
YAPI: Yet Another Path Index for XML
Searching

Giuseppe Amato1, Franca Debole1, Pavel Zezula2, and Fausto Rabitti1

1 ISTI-CNR, Pisa, Italy,
{G.Amato,F.Debole,F.Rabitti}@isti.cnr.it

http://www.isti.cnr.it
2 Masaryk University, Brno, Czech Republic,

zezula@fi.muni.cz
http://www.fi.muni.cz

Abstract. As many metadata are encoded in XML, and many digital
libraries need to manage XML documents, efficient techniques for search-
ing in such formatted data are required. In order to efficiently process
path expressions with wildcards on XML data, a new path index is pro-
posed. Extensive evaluation confirms better performance with respect
to other techniques proposed in the literature. An extension of the pro-
posed technique to deal with the content of XML documents in addition
to their structure is also discussed.

1 Introduction

Efficient management of metadata is an important issue in Digital Library sys-
tems. Simple flat solutions to metadata collections such as the Dublin Core
cannot be applied to complex metadata models requested by advanced multi-
media digital libraries. These complex metadata models often include nested
structures, hierarchies, multiple views, and semistructured information, which
cannot efficiently be handled by techniques based on a simple term inversion or
by application of the relational databases. Instead, efficient technology for the
management of such data should be developed.

Recently, several interesting trends to processing complex metadata by means
of XML structures have been observed. Specifically, new generation digital li-
braries, such as ECHO [1] or OpenDlib [5], have chosen to encode their sup-
ported metadata with XML. Recent standards, for instance the MPEG-7 [8],
require to encode metadata in XML. Moreover, some digital libraries consider
XML documents as their native format of documents.

The obvious advantage of encoding metadata in XML is that they can easily
be exported and imported. They can also be easily read by human user in their
raw format. In addition to the documents’ content, XML documents contain
explicit information on their structures. However, efficient management of large
XML document repositories is still a challenge. Searching for information in an
XML document repository involves checking structural relationships in addition
to content predicates, and the process of finding structural relationships has been

T. Koch and I.T. Sølvberg (Eds.): ECDL 2003, LNCS 2769, pp. 176–187, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [594.962 841.96] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

YAPI: Yet Another Path Index for XML Searching 177

recognized as the most critical for achieving the global efficiency. Several XML
query languages, as for instance XPath [6] and XQuery [7], are based on the use
of path expressions containing optional wildcards. This poses a new problem,
given that traditional query processing approaches have been proven not to be
efficient in this case.

The aim of this paper is to propose a path index, that is an index structure
to support evaluation of containment relationships for XML searching. The pro-
posed index is able to efficiently process path expressions even in the presence of
wildcards, and experiments have shown an evident superiority of our technique
with respect to other approaches. An extension of the path index to deal with
the content of elements or the value of attributes is also discussed.

The paper is organized as follows. Section 2 surveys the basic concepts, and
Section 3 presents the idea of the path index. Section 4 discusses how the path
index can be extended to also deal with content. Section 5 presents a comparative
evaluation of the proposed technique. Section 6 concludes the paper.

2 Preliminaries

In this section we briefly discuss some general concepts, necessary for the rest
of the paper. We first introduce the inverted index as an access structure typi-
cally used for efficient text document retrieval. Then, we survey a technique for
processing partially specified query terms.

2.1 Inverted Index

Efficient text retrieval is typically supported by the use of an inverted index
[9]. This index structure associates terms, contained in text documents, with
items describing their occurrence. An item can be just a reference to a text
document containing the term or it might contain additional information, such
as the location of the term in the text or the term frequency. An inverted index
consists of two main components: a set of inverted file entries or posting lists,
each containing a list of items corresponding to the associated term; and a search
structure that maps terms to the corresponding posting lists. The set of terms
indexed by the search structure, that is the set of terms contained in the whole
text collection, is called the lexicon.

In order to search for text documents containing a specific term, the search
structure is used first to obtain the posting list. Then the posting list is used to
get the qualifying items.

2.2 Partially Specified Query Terms

A technique for processing partially specified query terms (queries with wild-
cards) in text databases was proposed in [3]. This technique is based on the
construction of a rotated (or permuted) lexicon, consisting of all possible rota-
tions of all terms in the original lexicon.

