Chapter 6

Four new techniques for
approximate similarity search in
metric spaces

6.1 Introduction

In this chapter we discuss and propose new techniques for approximate similarity
search. These approaches offer a high improvement of efficiency at the price of in-
precision in the results. Our investigation focuses on approximate similarity search
of data represented in metric spaces. As previously stated, this also includes the
more specific case of vector spaces, thus our techniques can also be applied to them.
We suppose that tree-based access methods for metric spaces, as for examples M-
Trees [CPZ97] or Slim-Trees [TTSF00], are used to improve performance of similarity
search queries. The techniques that we propose can be easily applied to these access
methods by modifying their (exact) similarity search algorithms. Our results show

that inprecision can be effectively controlled still guaranteeing high performance.

125

126

6.2 Overview of the approaches

We have investigated four new techniques for approximate similarity search. They
are based on specific definitions for the approximate pruning or stop conditions (see
Section 5.3.2). Specifically, two of these approximation techniques work for nearest
neighbor queries and use a stop condition as approximation strategy. The other
two techniques work both for nearest neighbor and range queries and use a pruning

condition as approximation strategy.

First method The first technique of approximate similarity search uses a user de-
fined parameter as an upper bound on the relative error between the distances
of the query object from the objects retrieved by the exact algorithm and the
distances of the query object from the objects retrieved by the approximate
algorithm. The approximate similarity search algorithm decides which nodes of
the tree can be pruned, even if their bounding regions overlap the query region,
guaranteeing that the obtained relative error on distances does not go above
the specified upper bound. This method was defined both for nearest neighbor

and range queries and its details are discussed in Section 6.6.

Second method The second technique of approximation retrieves k approximate
nearest neighbors of a query object by returning k£ objects that statistically
belong to the set of the n (n > k) exact nearest neighbors of the query object.
The value n is specified by the user as a fraction of the whole data set. The
approximate similarity search algorithm stops when it determines, by using the
overall distance distribution (see Section 2.3.4), that the current £ retrieved

objects belong to the specified fraction of the objects nearest to the query. This

127

method was defined for nearest neighbor queries only and it is discussed in

Section 6.7.

Third method The third type of approximation is based on the pragmatic obser-
vation that similarity search algorithms on tree structures are defined as an
iterative process where in each iteration the result, that is the set of objects
retrieved, is improved until no further improvement is possible. In case of k
nearest nearest neighbor queries, at each iteration the current k£ retrieved ob-
jects are nearer than those of the previous iteration. This can be made explicit
measuring the distance between the current k-th object and the query objects.
This distance decrease at each iteration and it can be noticed that it decreases
rapidly in the first iterations then it slows down and remains almost stable for
several iterations before the similarity search algorithm stops. The approxi-
mate similarity search algorithm exploits this behaviour and stops the search
algorithm when the distance decreasing of the current k-th object seems to be
stopping. In this case a user defined value is used as a threshold to decide when
the distance decreasing can be considered to be stopping. This method was
defined for nearest neighbor queries only and its description is given in Section

6.8.

Fourth method The fourth technique uses the proximity measure, discussed in
Chapter 4, to decide which nodes of the tree can be pruned, even if their bound-
ing regions overlap the query region, guaranteeing a low probability to loose
qualifying objects. In fact, when the proximity of a region, bounding a tree’s
node, and the query region is small, the probability that qualifying objects are

found in their intersection is small. A user specified parameter is used as a

128

Method | Range queries | NN queries | Approx. strategy
First yes yes pruning condition
Second no yes stop condition
Third no yes stop condition
Fourth yes yes pruning condition

Table 6.1: Characteristics of the approximation methods

threshold to decide if a node should be accessed or not. When the proximity
is below the specified threshold the node is not accessed. This method was
defined both for nearest neighbor and range queries and we discuss it in details

in Section 6.9.

A summary of the main features of the proposed approximation methods is given
in Table 6.1.

All four techniques of approximation were experimentally tested on real and syn-
thetic data sets, and their efficiency was compared. The results obtained are encour-
aging, and efficiency improvement of even two orders of magnitude has been achieved.
In other words, whereas a precise similarity search may take several minutes, in an
approximated search this can be reduced to seconds, while the precision of approxi-
mation typically remains quite high. Consider as a preliminary illustrative example
Figure 6.1. It presents search results for 10 nearest neighbors of query objects Oy
and Oyq, separately for the exact (NN) and the proximity based approximate algo-
rithms (ANN) a proximity threshold of 0.01 in HV1 (see Section 2.5) data set. For
each retrieved object, the object identifier (OID) and its distance from the query
are reported. Objects that are simultaneously found by the exact and approximate
algorithms are typed in bold. The last column reports the costs needed to execute

the queries as the number of tree node reads. If we consider the first three objects

129

OID| OID | OID | OID | OID | OID | OID | OID | OID | OID

Dist | Dist | Dist | Dist | Dist | Dist | Dist | Dist | Dist | Dist | Cost

Oul NN | 7083 | 1561 | 7079 | 2843 | 8849 | 7077 | 6755 | 7035 | 2830 | 257 | 1465
1298.2 13124 1329.35 1359.44 1362.76 1366.64 1376.8 1390.41 1404.95 1409.77

ANN| 2843 | 7035 | 257 522 | 1206 | 839 567 | 1590 | 205 1069 | 1!
1359.44 1390.41 1409.77 1453.15 1517.73 1521.83 1549.45 1591.93 1631.66 1675.41

