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Abstract

There is an urgent need to improve the efficiency of similarity queries. For this
reason, this thesis investigates approximate similarity search in the environment of
metric spaces. Four different approximation techniques are proposed, each of which
obtain high performance at the price of tolerable imprecision in the results. Measures
are defined to quantify the improvement of performance obtained and the quality
of approximations. The proposed techniques were tested on various synthetic and
real-life files. The results of the experiments confirm the hypothesis that high quality
approximate similarity search can be performed at a much lower cost than exact sim-
ilarity search. The approaches that we propose provide an improvement of efficiency
of up to two orders of magnitude, guaranteeing a good quality of the approximation.

The most promising of the proposed techniques exploits the measurement of the
proximity of ball regions in metric spaces. The proximity of two ball regions is de-
fined as the probability that data objects are contained in their intersection. This
probability can be easily obtained in vector spaces but is very difficult to measure in
generic metric spaces, where only distance distribution is available and data distri-
bution cannot be used. Alternative techniques, which can be used to estimate such
probability in metric spaces, are thus also proposed, discussed, and validated in the

thesis.
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