178 G. Amato et al.

Let us suppose that our original lexicon includes the term apple. The ro-
tated lexicon will contain the terms appleˆ, ppleˆa, pleˆap, leˆapp, eˆappl,
ˆapple, where ˆ is used as the string terminating character. The rotated lex-
icon is alphabetically ordered by using the sort sequence ˆ, a,b,c,... and it
is inserted in an inverted index using a search structure that maintains the ro-
tated lexicon ordered. This can be obtained, for instance, by using a B+-Tree.
Rotated versions of all terms in the original lexicon are mapped to the posting
list associated with the original term.

By using the ordered rotated lexicon, query patterns A, *A, A*B, A*, and
A (A, and B are sub-terms that compose the entire query term, and * is the
wildcard) can be processed by transforming the query according to the following
transformation rules:

I) A transforms to ˆA; II) *A transforms to Aˆ*; III) A*B transforms
to BˆA*; IV) A* transforms to ˆA*; V) *A* transforms to A*.

Then the transformed query terms are used to search in the rotated lex-
icon. For example, suppose that our original lexicon contains apple, aisle,
appeal, employ, staple. Figure 1 shows the obtained rotated lexicon, ordered
alphabetically. Now consider the following queries: apple, *ple, app*, *pl*,
and a*le. Figure 1 also shows how they are transformed and how the trans-
formed query terms are matched against the rotated lexicon. For instance, the
query *pl* is transformed into pl*, that matches the entries pleˆap, pleˆsta,
ployˆem corresponding to the terms apple, staple, employ of the original lex-
icon.

A drawback of this technique is the memory overhead due to the rotation.
In fact, an average memory overhead observed in [12] is about 250%. A memory
reducing variant of this method is discussed in [2]. The memory overhead is
reduced by representing the rotated lexicon as an array of pointers, one for each
position in the original lexicon. This array of pointers is sorted accordingly to
the rotated form of each term. By using this technique, [12] reports the memory
overhead of about 30%.

3 Rotated Path Index

Wildcards are also frequently used in XPath expressions. In many systems these
expressions are processed by multiple containment joins [11,4], which can be
very inefficient in case of long paths or element names with many occurrences.
We propose an alternative approach that exploits the rotated lexicon technique.
In this way, typical XPath expressions, containing wildcards, are processed effi-
ciently even in presence of long paths and high frequency of element names.

An XML document can be seen as a flat representation of a tree structure.
For example, see Figure 2 for a portion of an XML document and its tree repre-
sentation. In the figure, white nodes represent XML elements, and black nodes
represent the XML content. Additional node types can be used to represent el-
ements’ attributes – in our example we omit them for the sake of simplicity.

YAPI: Yet Another Path Index for XML Searching 179

Rotated lexicon:

Term Posting list IDs
^aisle 1
^appeal 2
^apple 3
^employ 4
^staple 5
aisle^ 1
al^appe 2
aple^st 5
appeal^ 2
apple^ 3
e^aisl 1
e^appl 3
e^stapl 5
eal^app 2
employ^ 4
isle^a 1
l^appea 2
le^ais 1
le^app 3
le^stap 5
loy^emp 4
mploy^e 4
oy^empl 4
peal^ap 2
ple^ap 3
ple^sta 5
ploy^em 4
ppeal^a 2
pple^a 3
sle^ai 1
staple^ 5
taple^s 5
y^emplo 4

Original lexicon:

Term Posting list IDs
aisle 1
appeal 2
apple 3
employ 4
staple 5

Queries:

Query term: Transformed query:
apple ^apple

ple ple^

pl pl*

app* ^app*

a*le le^a*

Fig. 1. The original lexicon, the rotated lexicon, and some queries processed on the
rotated lexicon

To identify specific elements in an XML document, nodes of the tree are also
associated with a unique identifier, which we call element instance identifier,
assigned with a preorder visit to the tree. In the remainder of this paper, XML
document of Figure 2 and the corresponding tree representation will be used as
a running example to explain the technique that we propose.

A simple possibility of indexing the structure of XML documents is to use
an inverted index to associate each pathname, appearing in an XML docu-
ment, with the list of its occurrences. For instance, in our example, the path
/people/person/address is associated with a posting list containing element
instance identifiers 8 and 16. This approach has some similarity to text indexing,
considering that the paths play the role of terms and the names of elements play
the role of characters. In text retrieval systems, each term is associated with
the list of its occurrences. Here each path is associated with the list of elements
that can be reached following the path. By analogy to the terminology used in
text retrieval systems, we call path lexicon and element lexicon, respectively, the
set of pathnames and the set of element names occurring in an XML document
repository.