O42 NN | 3493 | 8623 | 1139 | 3494 | 4902 | 3954 | 3504 | 4010 | 8608 | 7255 | 1503
1o12.21 1032.24 1062.61 1063.53 L 113131 1220.31 1233.08 1238.64 1250.13

ANN]| 3494 | 3504 | 636 | 1046 | 902 520 696 480 | 1286 | 1227 | 15
1063.53 1220.31 1389.44 1389.88 1441.54 1495.74 1508.13 1597.27 L6l1.6 1615.37

Figure 6.1: Comparison between the 10 nearest neighbors obtained by the precise
and the proximity based approximate algorithms for two specific queries, using 0.01
as proximity threshold in the HV1 data set.

in the approximate response to 0,1, we can see that these objects are in the precise
response on positions four, eight, and ten. However, the cost of the approximate
algorithm is only 11 while that of the exact one is 1465. In a similar way, the first
two approximate results of query O,y correspond, respectively, to objects in positions
four and seven in the exact response. The cost of the approximate algorithm is 15

while the exact search needs 1503 tree node reads, i.e. disk accesses.

In the following, we first outline the generic approximate similarity search algo-
rithms for range and nearest neighbor queries used to implement the four approxi-
mation techniques (Section 6.3), we define the performance measures for objectively
comparing the proposed techniques (Section 6.4), we describe the testing environment
(Section 6.5), we give the details of the four approximation techniques and we discuss

the obtained results (Sections 6.6, 6.7, 6.8, 6.9).

130

6.3 Generic approx. similarity search algorithms

In this thesis we propose four techniques for approximate similarity search. This
section discusses the generic approximate range and nearest neighbors algorithms
that can be used to support them. These algorithms are obtained by modifying
Algorithms 3.3.1 and 3.3.2 for exact similarity search on tree-based access methods
discussed in Section 3.3.2. Since we define techniques that can be used in generic
metric spaces, we suppose that nodes, of the tree structure, are associated with ball
regions (see Section 2.3.2), however the algorithms are still simplified and generic, not
strictly related to any specific implementation. The pseudo-code of the algorithms
for approximate similarity range queries and approximate nearest neighbors queries

are respectively presented in Algorithms 6.3.1 and 6.3.2.

The difference between the four approximation techniques that we propose rely
on the specific definition of the pruning or stop condition. Accordingly the approx-
imation can be controlled by two different approximation parameters. The approxi-
mation parameter x, is used by the stop condition strategy, while the approximation
parameter z, is used by the pruning condition strategy. Of course, the specific mean-
ing of these two parameters and their use strictly depend on the specific techniques
used to implement the stop or the pruning condition. The generic pruning condition
Prune(Rgy, R4, zp) takes as arguments the query region R, a data region R, and the
approximation parameter z,. It returns true when the pruning strategy determines
that the node covered by the data region can be pruned according to the approxima-
tion parameter z,. The generic stop condition Stop(RS,, =) takes as arguments the

current result set RS, (the set of qualifying objects found up to the current iteration)

131

and the approximation parameter z,. It returns true when the stop strategy deter-
mines that the current result set satisfies the approximation requirements, according
to the approximation parameter x,.

When the Prune function is defined as an overlap test and the Stop function is
defined to be always false, the algorithms have the behaviour of the exact similarity
search algorithms. In the other cases, it may happen that some nodes, which contain
qualifying results, are pruned or that the algorithm is stopped before all results were

found. Therefore, false dismissal can occur.

The thresholds z, and z, are used to tune the trade-off between the efficiency
and effectiveness. Values corresponding to high performance give a less effective
approximation, because more qualifying objects may be dismissed. Values that give
very good approximations correspond to more expansive query execution since few
node’s accesses are discarded.

In all approximation techniques proposed, when z; and z, are set to zero, exact

similarity searches are performed.

6.3.1 Generic approximate range search algorithm

Our approximate range search algorithms use only the pruning condition strategy,
so they only depend on the z, approximation parameter. The generic definition of
the approximate range search algorithm is given in Algorithm 6.3.1. The algorithm
takes as input values the query region, composed of the query object O, and the

query radius 74, and the approximation parameter z,. It returns the set of objects!

!The range search algorithm presented in Section 3.3.2 returns a set of pairs (p;, O;). Here for
simplicity we omit the pointers p; to the records.

132

Algorithm 6.3.1. Range
Input: query object Oy; query radius ry; approximation parameter z,.
Output: response set range® (Og,).

1. Enter pointer to the root node into PR; empty range®»(Og,rq).
2. While PR # 0, do:
3. Extract entry N from PR.
Read N.
If N is a leaf node then:

For each O; € N do:

If d(Oq, O;) < rq then O; — range®(Oy,ry).

If N is an internal node:

For each child node N, of N, bounded by region B.(O;,r;) do:

© L N ot

10. If ~Prune(B(Oq,rq), Bc(0j,7;), xp) then insert pointer to N, into PR.
11. End

range® (0,4, 7,) = {Of, 04, ..., O{1} where O} are the objects retrieved by the algo-

rithm and [4 is the number of objects retrieved.

The main differences of the approximate range search algorithm with respect to
the exact range search algorithm (see Algorithm 3.3.1) can be seen at Steps 8, 9 and
10. The exact range search algorithm, in fact, simply checks if the data region overlaps
the query region. On the other hand, the approximate range search algorithm, if the
extracted node is an internal node (Step 8), checks the approximate pruning condition.
Each pointed node is inserted in PR, to be examined in the next iterations, if the
pruning condition is false (Steps 9 and 10). Therefore, the approximate range search
algorithm, depending on the definition of the approximate pruning condition, may
discard some nodes even if they contain qualifying objects. Of course, a good pruning

condition should suggest to discard nodes only when the chances that they contain

133

qualifying objects are very low.

