, containing
node names and their structural relationships. In this way, incomplete tree in-
clusions can be quickly evaluated through extended string matching algorithms.
We also show how the signature can efficiently support navigation operations
on trees. Finally, we apply the tree signature approach to a complex query pro-
cessing and experimentally compare such evaluation process with the structural
join.

The rest of the paper is organized as follows. In Section 2, the necessary
background is surveyed. The tree signatures are specified in Section 3. In Sec-
tion 4, we show the advantages of tree signatures for XPath navigation, and in
Section 5 we elaborate on the XML query processing application. Performance
evaluation is described and discussed in Section 6. Conclusions and a discussion
on alternative search strategies are available in Section 7.

2 Preliminaries

Tree signatures are based on a sequential representation of tree structures. In
the following, we briefly survey the necessary background information.

2.1 Labelled Ordered Trees

Let Σ be an alphabet of size |Σ|. An ordered tree T is a rooted tree in which
the children of each node are ordered. If a node i ∈ T has k children then the
children are uniquely identified, left to right, as i1, i2, . . . , ik. A labelled tree T

Tree Signatures for XML Querying and Navigation 151

associates a label t[i] ∈ Σ with each node i ∈ T . If the path from the root to
i has length n, we say that level(i) = n. Finally, size(i) denotes the number of
descendants of node i – the size of any leaf node is zero. In the following, we
consider ordered labelled trees.

2.2 Preorder and Postorder Sequences and Their Properties

Though there are several ways of transforming ordered trees into sequences, we
apply the preorder and the postorder ranks, as recently suggested in [5]. The
preorder and postorder sequences are ordered lists of all nodes of a given tree T .
In a preorder sequence, a tree node v is traversed and assigned its (increasing)
preorder rank, pre(v), before its children are recursively traversed from left to
right. In the postorder sequence, a tree node v is traversed and assigned its
(increasing) postorder rank, post(v), after its children are recursively traversed
from left to right. For illustration, see the sequences of our sample tree in Fig. 1
– the node’s position in the sequence is its preorder/postorder rank.

a
↙ ↘

b f
↓ ↘ ↘
c g h

↙ ↘ ↙ ↘
d e o p

pre : a b c d e g f h o p
post : d e c g b o p h f a
rank : 1 2 3 4 5 6 7 8 9 10

Fig. 1. Preorder and postorder sequences of a tree

Given a node v ∈ T with pre(v) and post(v) ranks, the following properties
are of importance to our objectives:
– all nodes x with pre(x) < pre(v) are either the ancestors of v or nodes

preceding v in T ;
– all nodes x with pre(x) > pre(v) are either the descendants of v or nodes

following v in T ;
– all nodes x with post(x) < post(v) are either the descendants of v or nodes

preceding v in T ;
– all nodes x with post(x) > post(v) are either the ancestors of v or nodes

following v in T ;
– for any v ∈ T , we have pre(v) − post(v) + size(v) = level(v).

As proposed in [5], such properties can be summarized in a two dimensional
diagram, as illustrated in Fig. 2, where the ancestor (A), descendant (D), pre-
ceding (P), and following (F) nodes of v are separated in their proper regions.

152 P. Zezula et al.

n pre

post

n

P D

A F

v

Fig. 2. Properties of the preorder and postorder ranks.

2.3 Longest Common Subsequence

The edit distance between two strings x = x1, . . . , xn and y = y1, . . . , ym is
the minimum number of the insert, delete, and modify operations on characters
needed to transform x into y. A dynamic programming solution of the edit
distance is defined by an (n+1)× (m+1) matrix M [·, ·] that is filled so that for
every 0 < i ≤ n and 0 < j ≤ m, M [i, j] is the minimum number of operations to
transform x1, . . . , xi into y1, . . . , yj .