By exploiting this analogy, our proposal is to use the rotated lexicon tech-
nique from Section 2.2 to build a rotated path lexicon. In this way, we are able to
efficiently process common path expressions containing wildcards, with no need
of containment joins. We call the rotated path a path generated through the rota-
tion. Note that names of attributes can also be indexed by using this technique.
In fact, they can be considered as children of the corresponding elements and

180 G. Amato et al.

<people>
 <person>
 <name>
 <fn>John</fn>
 <ln>Smith</ln>
 </name>
 <address>St. Mary Street, Boston
 </address>
 …
 </person>
 <person>
 <name>
 <fn>Bill</fn>
 <ln>McCulloc</ln>
 </name>
 <address>Queen Street, S.Francisco
 </address>
 …
 </person>
 …
</people>

John

person person

people

Smith

St. Mary Str., Boston

Bill McCulloc

Queen Str., S. Francisco

fn fnln ln

address addressname name

1

2

3

4

5

6

7

8

10

11

12

13

14

15

16

17 9

Fig. 2. An example of XML data and its tree representation

managed similarly to the elements. The character @, accordingly to the XPath
syntax, is added in front of attribute names to distinguish them from elements.

XPath uses two different types of wildcards. One is // and stands for any
descendent element or self (that is 0 or more optional steps). The other is * and
stands for exactly one element1 (that is exactly one step). Let P , P1, and P2,
be pure path expressions, that is path expressions containing just a sequence of
element (and attribute) names, with no wildcards, and predicates. In addition to
pure path expressions, the rotated path lexicon allows processing the following
path expressions containing wildcards: //P , P1//P2, P//, and //P//2. This is
obtained by using the query translation rules discussed in Section 2.2.

With a small additional computational effort, we can also process paths *P ,
P1*P2, P*, and *P*. The idea is to use again the query translation rules and
filter out paths whose length is not equal to the length of the query path.
Other generic XPath expressions can be processed by decomposing them in
sub-expressions, consistent with the patterns described above, and combining
the obtained results through containment joins.

To reduce the storage space required for the rotated path lexicon, each ele-
ment name is encoded by an unique identifier (not to be confused with element
instance identifiers introduced before) implemented, for instance, as an integer.
Thus, pathnames are represented as encoded pathnames consisting of sequences
of encoded elements, instead of strings. A specific identifier is reserved for the
path terminating element. The number of entries in the rotated path lexicon is
#PL × (avg PL len), where #PL is the cardinality of the path lexicon and
avg PL len is the average length of paths in the path lexicon, including the ter-
1 In text retrieval systems * is typically used to substitute any sequence of characters,

as we said in Section 2.2, so the XPath correspondent is // rather than *.
2 To be precise, note that P// and //P// alone are not syntactically valid XPath

expression. In fact, they should be completed as P//node() and //P//node(), for
instance. In this paper, we simplify the notation by omitting the node() function.

YAPI: Yet Another Path Index for XML Searching 181

Element lexicon: Encoded element lexicon
Term. element 0
people 1
person 2
name 3
fn 4
ln 5
address 6

Path lexicon Encoded path lexicon Posting lists:
/people /1/0 1->{1}
/people/person /1/2/0 2->{2,10}
/people/person/name /1/2/3/0 3->{3,11}
/people/person/name/fn /1/2/3/4/0 4->{4,12}
/people/person/name/ln /1/2/3/5/0 5->{6,14}
/people/person/address /1/2/6/0 6->{8,16}

Rotated path lex. Posting list ID:
/0/1 1
/0/1/2 2
/0/1/2/3 3
/0/1/2/3/4 4
/0/1/2/3/5 5
/0/1/2/6 6
/1/0 1
/1/2/0 2
/1/2/3/0 3
/1/2/3/4/0 4
/1/2/3/5/0 5
/1/2/6/0 6
/2/0/1 2
/2/3/0/1 3
/2/3/4/0/1 4
/2/3/5/0/1 5
/2/6/0/1 6
/3/0/1/2 3
/3/4/0/1/2 4
/3/5/0/1/2 5
/4/0/1/2/3 4
/5/0/1/2/3 5
/6/0/1/2 6

Fig. 3. Element lexicon, path lexicon, rotated path lexicon, and posting lists relative
to XML example in Figure 2.

minating element. In our example #PL is 6, avg PL len is 3.83̄, so the number
of entries in the rotated path lexicon is 23. Note that the number of element
instances affects only the size of posting lists. To illustrate, Figure 3 shows the
element lexicon, the path lexicon, and the rotated path lexicon, obtained from
our example, along with their respective encoding. The posting list, associated
with each pathname in the example, is also shown.