6.3.2 Generic approximate nearest neighbors search algo-

rithm

The approximate nearest neighbors algorithms may use both stop and pruning con-
dition strategies so it depends on both z, and z, approximation parameters. The
generic algorithm for approximate nearest neighbors search takes as input values the
query object O, the number of neighbors required £, and the approximation param-
eters z, and z,. It returns the set of objects? nearest®:(0,, k) = {Of, 04, ..., 04}
where Of! are the objects retrieved by the algorithm. The generic approximate nearest
neighbors search algorithm is defined by Algorithm 6.3.2.

The main differences of the approximate nearest neighbors search algorithm with
respect to the exact nearest neighbors search algorithm (see Algorithm 3.3.2) can be
seen at Steps 4, 8 and 11 of Algorithm 6.3.2. At Steps 4 and 11 the approximate
pruning condition is used instead of the simple overlap test, as discussed for the ap-
proximate similarity range search algorithm. In addition, at Step 8, the approximate
stop condition is used: if the stop strategy determines that the approximate result
set satisfies the approximation requirements, according to the x; parameter, then the
algorithm stops before the natural end, eventually missing other qualifying objects.
The approximate stop condition, is accurate if it is able to stop the algorithm when

the current result set is a good approximation of the exact result set.

2As we also said for the approximate range search algorithm, differently from the algorithms
presented in Section 3.3.2, for simplicity we omit the pointers p; to the real data.

134

Algorithm 6.3.2. Nearest neighbors
Input: query object O4; number of neighbors k; approximation thresholds z, and z,.

Output: response set nearest® (0, k).

1. Enter pointer to the root node into PR, fill nearest®*s(0,, k) with k (random)
objects; determine r4 as the max. distance in nearest® (O, k) from O,.

2. While PR # (), do:
Extract the first entry N from PR. Suppose that N is bounded by region B(O;, r;).
If ~Prune(B(Ogy,rq), B(O;,1;),xp) then read N, go to 2 otherwise.

3

4

5. If N is a leaf node then:
6 For each O; € N do:

7

If d(Oy, 0;4) < rq then update nearest®:%s (0O, k) by inserting O; and removing
the most distant from Oy; set ry as the max. distance of objects in nearest™>%s (O, k)
from O,.

8. If Stop(nearest®™ % (Oy, k), x,) exit.

9. If N is an internal node:
10. For each child node N, of N bounded by region B.(O;,r;) do:

11. If ~Prune(B(Oq,rq), Bc(0j},7;), zp) then insert pointer to N, into PR.
12. Sort entries in PR with increasing distance to O,.
13. End

6.4 Efficiency and accuracy measures

Assessing the quality of an approximate similarity search algorithm involves the mea-
surement of the improvement of efficiency achieved and the accuracy of the approxi-

mate results.

Of course, the improvement of efficiency alone is not sufficient to assess the per-
formance of the approximate similarity search algorithms, because of the natural
tradeoftf between the efficiency and effectiveness. In fact, high improvement of effi-

ciency typically results in low accuracy of the approximate results. The performance

135

improvement by using approximate algorithms is obtained at the cost of degrading
the quality of retrieval, because some of the objects of the exact query response set
may not be included in the approximate one. A good approximate algorithm should
be able to provide reasonable accuracy with a high improvement of efficiency with re-
spect to the exact algorithm. Therefore, we also need some measurements to evaluate
the quality of the approximate similarity search algorithms.

In the following we discuss these two aspects and we define the corresponding

measures.

6.4.1 Efficiency

Approximate similarity search algorithms were introduced since some applications
need responses to similarity query faster than what offered by exact similarity search
algorithms. The Improvement of Efficiency, I E measures how much faster an approx-
imate similarity search algorithm is than the corresponding exact similarity search
algorithm. The improvement of efficiency is defined as

I — cost(oper)

= ———+ 6.4.1
cost(oper4) ()

where cost is a function that gives the number of tree nodes accessed during query exe-
cution, oper is either range(O,, r,) or nearest(O,, k), and oper* corresponds to the
approximate versions. Alternatively, costs could be defined as the number of distance
computations performed during the query execution, but experiments demonstrate
that the number of nodes accessed and the number of distance computations are

linearly correlated.

136

6.4.2 Accuracy

We believe that, depending on the two types of similarity queries, nearest neighbor
and range search, the quality of approximation should be evaluated from two different

points of view:

Nearest neighbor queries: in the case of nearest neighbor queries, a useful infor-
mation is the difference between the position of an object in the approximate
result set and the position of the same object in the exact result set with respect
to the query. This helps to judge how many objects were dismissed because of
the approximation. For instance, when the first approximate nearest neighbor
is the 20-th object in the exact ordering, it means that 19 objects were lost, by

the approximation.

Range queries: in the approximate range search algorithms that we propose, false
hits never occur so the approximate result set is always a subset of the exact
result set. Therefore, it is useful to consider the percentage of objects of the
exact result set that are also present in the approximate set. For instance, in
the case when the exact result set contains 200 objects, while the approximated
one contains 150, the percentage is 150/200 = 0.75, that is 75% of the exact

result set was retrieved.