A specialized task of the edit distance is the longest common subsequence
(l.c.s.). In general, a subsequence of a string is obtained by taking a string and
possibly deleting elements. If x1, . . . , xn is a string and 1 ≤ i1 < i2 < . . . < ik ≤ n
is a strictly increasing sequence of indices, then xi1 , xi2 , . . . , xik

is a subsequence
of x. For example, art is a subsequence of algorithm. In the l.c.s. problem,
given strings x and y we want to find the longest string that is a subsequence
of both. For example, art is the longest common subsequence of algorithm and
parachute.

By analogy to edit distance, the computation uses an (n + 1) × (m + 1)
matrix M [·, ·] such that for every 0 < i ≤ n and 0 < j ≤ m, M [i, j] contains
the length of the l.c.s. between x1, . . . , xi and y1, . . . , yj . The matrix has the
following definition:

– M [i, 0] = M [0, j] = 0, otherwise
– M [i, j] = max{M [i − 1, j]; M [i, j − 1]; M [i − 1, j − 1] + eq(xi, yj)},

where eq(xi, yj) = 1 if xi = yj , eq(xi, yj) = 0 otherwise.

Obviously, the matrix can be filled in O(n · m) time. But algorithms such as [7]
can find l.c.s. much faster.

The Sequence Inclusion. A string is sequence-included in another string, if
their longest common subsequence is equal to the shorter of the strings. Assume

Tree Signatures for XML Querying and Navigation 153

strings x = x1, . . . , xn and y = y1, . . . , ym with n ≤ m. The string x is sequence-
included in the string y if the l.c.s. of x and y is x. Note that sequence-inclusion
and string-inclusion are different concepts. String x is included in y if characters
of x occur contiguously in y, whereas characters of x might be interspersed in y
with characters not in x for the sequence-inclusion. If string x is string-included
in y, it is also sequence-included in y, but not the other way around.

For example, the matrix for searching the l.c.s. of ”art” and ”parachute” is:

λ p a r a c h u t e
λ 0 0 0 0 0 0 0 0 0 0
a 0 0 1 1 1 1 1 1 1 1
r 0 0 1 2 2 2 2 2 2 2
t 0 0 1 2 2 2 2 2 3 3

Using the l.c.s. approach, one string is sequence-included in the other if M [n, m]-
= min{m, n}. Because we do not have to compute all elements of the matrix,
the complexity is O(p) | p = max{m, n}.

3 Tree Signatures

The idea of the tree signature is to maintain a small but sufficient representation
of the tree structures, able to decide the tree inclusion problem as needed for
XML query processing. We use the preorder and postorder ranks to linearize
the tree structures, which allows to apply the sequence inclusion algorithms for
strings.

3.1 The Signature

The tree signature is an ordered list (sequence) of pairs. Each pair contains a
tree node name along with the corresponding postorder rank. The list is ordered
according to the preorder rank of nodes.

Definition 1. Let T be an ordered labelled tree. The signature of T is a sequence,
sig(T) = 〈t1, post(t1); t2, post(t2); . . . ; tm, post(tm)〉, of m = |T | entries, where
ti is a name of the node with pre(ti) = i. The post(ti) is the postorder value of
the node named ti and the preorder value i.

Observe that the index in the signature sequence is the node’s preorder, so
the value serves actually two purposes. In the following, we use the term pre-
order if we mean the rank of the node, when we consider the position of the
node’s entry in the signature sequence, we use the term index. For example,
〈a, 10; b, 5; c, 3; d, 1; e, 2; g, 4; f, 9; h, 8; o, 6; p, 7〉 is the signature of the tree from
Fig. 1. By analogy, tree signatures can also be constructed for query trees, so
〈h, 3; o, 1; p, 2; 〉 is the signature of the query tree from Fig. 3.

A sub-signature sub sigS(T) is a specialized (restricted) view of T through
signatures, which retains the original hierarchical relationships of nodes in T .

154 P. Zezula et al.

Considering sig(T) as a sequence of individual entries representing nodes of T ,
sub sigS(T) = 〈ts1 , post(ts1); ts2 , post(ts2); . . . ; tsk

, post(tsk
)〉 is a sub-sequence

of sig(T), defined by the ordered set S = {s1, s2, . . . , sk} of indexes (preorder
values) in sig(T), such that 1 ≤ s1 < s2 < . . . < sk ≤ m. For example, the set
S = {2, 3, 4, 5, 6} defines a sub-signature representing the subtree rooted at the
node b of our sample tree.