Example. Suppose the XPath expression //person/name//. The element name
identifiers associated with person and name are 2 and 3, respectively, and the
encoded query is //2/3//. According to the query translation rules, this query is
processed by searching the rotated lexicon for /2/3//. Rotated paths that qualify
for this query are /2/3/0/1, /2/3/4/0/1, and /2/3/5/0/1, corresponding to path
names /people/person/name, /people/person/name/fn, and /people/person
/name/ln. By merging their posting lists, we decide elements relevant to this
XPath expression as those associated with the element instance identifiers {3, 4,
6, 11, 12, 14}.

4 Indexing XML Data Structures and Their Content

Suppose the XPath expression /people//name[fn="Bill"]/fn. This returns
all fn elements that are children of a name element, and that are descendants
of a people root element, whose content is exactly the string Bill. To process
this query, content predicates, in addition to structural relationships, should be
separately verified. This can be inefficient since either the access to the docu-
ment, in case of non indexed content, or additional containment joins, in case
of indexed content, are required. However, the rotated path index technique can

182 G. Amato et al.

be extended in such a way that content predicates and structural relationships
can be handled simultaneously. In the following, two different implementation
directions are discussed.

4.1 Structure+Content Queries by Extending the Path Index

Content of an element can be seen as a special child of the element so it can also
be included as last element of a path. We add a special character <3 in front
of the content string to distinguish it from name of elements and attributes.
For instance, Bill will be <Bill, and the path from the root to the content is
/people/person/name/fn/<Bill. In Section 3, we proposed a similar technique
to index names of attributes.

Suppose P/<cont is a pathname, where cont is the content and P the path
from the root. The posting list associated with P/<cont (and its rotations) con-
tains the list of elements reachable via P that have content cont. This is a subset
of the posting list associated with P .

Of course, it does not make sense to index content of all elements and at-
tributes. The database administrator can decide, tacking into account perfor-
mance issues, which elements and attributes should have their content indexed.

Suppose in our example that we decide to index the content of el-
ements fn. In this case, pathnames /people/person/name/fn/<Bill and
/people/person/na me/fn/<John are added to the path lexicon. The rotated
path lexicon is also updated with the corresponding rotated paths. The corre-
sponding posting lists are {4} and {12}. Note that in this example the posting
lists contain just one element. However, if several persons whose first name is
Bill occur, the corresponding posting lists would be larger.

By using this extension, our original XPath expression can simply be pro-
cessed by a single access to the path index as:

1. let R1 = pathIndexSearch(/people//name/fn/<Bill);
2. return R1

and we are able to process XPath expressions that contain equality predicates
on specific elements or attributes, with just one access to the path index.

4.2 Structure+Content Queries by Indexing Posting Lists

Another possibility to support efficient processing of path expressions with pred-
icates on content is to organize the element instance identifiers of posting lists by
using specific access methods. For instance, each posting lists corresponding to
frequently searched elements can be indexed with a different B+-Tree that uses
content of elements as keys. This implies that elements satisfying a predicate
can be efficiently retrieved from these posting lists. This idea is illustrated in
Figure 4.
3 We use < as flag since content of an element or attribute cannot start with it.

YAPI: Yet Another Path Index for XML Searching 183

B+-Tree

B+Tree

B+-Tree

B+-Tree

Rotated
Path
Lexicon

Posting lists

Fig. 4. Some posting lists are indexed by a dedicate B+-Tree, so content predicates on
elements of these posting lists can be processed efficiently.

In this approach, a path expression can be processed in two steps. First, the
path index is searched to find the posting lists satisfying the structural part.
Then, the obtained indexed posting lists are searched through the associated
access method, using the content predicate. Posting lists that are not indexed
should be searched checking the content of each element.

Our query example /people//name[fn="Bill"]/fn can be processed with
just two index accesses as:

1. let R1 = pathIndexSearch(/people//name/fn);
2. let R2= contentIndexSearch(R1,”Bill”);
3. return R2

where we suppose that the posting list R1 associated with /people/person/na
me/fn is indexed with a B+-Tree, so it can be searched as a content index.

The advantage of this technique is that all predicates supported by the access
method used to index the posting list, such as <, >, ≤, ≥, and =, in case of
B+-Tree, can be processed efficiently.