According to the previous observations, we define and use in our experiments two
measurements to assess the quality of approximation. The first one, called error on
the position, EP, is used to determine the discrepancy between the position occupied
by objects in the approximate and exact sets of nearest neighbors. The second mea-

surement, called number of exact results, NE, is used to determine the percentage of

137

objects shared by the exact and approximate result sets of range queries.

In order to provide a more formal definition of these measurements, we need
the following notation. Given a metric space M = (D,d), we intend to support
similarity search (range and nearest neighbor) queries on a set DS C D of n ele-
ments. The exact range search retrieves the set range(O,, ;) = {01, Os, ... O;} with
! < n, and d(0,,0;) < d(O,,0;), for i < j. The approximate range search search
algorithm retrieves the set range™(Oy,r,) = {Of,04,...0,}, where I, < | and
d(Og4, Of) > d(O,, O;). In our approximate range search we have that range® (0, 7,)
C range(Oy,1,), since false hits never occur. The nearest neighbors search re-
trieves k objects nearest(Oy, k) = {O1, Os,... Ok} with d(O,, O;) < d(Oy, O;), for
1 < j. The approximate nearest neighbors search algorithm also retrieves k objects,
nearest®™ % (0, k) = {04, 04,...04}, where d(O,, O) > d(O,,0;). We can now
provide a definition of EP and NE.

EP: To compute EP we first consider EP; as the position error of the i-th object O
of the approximate set. It is computed as the difference between the position
of the object in the exact result set and the approximated one, divided by the
cardinality of the whole data set (otherwise, this measurement would depend
on the size of the data set considered). It is easy to show that the position of
object Of! in the exact result set nearest(O,, k) is #(range(O,, d(O,, Of))).

Therefore, the position error for the i-th approximate object is

#(range(oqv d(Otn 0;4))) — 1

Bh= #(DS)

The position error EP is obtained as the average of the position errors of all

138

objects in nearest®*s (0, k)

k
. EP,
EP — Zz:l)

. (6.4.2)

NE: To compute NE we have to obtain the percentage of objects of the exact result
set that are included in the approximate result set. This is simply the number of
objects contained in range® (O, r,) divided by the number of objects contained

in range(O,,)
#(range® (O, 7y))

NE = i range(0,,1))

(6.4.3)

It is worth noting that in other works [AMNT98] the measurement used was the
relative error on distances. This gives the percentage of error on the distance from
the query object of the approximate result with respect to the exact result. For the

nearest neighbor search it is defined as

_ 4U04,0q) —d(On,0q) _ d(04,0q)
d(On,Oq) d(Ow,0q)

where O 4 is the approximate nearest neighbor, Oy is the real nearest neighbor, and
Og is the query object. This measurement can be easily generalized to the case of
k-nearest neighbors search and range queries.

However we believe this measurement not to be suitable to objectively asses the

quality of an approximate similarity search algorithm for three reasons:
i) It does not give an idea of the number of object missed.
ii) In case of high dimensional vector spaces it tends to give good results in any case.

iii) Results obtained using different data sets might not be directly compared.

139

0,2 -
0,18 -
0,16 -
0,14 -
0,12

0,1 ~
0,08 -
0,06 -
0,04 - d(Oy,0,) d(0,,0,)
0,02 -

0 T T T T b \
0 20 40 60 80 100 120

distance

density

Figure 6.2: The relative distance error is not a reliable measure of the approximation
accuracy. Even though the relative distance error is small, almost all objects are
missed by the approximate search algorithm.

Let us discuss these three points. i) the relative error on distances gives the
percentage of error on the distance of the approximate result with respect to the
exact result. However, it does not give any suggestion on the amount of objects
missed by the approximate algorithm, since it does not take into account distribution
of distances. Let suppose that the distance between the first and the second nearest
neighbor is large. Let also suppose that the approximate search algorithm misses
the first nearest neighbor and returns the second. In this case the relative error
on distances is high even if just one object was missed. Vice versa, suppose that
relative error on distance is small, but distances of the approximate nearest neighbor
O4 and the exact nearest neigbor Oxn from Og are such that almost all remaining
objects are included in between, as depicted in Figure 6.2. In this case the small

relative error is misleading since all objects are in fact missed. ii) in high dimensional

140

vector spaces all objects tend to have similar distances. It is easy to show that as a
consequence of the central limit theorem [HPST71], the peak of the distance density
tends to move toward high values of distances as the number of dimensions increases.
For illustration consider again Figure 6.2. The consequence is that the relative error
on distances tend to be smaller anyway, since the farthest object is always relatively
close to the nearest object. iii) the relative error on distances does not take into
account the range of distances of the specific data set considered and its distance
distribution. A particular relative error, considered to be large in a certain data set,
might be considered negligible in a data set where the range of distances is much

larger, or distances are distributed differently.

6.5 Experimentation settings

We have implemented the proposed approximate similarity search algorithms in the
M-tree [CPZ97| framework. The approximate similarity search algorithms replaced
the original search algorithms of an existing C++ implementation of M-Tree — the
original M-tree code is available from http://www-db.deis.unibo.it /research/Mtree/.

Data sets UV HV1 and HV2, described in Section 2.5, were used as the test-
bed. We executed similarity range queries with radii such that the smallest and the
largest radii retrieved approximately between 1% and 20% of objects in the data sets.
Nearest neighbors queries were executed varying k between 1 and 50.

For every obtained configuration, various values of =, and z, were tested. The
used values depend on each specific approximation strategy and are specified later,
when the strategies themselves are defined. In order to reduce statistical errors, each

approximation parameter was tested for 50 different query objects, using the same

141

radius in case of range queries, or the same £ in case of nearest neighbor queries.