Tree Inclusion Evaluation. Suppose the data tree T specified by signature

sig(T) = 〈t1, post(t1); t2, post(t2); . . . ; tm, post(tm)〉,
and the query tree Q defined by its signature

sig(Q) = 〈q1, post(q1); q2, post(q2); . . . ; qn, post(qn)〉.
Let sub sigS(T) be the sub-signature of sig(T) induced by a sequence-inclusion
of sig(Q) in sig(T), just considering the equality of node names. The following
lemma specifies the tree inclusion problem precisely.

Lemma 1. The query tree Q is included in the data tree T if the following
two conditions are satisfied: (1) on the level of node names, sig(Q) is sequence-
included in sig(T) determining sub sigS(T) through the ordered set of indexes
S = {s1, s2, . . . , sn}|q1 = ts1 , q2 = ts2 , . . . , qn = tsn

, (2) for all pairs of entries
i and i + j in sig(Q) and sub sigS(T) (i, j = 1, 2, . . . |Q| − 1 and i + j ≤ |Q|),
post(qi+j) > post(qi) implies post(tsi+j

) > post(tsi) and post(qi+j) < post(qi)
implies post(tsi+j) < post(tsi).

Proof. Because the index i increases in (sub-)signatures according to the pre-
order rank, node i + j must be either the descendent or the following node of i.
If post(qi+j) < post(qi), the node i+j in the query is a descendent of the node i,
thus also post(tsi+j

) < post(tsi
) is required. By analogy, if post(qi+j) > post(qi),

the node i+j in the query is a following node of i, thus also post(tsi+j) > post(tsi)
must hold.

A specific query signature can determine zero or more data sub-signatures. Re-
garding the node names, any sub sigS(T) ≡ siq(Q), because qi = tsi for all i, see
point (1) in Lemma 1. But the corresponding entries can have different postorder
values, and not all such sub-signatures necessarily represent qualifying patterns,
see point (2) in Lemma 1.

The complexity of tree inclusion algorithm according to Lemma 1 is
∑n−1

i=1 i
comparisons. Though the number of the query tree nodes is usually not high,
such approach is computationally feasible. Observe that Lemma 1 defines the
weak inclusion of the query tree in the data tree, in the sense that the parent-
child relationships of the query are implicitly reflected in the data tree as only the
ancestor-descendant. However, due to the properties of preorder and postorder
ranks, such constraints can easily be strengthened, if required.

For example, consider the data tree T in Fig. 1 and the query tree Q in
Fig. 3. Such query qualifies in T , i.e. sig(Q) = 〈h, 3; o, 1; p, 2〉 determines a

Tree Signatures for XML Querying and Navigation 155

h
↙ ↘

o p

sig(Q) = 〈h, 3; o, 1; p, 2〉

Fig. 3. Sample query tree Q

compatible sub sigS(T) = 〈h, 8; o, 6; p, 7〉 through the ordered set S = {8, 9, 10},
because (1) q1 = t8, q2 = t9, and q3 = t10, (2) the postorder of node h is
higher than the postorder of nodes o and p, and the postorder of node o is
smaller than the postorder of node p (both in sig(Q) and sub sigS(T)). If we
change in our query tree Q the lable h for f , we get sig(Q) = 〈f, 3; o, 1; p, 2〉.
Such a modified query tree is also included in T , because Lemma 1 does not
insist on the strict parent-child relationships, and implicitly consider all such
relationships as ancestor-descendant. However, the query tree with the root g,
resulting in sig(Q) = 〈g, 3; o, 1; p, 2〉, does not qualify, even though the query
signature is also sequence-included (on the level of names) determining the sub-
signature sub sigS(T) = 〈g, 4; o, 6; p, 7〉|S = {6, 9, 10}. The reason for the false
qualification is that the query requires the postorder to go down from node g
to o (from 3 to 1) , while in the sub-signature it actually goes up (from 4 to
6). That means that o is not a descendant node of g, as required by the query,
which can be verified in Fig. 1.