5 Experiments

The path index was implemented by using BerkeleyDB. Specifically, the search
structure was implemented as a B+-tree with multiple keys, so posting lists
are automatically managed by BerkeleyDB. Elements in posting lists contain,
in addition to the element instance identifier, the start and the end position
of the corresponding element – start and end positions are, respectively, the
positions of the start and the end tags of elements in XML documents. In this
way, containment joins can still be used to process queries that are not compliant
to the supported path expressions.

184 G. Amato et al.

Table 1. Number of files, occurrences of specific elements, and total number of elements
in the three generated datasets.

Small Dataset Medium Dataset Large Dataset
XML files 430 4300 43000
<article> occurrences 430 4300 43000
<prolog> occurrences 430 4300 43000
<authors> occurrences 405 4037 40432
<author> occurrences 10047 98523 989752
<contact> occurrences 10047 98523 989752
<email> occurrences 9224 90729 910420
total elements 625726 5684115 56505321

We compared our path index with the containment join according to the im-
plementation from [11]. Accordingly, an Element Index was used that associates
each element with its (start,end) position and the containment join was imple-
mented as the Multi Predicate MerGe JoiN (MPMGJN). The element index was
developed as a B+-tree with multiple keys in BerkeleyDB.

Retrieval of the posting list associated with a key (a rotated path in case of
the path index, an element name in case of the element index) was implemented
with the bulk retrieval functionality, provided by the BerkeleyDB. Everything
was implemented in Java, JDK 1.4.0 and run on a PC with a 1800 GHz Intel pen-
tium 4, 512 Mb main memory, EIDE disk, running Windows 2000 Professional
edition with NT file system (NTFS).

We have used a benchmark from XBench [10] to run our experiments. Specif-
ically we have used the Text Centric Multiple Documents (TC/MD) benchmark
whose Schema diagram is shown in Figure 5. This benchmark simulates a reposi-
tory of text documents similar to the Reuters news corpus or the Springer Digital
library. It consists of numerous relatively small text-centric documents with ex-
plicit structure description, looseness of schema and possibly recursive elements.
We have modified the XBench Perl scripts to be able to control the number
of generated XML files. Then, we have generated three different datasets with
increasing size, to test the scalability of the path index with increasing number
of elements. Statistics of the three generated datasets can be seen in Table 1.

We have run the experiments using various path expressions based on the
query patterns supported by the path index. We have coded query names as
Q<p><l>, where <p> takes values between 1 and 4, in correspondence of the
query pattern tested, <l> indicates the length of the path expression, in terms of
number of element names, and can be L(ong) or S(hort). Table 2 details the test
queries, while the number of occurrences in the datatses of the element names
that we have used in the queries is reported in Table 1. We have processed Q1<l>
and Q2<l> both with path index and containment join. The other queries, Q3<l>
and Q4<l>, were only processed with the path index, since processing them with
the containment join only is not possible.

YAPI: Yet Another Path Index for XML Searching 185

Fig. 5. Schema Diagram of the used benchmark

Performance comparison between path index and containement join is shown
in Table 3 were the processing time, expressed in milliseconds, and the number
of elements retrieved by each query is reported. Processing time includes access
to the path index and retrieval of the posting lists. In case of containment join,
processing time includes access to the element index and execution of the join
algorithm (which also include retrieval of the needed posting lists).

The experiments we have performed have shown an evident superiority of the
path index with respect to the containment join. The difference in performance
can be justified by observing that the dominant cost is due to the retrieval of
the posting lists. In fact, the cost of accessing the search structures is negligible.
However, while in case of the path index just the final posting lists should be
retrieved, the containment join has to retrieve a posting list for each element
name specified in the path expressions, in order to join them. Thus as expected,
performance of the path index is practically independent on the length of the
path expression, while performance of the containment join degrades with longer
path expressions. This is evident when the size of the intermediate posting lists,
corresponding to the number of occurrences of the intermediate element names
specified in the query, is large. The path index does not need to access these
huge posting lists since it directly accesses the posting lists associated with en-
tire paths that match the query. As a consequence, the path index has also the
property of better scaling when the number of XML elements, and consequently

186 G. Amato et al.

Table 2. Queries used for the experiments

Query Pattern XPath expression
Q1L //P //authors/author/contact/email
Q1S //contact/email
Q2L P1//P2 /article/prolog//contact/email
Q2S /article//email
Q3L P// /article/prolog/authors/author//
Q3S /article/prolog//
Q4L //P// //authors/author//
Q4S //author//

Table 3. Performance comparison. Time is expressed in milliseconds.