Query objects were not part of the data set, but followed the same data distribution.

Average values were computed for NE, EP, and the improvement of efficiency
IE. For range queries we provide graphs where we show how IE depends on the
approximation parameters, how IE depends on NE and how NE depends on the
approximation parameters. For nearest neighbor queries we provide graphs where we
show how IE depends on the approximation parameters, how IE depends on EP

and how EP depends on the approximation parameters.

6.6 Method 1: Approximate similarity search us-

ing relative error of distances

To improve efficiency of similarity search algorithms, access methods for metric spaces
partition the searched data and bound such elements of the partition by ball regions.
Regions are then hierarchically stored in nodes of a tree. Search algorithms find
qualifying objects by only accessing nodes corresponding to regions that overlap the
query region. In fact, regions that overlap the query region may potentially contain
objects that are also covered by the query regions, while regions that do not overlap

the query region can be discarded.

Given a query region B(O,4,r,) and a data region B(O;,r;), the simplest overlap
test, to decide if the data region (the corresponding node of the tree) should be
accessed, is to check if the distance between the centers of the regions is smaller or

equal than the sum of their radii as follows

142

d(Oq, Oz) < rg+ri. (661)

In M-trees [CPZ97], as discussed in Section 3.4.4, this test is further improved.
Let B(O,,rp) be the parent region of B(O;,1;), so that the region B(O,,r,) cov-
ers B(O;,r;), and the node corresponding to B(O,,,) is accessed before the node
corresponding to B(O;,7;). The overlap test in Equation 6.6.1 is not needed to be
performed, and the data region can be immediately pruned, when the difference be-
tween the distance of O, from O, and the distance of O; from O, is greater than the

sum of the radii r, and r;, that is when

|d(Oy,0,) — d(O4,0,)| > ry + . (6.6.2)

Note that, in M-trees it is possible to store in the node the distance d(O;, O,)
of the object O, from each entry (from the centers O; of the corresponding covered
regions). Moreover, the distance d(O,, O,) between the parent object O, and the
query object O, is computed when the node is accessed, before accessing its entries.
Therefore, previous test in Equation 6.6.2 allows the search algorithm, in some cases,
to discard a region without even computing the distance between its center and the
query object d(Oy, 0;).

These two pruning tests can be conveniently modified to obtain approximate sim-
ilarity search algorithms, based on an approximation in the pruning condition, where
the result set is constrained by a user-defined relative error of distances €. The idea

to obtain this is the following.

Let Oy be the nearest neighbor of 04, and O4 some other object in the searched

143

collection. Obviously, provided 0 < d(On, O,) < d(Oy4, O,), the equation

d(O4,0,)

SAVA e
dO0n, 0, 7€

defines that the distance from O, to O4 is (1 + €) times the distance from O, to Oy.
Now assume that Oy4 is the approzimated nearest neighbor of O,. In such case, €
represents the relative error of the distance approximation, obtained considering O 4
as the nearest neighbor of O, instead of Oy.

Using the relative error of the distance approximation € as an upper bound we
can define an object O4 to be an (1+¢)-approzimate-nearest-neighbor [AMNT98] of
object Oy, if its distance from O, is within a factor of (1 + ¢) of the distance of the

true nearest neighbor Oy, that is when

d(O4,0y)
—— < 1+e
d(On,0q) —

This idea can be generalized to the case of the j-th nearest neighbor of Oy, for
1 < j < n, where n is the size of the database. Using respectively O’A and Of\, to

designate, the j-th approximate and the nearest neighbors, the constraint should be

modified as follows
m <l+e
(O, Oq)
If this constraint is satisfied, Oﬂl is called the (1+€)-j-approzimate nearest neighbor of
O,. However, even if d(Oy, 0%,) is unique for a given Oy, there may be several objects
in the database which, when considered as OZ‘, satisfy the previous equation. This
means that the candidate set for approximate results is not necessarily singular. In

the limit case, d(Q, 0%) = d(Q, O%) or even 0% = O%.

To see how the search pruning tests of M-trees can be relaxed by respecting a

144

relative distance error €, let us consider another form of Equations 6.6.2 and 6.6.1 as

follows:

<1 (6.6.3)

and

Id(op,oq)—tzq(oi,op)l—n <1 i[Oy, Og) = d(0:, Op) | =ri > 0 (6.6.4)
false elsewhere

Looking at these fractions, the numerators specify, the distance to the k-th nearest
neighbor of O, discovered so far, in case of £ nearest neighbors search, or the maximum
accepted distance from Oy, in case of range search. In case of k nearest neighbors
search, provided the search has not finished, this distance can also be considered as
the distance to the current approximate neighbor. The denominators, on the other
hand, put the lower bounds (using the corresponding information about distances at
hand) on possible nearest neighbors in the region B(O;,r;) with respect to O,. In
other words, the denominators represent the minimum distance that an object in the
given region might have, with respect to O,. Naturally, if the lower bounds (i.e. the
denominators) are higher than the current radius of Oy, the region considered cannot
contain any qualifying object and therefore can be ignored in the search from this
point on.

In order to modify these tests to the case of approximate search, that is when

€ > 0, the lower bounds can be relaxed by the relative factor € in the following way.