Extended Signatures. In order to further increase the efficiency of various
matching and navigation operations, we also propose the extended signatures. For
motivation, see the sketch of a signature in Fig. 4, where A, P, D, F represent

v

P D

FA

Fig. 4. Signature structure

areas of ancestor, preceding, descendant, and following nodes with respect to
the generic node v. Observe that all descendants are on the right of v before the
following nodes of v. At the same time, all ancestors are on the left of v, acting as
separators of subsets of preceding nodes. This suggests to extend entries of tree
signatures by two preorder numbers representing pointers to the first following,
ff , and the first ancestor, fa, nodes. The general structure of the extended
signature of tree T is

156 P. Zezula et al.

sig(T) = 〈t1, post(t1), ff1, fa1; t2, post(t2), ff2, fa2; . . . ; tm, post(tm), ffm, fam〉,

where ff i (fai) is the preorder value of the first following (ancestor) node of
that with the preorder rank i. If no terminal node exists, the value of the first
ancestor is zero and the value of the first following node is m+1. For illustration,
the extended signature of the tree from Fig. 1 is

sig(T) = 〈a, 10, 11, 0; b, 5, 7, 1; c, 3, 6, 2; d, 1, 5, 3; e, 2, 6, 3;

g, 4, 7, 2; f, 9, 11, 1; h, 8, 11, 7; o, 6, 10, 8; p, 7, 11, 8〉
Given a node with index i, the cardinality of the descendant node set is size(i) =
ff i − i − 1, and the level of the node with index i is level(i) = i − post(i) +
ff i − i − 1 = ff i − post(i) − 1. Further more, the tree inclusion problem can be
solved in linear time, as the following lemma obviates.

Lemma 2. Using the extended signatures, the query tree Q is included in the
data tree T if the following two conditions are satisfied: (1) on the level of node
names, sig(Q) is sequence-included in sig(T) determining sub sigS(T) through
the ordered set of indexes S = {s1, s2, . . . sn}|q1 = ts1 , q2 = ts2 , . . . , qn = tsn

,
(2) for i = 1, 2, . . . |Q| − 1, if post(qi) < post(qi+1) (leaf node, no descendants,
the next is the following) then ff(tsi

) ≤ si+1, otherwise (there are descendants)
ff(tsi) > sff(qi)−1.

4 Evaluation of XPath Expressions

XPath [3] is a language for specifying navigation within an XML document. The
result of evaluating an XPath expression on a given XML document is a set of
nodes stored according to document order, so we can say that the result nodes
are selected by an XPath expression.

Within an XPath Step, an Axis specifies the direction in which the document
should be explored. Given a context node v, XPath supports 12 axes for navi-
gation. Assuming the context node is at position i in the signature, we describe
how the most significant axes can be evaluated through the extended signatures,
using the tree from Fig. 1 as reference:

Child. The first child is the first descendant, that is a node with index i + 1
such that post(i) > post(i + 1). The second child is indicated by pointer
ff i+1, provided the value is smaller than ff i, otherwise the child node does
not exist. All the other children nodes are determined recursively until the
bound ff i is reached. For example, consider the node b with index i = 2.
Since ff2 = 7, there are 4 descending nodes, so the node with index i+1 = 3
(i.e. node c) must be the first child. The first following pointer of c, ff i+1 = 6,
determines the second child of b (i.e. node g), because 6 < 7. Due to the fact
that ff6 = ff i = 7, there are no other child nodes.

Tree Signatures for XML Querying and Navigation 157

Descendant. The descendant nodes (if any) start at position i+1, and the last
descendant object is at position ff i − 1. If we consider node b (with i = 2),
we immediately decide that the descendants are at positions starting from
i + 1 = 3 to ff2 − 1 = 6, i.e. nodes c, d, e, and g.