Query Dataset Path index Cont. join #Retr. el

Q1L
Small
Medium
Large

19
75
1079

86
612
62601

9224
90729
910420

Q2L
Small
Medium
Large

19
75
1074

81
421
48268

9224
90729
910420

Q3L
Small
Medium
Large

106
906
5056

-
46269
454239
4562725

Q4L
Small
Medium
Large

106
906
5020

-
46269
454239
4562725

Q1S
Small
Medium
Large

19
75
1100

53
194
25686

9224
90729
910420

Q2S
Small
Medium
Large

19
75
1092

36
132
3351

9224
90729
910420

Q3S
Small
Medium
Large

267
590
5435

-
53119
521753
5242441

Q4S
Small
Medium
Large

105
904
4982

-
46269
454239
4562725

the size of posting lists associated with elements names, increase. In our exper-
iments, this is particularly evident for queries Q1L, Q2L, and Q1S, where, using
the large dataset, performance of the containment join becomes more than one
order of magnitude worse than the path index.

YAPI: Yet Another Path Index for XML Searching 187

6 Conclusions

We have proposed a path index that supports efficient processing of typical
path expressions containing wildcards. The proposed index structure can be
easily extended to also support path expressions containing content predicates
in addition to constraints on structural relationships. Extensive evaluations have
demonstrated the superiority of our approach to the previously proposed tech-
niques.

References

1. Giuseppe Amato, Claudio Gennaro, and Pasquale Savino. Indexing and retrieving
documentary films: managing metadata in the ECHO system. In 4th Intl. Work-
shop on Multimedia Information Retrieval December 6, Juan-les-Pins, France, in
conjunction with ACM Multimedia, 2002.

2. G. Gonnet anf R. Baeza-Yates. Handbook of data structure and algorithms.
Addison-Wesley, Reading, Massachussets, second edition, 1991.

3. P. Brately and Y. Choueka. Processing truncated terms in document retrieval
systems. Information Processing & Management, 18(5):257–266, 1982.

4. Nicolas Bruno, Nick Koudas, and Divesh Srivastava. Holistic twig joins: Optimal
XML pattern matching. In Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data, pp. 310–321, Madison Wisconsin, USA, June
2002. ACM, 2002.

5. Donatella Castelli and Pasquale Pagano. Opendlib: A digital library service system.
In Maristella Agosti and Constantino Thanos, editors, 6th European Conference,
ECDL 2002, Rome, Italy, September 16–18, 2002, Proceedings, volume 2458 of
LNCS, pages 292–308. Springer, 2002.

6. World Wide Web Consortium. XML path language (XPath), version 1.0, W3C.
Recommendation, November 1999.

7. World Wide Web Consortium. XQuery 1.0: An XML query language. W3C Work-
ing Draft, November 2002.
http://www.w3.org/TR/xquery.

8. N. Day and J.M. Martnez. Introduction to MPEG- 7 (v4.0). working document
N4675, 2002. Available at:
http://mpeg.telecomitalialab.com/working documents.htm.

9. Gerald Salton and Michael J. McGill. Introduction to Modern Information Re-
trieval. McGraw-Hill Book Company, 1983.

10. Benjamin Bin Yao, M. Tamer Özsu, and John Keenleyside. XBench – a family
of benchmarks for XML DBMSs. Technical Report TR-CS-2002-39, University of
Waterloo, December 2002.
http://db.uwaterloo.ca/˜ddbms/projects/xbench/index.html.

11. Chun Zhang, Jeffrey F. Naughton, David J. DeWitt, Qiong Luo, and Guy M.
Lohman. On supporting containment queries in relational database management
systems. InWalid G. Aref, editor, ACM SIGMOD Conference 2001: Santa Barbara,
CA, USA, Proceedings. ACM, 2001.

12. Justin Zobel, Alistair Moffat, and Ron Sacks-Davis. Searching large lexicons for
partially specified terms using compressed inverted files. In Rakesh Agrawal, Seán
Baker, and David A. Bell, editors, 19th International Conference on Very Large
Data Bases, August 24–27, 1993, Dublin, Ireland, Proceedings, pages 290–301. Mor-
gan Kaufmann, 1993.

	Introduction
	Preliminaries
	Inverted Index
	Partially Specified Query Terms

	Rotated Path Index
	Indexing XML Data Structures and Their Content
	Structure+Content Queries by Extending the Path Index
	Structure+Content Queries by Indexing Posting Lists

	Experiments
	Conclusions