Tq
— <1 .6.
d(Oi,Oq)—Ti< +e€ (665)

and

145

Figure 6.3: The region B(O;,7;), its parent region B(O,,7,), the query region
B(Oy,74), and the reduced query region B(O,,7,/(1 + €))

Too oo < 1+e if [d(0p,0,) — d(0i,0,) | =1 > 0

(6.6.6)
false elsewhere
Naturally, relaxing these tests in the above way can never increase the similarity
search costs, because both the number of distance computations and the number of
node reads can only be reduced. In fact, relaxing the pruning tests corresponds to
use a smaller query region B(O,,7,/(1 + €)), instead of the original query region, as

shown in Figure 6.3.

Let us call ePrune(B(Oy,714), B(O;,7;),€) the approximate pruning test defined
in Equation 6.6.5 and ePrePrune(B(Og4,14), B(O;,7;),€) the one defined in Equation

6.6.6. The pruning condition of Algorithms 6.3.1 and 6.3.2 is defined as follows:

146

Prune(B(Oy,1q), B(O;,73),xp) = if ePrePrune(B(Oy,14), B(O;,7:), xp)
return irue
else
return ePrune(B(Oy,r,), B(O;, i), Tp)
This method uses only the pruning condition, therefore the stop condition is always

false:

Stop(RS,, zs) = false

We have tested this method both with range and nearest neighbor queries. The

obtained results are discussed in the next section.

6.6.1 Results

Results of the tests performed by using the relative distance error based approximate
similarity search algorithms are sketched in Figures 6.4, 6.5, and 6.6 for range queries
and in Figures 6.7, 6.8, and 6.9 for nearest neighbor queries.

Using this approximation technique, the threshold z, is interpreted as the upper
bound on the relative error of the distances in the approximate result set with respect
to the exact result set. In these experiments we ranged the threshold in the interval
between 0 and 8. The approximation threshold z, for the stop condition was not
used, since the stop condition is always false.

A first general observation on the obtained results is that no high improvement
of efficiency is obtained with this method. The approach tends to saturate before

than valuable improvement of efficiency is obtained. In fact, even if high values of

IE

IE

HV 1 - Range search

1.9

W

1.8
1.7

e

el

1.6
15

/0/'

1.4

s el add

1.3
1.2
1.1+

s il

-e-r=1800
- r=2200
-A-r=2600
-o-r=3000

Threshold

HV 1 - Range search

1.9

18

1.7

1.5

1.4
13

1.2

-+-r=1800
-=-r=2200
-A-r=2600
-o-r=3000

11

NE

HV 1 - Range search

-+-r=1800
& r=2200
-A-r=2600

-e-r=3000

Threshold

147

Figure 6.4: Improvement of efficiency (IE) as a function of the proximity threshold

(z,) and the fraction of exact results (NE). Range queries, HV1 data set.

148

HV 2 - Range search

-+-r=0.6384
-2 r=0.7896
-4-r=0.9408
-0-r=1.092

Threshold

HV 2 - Range search

-+-r=0.6384
- r=0.7896
-4-r=0.9408
-0-r=1.092

-+-1=0.6384
& r=0.7896
-4-r=0.9408
--r=1.092

Threshold

Figure 6.5: Improvement of efficiency (IE) as a function of the proximity threshold
(z,) and the fraction of exact results (NE). Range queries, HV2 data set.

UV - Range search

1,25
1,2
~+-1=340
1,15 -660
W - r=
11 - -4 r=980
-0-r=1300
1,05 ~
1
4
Threshold
UV - Range search
1,25
1,2
115 - ri340
L = r=660
11 -4 r=980
-o-r=1300
1,05 -
1
UV - Range search
1
0,9
0,8 -
0.7 --r=340
0,6
W o & r=660
z Y —
e
03 1=
0,2
0,1
0 ‘
0 4
Threshold

149

Figure 6.6: Improvement of efficiency (IE) as a function of the proximity threshold

(z,) and the fraction of exact results (NE). Range queries, UV data set.

150

HV 1 - NN search

16

k=1
= k=3
-4 k=10
-o- k=50

1 T T T 1
0 2 4 6 8
Threshold
HV 1 - NN search
1.6
1.5 a0®®

1.4 f;/VM - k=1
13 k=3

w
-4 k=10
1.2 - k=50
11
l T T T T
0 0.001 0.002 0.003 0.004
EP
HV 1 - NN search
0.0045
0.004 -*
0.0035 //'
0.003 o ~+ k=1
o 0.0025 " = k=3
Y 0.002 e -4 k=10
0.0015 o - k=50
0.001 g .
0.0005
O T T 1
0 2 4 6 8

Threshold

Figure 6.7: Improvement of efficiency (IE) as a function of the proximity threshold
(z,) and the position error (EP). Nearest neighbor queries, HV1 data set.

151

HV 2 - NN search

k=1
= k=3
-4 k=10
-o- k=50

1 T T T 1
0 2 4 6 8
Threshold
HV 2 - NN search
2.4

- M
2 /././’/T -+ k=1
1.8 + & k=3

w

16 | -4 k=10

N 4 - k=50
1.4
12

1 T T T 1

0 0.0005 0.001 0.0015 0.002
EP
HV 2 - NN search

0.002
0.0018 2
0.0016 //
0.0014 / k=1
0.0012 -

& 0,001 o = k=3
0.0008 e k=10
0.0006 s & k=50
0.0004 /'/ A
0.0002 n

g etec s s e FFEE S SC)
0 2 4 6 8

Threshold

Figure 6.8: Improvement of efficiency (IE) as a function of the proximity threshold
(z,) and the position error (EP). Nearest neighbor queries, HV2 data set.