Parent. The parent node is directly given by the pointer fa. The Ancestor
axis is just a recursive closure of Parent.

Following. The following nodes of the reference at position i (if they exist)
start at position ff i and include all nodes up to the end of the signature
sequence. All nodes following c (with i = 3) are in the suffix of the signature
starting at position ff3 = 6.

Preceding. All preceding nodes are on the left of the reference node as a set of
intervals separated by the ancestors. Given a node with index i, fai points
to the first ancestor (i.e. the parent) of i, and the nodes (if they exist)
between i and fai precede i in the tree. If we recursively continue from fai,
we find all the preceding nodes of i. For example, consider the node g with
i = 6: following the ancestor pointer, we get fa6 = 2, fa2 = 1, fa1 = 0, so
the ancestors nodes are b and a, because fa1 = 0 indicates the root. The
preceding nodes of g are only in the interval from i − 1 = 5 to fa6 + 1 = 3,
i.e. nodes c, d, and e.

Following-sibling. In order to get the following siblings, we just follow the ff
pointers while the following objects exist and the fa pointers are the same
as fai. For example, given the node c with i = 3 and fa3 = 2, the ff3
pointer moves us to the node with index 6, that is the node g. The node g
is the sibling following c, because fa6 = fa3 = 2. But this is also the last
following sibling, because ff6 = 7 and fa7 �= fa3.

Preceding-sibling. All preceding siblings must be between the context node
with index i and its parent with index fai < i. The first node after the
i-th parent, which has the index fai + 1, is the first sibling. Then use the
Following-sibling strategy up to the sibling with index i. Consider the
node f (i = 7) as the context node. The first sibling of the i-th parent is b,
determined by pointer fa7 + 1 = 2. Then the pointer ff2 = 7 leads us back
to the context node f , so b is the only preceding sibling node of f .

Observe that the postorder values, post(ti), are not used for navigation, so the
size of a signature for this kind of operations can even be reduced.

5 Query Processing

A query processor can also exploit tree signatures to evaluate set-oriented prim-
itives similar to the XPath axes. Given a set of elements R, the evaluation of
Parent(R, article) gives back the set of elements named article, which are
parents of elements contained in R. By analogy, we define the Child(R, article)
set-oriented primitive, returning the set of elements named article, which are
children of elements contained in R. We suppose that elements are identified by
their preorder values, so sets of elements are in fact sets of element identifiers.

158 P. Zezula et al.

Verifying structural relationships can easily be integrated with evaluating
content predicates. If indexes are available, a preferable strategy is to first
use these indexes to obtain elements satisfying the predicates, and then ver-
ify the structural relationships using signatures. Consider the following XQuery
[4] query:

for $a in //people
where

$a/name/first="John" and
$a/name/last="Smith"

return $a/address

Suppose that content indexes are available on the first and last elements. A
possible efficient execution plan for this query is:

1. let R1 = ContentIndexSearch(last = "Smith");
2. let R2 = ContentIndexSearch(first = "John");
3. let R3 = Parent(R1,name);
4. let R4 = Parent(R2,name);
5. let R5 = Intersect(R3,R4);
6. let R6 = Parent(R5,people);
7. let R7 = Child(R6,address);

First, the content indexes are used to obtain R1 and R2, i.e. the sets of
elements that satisfy the content predicates. Then, tree signatures are used to
navigate through the structure and verify structural relationships.

Now suppose that a content index is only available on the last element, the
predicate on the first element has to be processed by accessing the content
of XML documents. Though the specific technique for efficiently accessing the
content depends on the storage format of the XML documents (plain text files,
relational transformation, etc.), a viable query execution plan is the following:

1. let R1 = ContentIndexSearch(last = "Smith");
2. let R2 = Parent(R1,name);
3. let R3 = Child(R2,first);
4. let R4 = FilterContent(R3,John);
5. let R5 = Parent(R4,name);
6. let R6 = Parent(R5,people);
7. let R7 = Child(R6,address).

Here, the content index is first used to find R1, i.e. the set of elements con-
taining Smith. The tree signature is used to produce R3, that is the set of the
corresponding first elements. Then, these elements are accessed to verify that
their content is John. Finally, tree signatures are used again to verify the re-
maining structural relationships.

Tree Signatures for XML Querying and Navigation 159

Obviously, the outlined execution plans are not necessarily optimal. For ex-
ample, they do not take into consideration the selectivity of predicates. But the
query optimization with tree signatures is beyond the scope of this paper.

6 Experimental Evaluation

The length of a signature sig(T) is proportional to the number of the tree nodes
|T |, and the actual length depends on the size of individual signature entries.
The postorder (preorder) values in each signature entry are numbers, and in
many cases even two bytes suffice to store such values. In general, the tag names
are of variable size, which can cause some problems when implementing the tree
inclusion algorithms. But also the domain of tag names is usually a closed domain
of known or upper-bounded cardinality. In such case, we can use a dictionary of
the tag names and transform each of the names to its numeric representation of
fixed length. For example, if the number of tag names and the number of tree
nodes are never greater than 65, 536, both entities of a signature entry can be
represented by 2 bytes, so the length of the signature sig(T) is 4 · |T | for the
short version, and 8 · |T | for the extended version. With a stack of maximum size
equal to the tree hight, signatures can be generated in linear time.

In our implementation, the signature of an XML file was maintained in a
corresponding signature file consisting of a list of records. Each record contained
two (for the short signature) or four (for the extended signature) integers, each
represented by four bytes. Accessing signature records was implemented by a
seek in the signature file and by reading in a buffer the corresponding two or
four integers (i.e. 8 or 16 bytes) with a single read. No explicit buffering or
paging techniques were implemented to optimize access to the signature file.
Everything was implemented in Java, JDK 1.4.0 and run on a PC with a 1800
GHz Intel pentium 4, 512 Mb main memory, EIDE disk, running Windows 2000
Professional edition with NT file system (NTFS).

We compared the extended signatures with the Multi Predicate MerGe JoiN
(MPMGJN) proposed in [10] – we expect to obtain similar results comparing
with other join techniques as for instance [1]. As suggested in [10], the Element
Index was used to associate each element of XML documents with its start and
end positions, where the start and end positions are, respectively, the positions
of the start and the end tags of elements in XML documents. This information
is maintained in an inverted index, where each element name is mapped to the
list of its occurrences in each XML file. The inverted index was implemented by
using the BerkeleyDB as a B+-tree. Retrieval of the inverted list associated with
a key (the element name) was implemented with the bulk retrieval functionality,
provided by the BerkeleyDB.

In our experiments, we have used queries of the following template:

for $a in //<e name>
where <pred($a)>
return

<result> $a/<e 1> ...$a/<e n> </result>

160 P. Zezula et al.

Table 1. Selectivity of element names

element name # elements
phdthesis 71
book 827
inproceedings 198960
author 679696
year 313531
title 313559
pages 304044

In this way, we are able to generate queries that have different element name
selectivity (i.e. the number of elements having a given element name), element
content selectivity (i.e. the number of elements having a given content), and the
number of navigation steps to follow in the pattern tree (twig). Specifically, by
varying the element name <e name> we can control the element name selectivity,
by varying the predicate <pred($a)> we can control the content selectivity, and
by varying the number of expressions n in the return clause, we can control the
number of navigation steps.

We run our experiments by using the XML DBLP data set containing 3,181,-
399 elements and occupying 120 Mb of memory. We chose three degrees of the
element name selectivity by setting <e name> to phdthesis for high selectivity,
to book for medium selectivity, and to inproceedings for low selectivity. The
degree of content selectivity was controlled by setting the predicate <pred($a)>
to $a/author="Michael J. Franklin" for high selectivity, $a/year="1980" for
medium selectivity, and $a/year="1997" for low selectivity. In the return clause,
we have used title as <e 1> and pages as <e 2>. Table 1 shows the number of
occurrences of the element names that we used in our experiments, while Table
2 shows the number of elements satisfying the predicates used.