152

UV - NN search

1.04
/._./.,_./.—H
1.035

r./.,.a/'
1.03

/ k=1
1.025 /' -3

1.02

0 -+ k=10

1.015 - o K=50
1.01

IE

1.005 -
1 T T T 1
0 2 4 6 8
Threshold
UV - NN search
1.04

PP S i
1.035

1.03 “rkr'
1.025)/./ k=1
" - k=3

1.02 -4 k=10
1.015 zgp““ o ke50
1.01
1.005 r
1 \ \ \ \ \ \

0 0.001 0.002 0.003 0.004 0.005 0.006
EP

IE

UV - NN search

0.006

0.005

0.004 // k=1
- k=

0.003 / - tzio

0.002 - k=50

0.001 f N

EP

Threshold

Figure 6.9: Improvement of efficiency (IE) as a function of the proximity threshold
(z,) and the position error (EP). Nearest neighbor queries, UV data set.

153

the threshold are used, no considerable improvement is achieved. The graphs show
that the best results where obtained in the HV2 data set, with range queries, where
the approximate range search was executed only five time faster than the exact range

search.

Another observation is that there is not evidence of a common trend in the different
data sets that we have used. In fact, in case of range queries, the graphs relating
NE with IE show that in HV1 performance degrades when the radius of the query
increases, while in HV2 and UV performance degrades when the radius decreases.
On the other hand, in case of nearest neighbors queries, the graphs relating E P with
IE show that in HV1 and HV2 performance degrades when £ increases, while in
UV performance degrades when k decreases. This means that in order to tune the
algorithms, to optimize performance, a deep knowledge of the used data set should

be obtained, and no general guidelines can be exploited.

Let us consider specifically the behavior of range queries. In HV1, the best results
where obtained when the radius was small. For instance, when the query radius was
1800, a query was executed on average 1.9 times faster with NE = 0.2, that is 20%
of objects retrieved by the exact search were found by the approximate search. In
HV2, the best results were obtained when the radius was large. In fact, when the
query radius was 1.092, improvement of efficiency was 3.7 with a value of the the NE
measure of 0.2. In case of the UV data set, again, the best results were obtained
when the radius was large. In fact, when the query radius was 1300, improvement of

efficiency was 1.2 and the NFE measure was 0.2.

Let us now consider results of nearest neighbors queries. In HV1, the best results

where obtained when k was small. In fact, when k& was 1, queries were executed

154

on average 1.43 times faster, with EP = 0.0001, that is, since HV1 contains 10000
objects, the approximate nearest neighbor was on average in the 2-nd position. In
HV2, again the best results were obtained when k£ was small. In fact, with k£ set to
1, improvement of efficiency was 1.6 with a value of the the £ P measure of 0.00005,
that is, in almost all cases the real nearest neighbor was found. Finally, in case of the
UV data set the best results were obtained when k£ was large. In fact, with £ set to
50, improvement of efficiency was 1.027 and the E'P measure was 0.001.

Notice the dependence between the threshold and the NE measure in Figures
6.4, 6.5, and 6.6. NE can be directly controlled by the approximation parameter,
independently of the radius of the query. However this property cannot be observed
for the nearest neighbors query. In fact, it can be noticed in figures 6.7, 6.8, and 6.9,
that, with the same value of z,, when k is set to 50 the error on the position is on

average much higher than using smaller values for k.

6.7 Method 2: Approximate similarity search us-

ing distance distribution

As discussed in Section 6.3.2, the k-nearest neighbors search algorithm obtains the
final result set by improving iteration after iteration a current result set, say RS..
In fact, in every iteration, if a new object O is found whose distance from the query
object Oy is shorter than that of some of the objects in RS,, then the k-th object Oy
in RS, is removed and O is inserted in RS.,.

The idea at the basis of the approximate similarity search technique discussed in

this section is to stop the search algorithm when the objects of RS, belong to a user

155

specified fraction of the closest object to the query object O,. As an example, let
us suppose that the considered data set DS contains 10000 objects and that objects
01, Og,...,010000 € DS are ordered with respect to their distance from the query
objects O,. If the user chooses 1/200 (that is 0.5%) as the wanted fraction, then the
algorithm should stop as soon as all objects in RS, belong to the set {O1, O, ..., O5}
of the 50 closest objects to O, (since 10000/200 = 50).

The previous idea can be realized by using a probabilistic approach and exploiting
the overall distance distribution (see Section 2.3.4) of the objects of the considered
metric space. Let suppose that we have a metric space M = (D, d). The distribution
function Fp,(z) (the distance distribution relative to O;, or the O;’s viewpoint) gives
the probability that chosen a random object O from D, its distance from O; is smaller
than z, that is Fp,(z) = Pr{d(0;, O) < z}.

Let us suppose that our data set DS C D contains a sample of n objects of D
selected in such a way that for any O;, belonging to DS, its distance distribution
Fo,, computed considering the objects of DS only, is the same than that computed
considering all objects of D?. According to this, Fp,(z) represents the fraction of
objects in DS for which the distance to O; is smaller than or equal to z. In fact,
since the number of objects in DS is n, then the expectation is that n- Fp,(z) objects

should have a distance to O; not greater than x.

Let us now consider the k-nearest neighbor search algorithm and the current
result set RS, obtained at a certain intermediate iteration. Let O be the current

k-th object in RS, and d(O,, OF) its distance from O,. As a consequence of previous

3This can be generally considered true when the number of objects of the data set is large. In
these cases we can suppose that the data set characterizes the entire metric space which it belongs
to (see Section 2.3.4).