Each query generated from the previously described query template is coded
as ”QNCn”, where N and C indicate, respectively, the element name and the
content selectivity, and can be H(igh), M(edium), or L(ow). The parameter n
can be 1 or 2 to indicate the number of steps in the return clause.

The following execution plan was used to process our queries with the signa-
tures:

1. let R1 = ContentIndexSearch(<pred>);
2. let R2 = Parent(R1,<e name>);
3. let R3 = Child(R2,<e 1>);
4. let R4 = Child(R2,<e 2>).

The content predicate is evaluated by using a content index. The remaining
steps are executed by navigating in the extended signatures.

The query execution plan to process the queries through the containment
join is the following:

Tree Signatures for XML Querying and Navigation 161

Table 2. Selectivity of predicates

predicate # elements
$a/author="Michael J. Franklin" 73
$a/year="1980" 2595
$a/year="1997" 21492

1. let R1 = ContentIndexSearch(<pred>);
2. let R2 = ElementIndexSearch(<e name>);
3. let R3 = ContainingParent(R2, R1);
4. let R4 = ElementIndexSearch(<e 1>);
5. let R5 = ContainedChild(R4, R3);
6. let R6 = ElementIndexSearch(<e 2>);
7. let R7 = ContainedChild(R6, R3).

By analogy, we first process the content predicate by using a content in-
dex. Containment joins are used to check containment relationships: first the
list of occurrences of necessary elements is retrieved by using an element index
(ElementIndexSearch); then, structural relationships are verified by using the
containment join (ContainingParent and ContainedChild).

For queries with n = 1, step 4, for the signature based query plan, and steps
6 and 7, for the containment join based query plan, do not apply.

Analysis. Results of performance comparison are summarized in Table 3, where
the processing time in milliseconds and the number of elements retrieved by
each query are reported. As intuition suggests, performance of extended tree
signatures is better when the selectivity is high. In such case, improvements of
one order of magnitude are obtained.

The containment join strategy seems to be affected by the selectivity of the
element name more than the tree signature approach. In fact, using high content
selective predicates, performance of signature files is always high, independently
of the element name selectivity. This can be explained by the fact that, using
the signature technique, only these signature records corresponding to elements
that have parent relationships with the few elements satisfying the predicate
are accessed. On the other hand, the containment join strategy has to process a
large list of elements associated with the low selective element names.

In case of low selectivity of the content predicate, we have a better response
than containment join with the exception of the case where low selectivity of both
content and names of elements are tested. In this case, structural relationships
are verified for a large number of elements satisfying the low selective predicate.
Since such queries retrieve large portions of the database, they are not supposed
to be frequent in practice.

The difference in performance of the signature and the containment join
approaches is even more evident for queries with two steps. While the signature

162 P. Zezula et al.

Table 3. Performance comparison between extended signatures and containment join.
Processing time is expressed in milliseconds.

Query Ext. sign Cont. join #Retr. el
QHH1 80 466 1
QHM1 320 738 1
QHL1 538 742 1
QMH1 88 724 1
QMM1 334 832 9
QML1 550 882 60
QLH1 95 740 38
QLM1 410 1421 1065
QLL1 1389 1282 13805
QHH2 90 763 1
QHM2 352 942 1
QHL2 582 966 1
QMH2 130 822 1
QMM2 376 1327 9
QML2 602 1220 60
QLH2 142 1159 38
QLM2 450 1664 1065
QLL2 2041 1589 13805

strategy has to follow only one additional step for each qualifying element, that
is to access one more record in the signature, containment joins have to merge
potentially large reference lists.

7 Concluding Remarks

Inspired by the success of signature files in several application areas, we pro-
pose tree signatures as an auxiliary data structure for XML databases. The
proposed signatures are based on the preorder and postorder ranks and support
tree inclusion evaluation. Extended signatures are not only faster than the short
signatures, but can also compute node levels and sizes of subtrees from only the
partial information pertinent to specific nodes. Navigation operations, such as
those required by the XPath axes, are computed very efficiently. We demonstrate
that query processing can also benefit from the application of the tree signature
indexes. For highly selective queries, i.e. typical user queries, query processing
with the tree signature is about 10 times more efficient, compared to the strategy
with containment joins.

In this paper, we have discussed the tree signatures from the traditional XML
query processing perspective, that is for navigating within the tree structured
documents and retrieving document trees containing user defined query twigs.
However the tree signatures can also be used for solving queries such as:

Given a set (or bag) of tree node names, what is the most frequent
structural arrangement of these nodes.

Or, alternatively:

Tree Signatures for XML Querying and Navigation 163

What set of nodes is most frequently arranged in a given hierarchical
structure.

Another alternative is to search through tree signatures by using a query
sample tree as a paradigm with the objective to rank the data signatures with
respect to the query according to a convenient proximity (similarity or distance)
measure. Such an approach results in the implementation of the similarity range
queries, the nearest neighbor queries, or the similarity joins.

In general, ranking of search results [8] is a big challenge for XML search-
ing. Due to the extensive literature on string processing, see e.g. [6], the string
form of tree signatures offers a lot of flexibility in obtaining different and more
sophisticated forms of comparing and searching. We are planning to investigate
these alternatives in the near future.

References

1. Nicolas Bruno, Nick Koudas, and Divesh Srivastava. Holistic twig joins: Optimal
XML pattern matching. In Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data, pp. 310–321, Madison Wisconsin, USA, June
2002. ACM, 2002.

2. S. Chien, Z. Vagena, D.Zhang, V.J. Tsotras, and C. Zaniolo. Efficient structural
joins on indexed XML documents. In Proceedings of the 28rd VLDB Conference,
Honk Kong, China, pages 263–274, 2002.

3. World Wide Web Consortium. XML path language (XPath), version 1.0, W3C.
Recommendation, November 1999.

4. World Wide Web Consortium. XQuery 1.0: An XML query language. W3C Work-
ing Draft, November 2002. http://www.w3.org/TR/xquery.

5. Torsten Grust. Accelerating XPath location steps. In Proceedings of the 2002
ACM SIGMOD international conference on Management of data, 2002, Madison,
Wisconsin, pages 109–120. ACM Press, New York, NY USA, 2002.

6. D. Gusfield. Algorithms on Strings, trees, and Sequences. Cambridge University
Press, 1997.

7. J.W. Hunt and T.G. Szymanski. A fast algorithm for computing longest common
subsequences. Comm. ACM, 20(5):350, 353 1977.

8. Anja Theobald and Gerhard Weikum. The index-based XXL search engine for
querying XML data with relevance ranking. In Christian S. Jensen, Keith G.
Jeffery, Jaroslav Pokorný, Simonas Saltenis, Elisa Bertino, Klemens Böhm, and
Matthias Jarke, editors, Advances in Database Technology - EDBT 2002, 8th In-
ternational Conference on Extending Database Technology, Prague, Czech Repub-
lic, March 25–27, Proceedings, volume 2287 of Lecture Notes in Computer Science,
pages 477–495. Springer, 2002.

9. Paolo Tiberio and Pavel Zezula. Storage and retrieval: Signature file access. In
A. Kent and J.G. Williams, editors, Encyclopedia of Microcomputers, volume 16,
pages 377–403. Marcel Dekker Inc., New York, 1995.

10. Chun Zhang, Jeffrey F. Naughton, David J. DeWitt, Qiong Luo, and Guy M.
Lohman. On supporting containment queries in relational database management
systems. In Walid G. Aref, editor, ACM SIGMOD Conference 2001: Santa Barbara,
CA, USA, Proceedings. ACM, 2001.

	Introduction
	Preliminaries
	Labelled Ordered Trees
	Preorder and Postorder Sequences and Their Properties
	Longest Common Subsequence

	Tree Signatures
	The Signature

	Evaluation of XPath Expressions
	Query Processing
	Experimental Evaluation
	Concluding Remarks