156

0,9 -
Fraction of the data set

0,8 - whose distances from O,
07 - are smaller than d\O,. 0%)

F, \x)

0,6 -
0,5 ~
04 -
0,3 1 d\o,.0F)

0,2
0,1 ~

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Figure 6.10: An estimation of the fraction of the objects closest to O, whose distances
from O, are smaller than d(O,, OF), can be obtained by using Fo,_(z).

discussions, we have that Fo_ (d(O,, OF)) corresponds to the fraction of objects in
DS whose distances from O, are smaller than or equal to d(O,, OF), see Figure 6.10.
Since all other objects in RS, have a distance from O, smaller or equal than d(O,, OF)
(since OF is the k-th object), then all objects in RS, are included in that fraction.
For instance, when Fp_(d(O,, OF)) = 1/200, RS, is expected to be included in the
set corresponding to the 0.5% of the objects closest to O,,.

This behavior can be exploited to obtain an approximate nearest neighbor search
based on a stop condition. In fact, here the user can specify the value of the approxi-
mation parameter x, corresponding to the wanted fraction, and the stop condition is

defined as follows:

StOp(RSC,IES) = FOq (d(0q7 Of)) < @

157

where OF is the k-th object in RS.,.

Of course, since the stop condition may only stop the algorithm 6.3.2 earlier, it
might only reduce the cost with respect to the exact similarity search. However, when
zs < Fop,(d(Oy, O%)), where O% is the exact k-th nearest neighbor, no improvement
is obtained and the exact similarity search is performed. In particular, when z, =0
the exact similarity search is always performed.

So far, we have assumed that the distribution function Fp, is known. However
computing and maintaining this information for any possible query object is totally
unrealistic — query objects are not known a priori. A solution is to use, instead of
Fo,, the overall distance distribution defined as F'(z) = Pr{d(0O;,03) < z}, where
O; and O; are random objects of DS. In fact, as discussed in Section 2.3.4, F' can
be reliably used in these cases as a substitute of any Fp,, given the high index of
homogeneity of viewpoints in typical data sets. Furthermore, obtaining F' does not
present hard problems since it should be computed only once in O(n?), where n is
the size of the considered data set.

The resulting stop condition uses the overall distance distribution F' and is con-

sequently defined as follows:

StOp(RSC,:Es) = F(d(0q7 Of)) < T

The pruning condition performs the usual exact overlap test, since this approxi-

mation method is only based on a stop condition:

Prune(B(Og,14), B(O;, 1), 2p) = d(Oy, 0;) > 14 + 131

where, of course, the parameter z, is not used.

158

6.7.1 Results

Results of the tests performed using the approximation method that exploits distance

distribution are shown in Figures 6.11, 6.12 and 6.13.

The approximation threshold x, specified by the user, is interpreted as the fraction
of the objects closest to the query which the current result set should belong to when
the algorithm is stopped. Here the approximation threshold ranges in the interval
between 0 and 0.07 (that is a fraction corresponding to 7% of the objects closest to
the query). The approximation threshold z, for the pruning condition is not used, as

we said previously.

A general observation is that the approximate algorithm degrades its performance
when the number of objects retrieved increases. In fact when k is set to one, the
improvement of efficiency almost arrives up to 800 (that is almost three orders of

magnitude), while when % is set to 50 the improvement of efficiency arrives up to 45.

Very good results were obtained with HV1 and HV2, even though HV1 gave the
best performance. With these two data sets, on average, improvement of efficiency up
to 2 orders of magnitude was obtained, still maintaining good quality search results.
However, in UV was difficult to obtain improvements comparable with the other two
data sets. For instance, in HV1 the approximate algorithm can find the nearest
neighbor 423 times faster with £EP = 0.004. This means that, if the exact algorithm
needs 7 minutes to find the nearest neighbor, the approximate algorithm needs only
one second to find an approximate nearest neighbor that is, on average, the 40-th
(out of 10000) actual nearest neighbor. In HV2, the approximate nearest neighbor
can be found on average 100 times faster with an error on the position of 0.004. On

the other hand, in the UV data set the nearest neighbor can be found only 45 times

159

HV 1 - NN search

800
700
600
500
W 400
300
200
100

k=1
- k=3
-+ k=10
-o-k=50

0 0,02 0,04 0,06
Threshold

HV 1 - NN search

/
600 [/
W 400 / = k=3
ayd

-4 k=10
/

-o-k=50

0 0,01 0,02 0,03

0,035
0,03 /‘

0,025 e

%" D

0,02 - k=3
0,015 /4.;/-/74::4@ -+-k=10
0,01 -o- k=50

0,005
0 T T T
0 0,02 0,04 0,06
Threshold

EP

Figure 6.11: Improvement of efficiency (I E) as a function of the derivative threshold
(z5) and the position error (EP). Nearest neighbor queries, HV1 data set.

160

HV 2 - NN search

800
700
600
500 - ';:1
- k=3
w
w 400 . k=10
300 & k=50
200
100
0
0 0.02 0.04 0.06
Threshold
HV 2 - NN search
-+ k=1
& k=3
-4 k=10
-o- k=50
0 0.005 0.01 0.015 0.02 0.025
EP
HV 2 - NN search
0.025
0.02
k=1
& 0.015 = k=3
0.01 k=10
-o- k=50
0.005
0 |
0 0.02 0.04 0.06 0.08
Threshold

Figure 6.12: Improvement of efficiency (I F) as a function of the derivative threshold
(z5) and the position error (EP). Nearest neighbor queries, HV2 data set.

161

UV - NN search

100
o /H—WM—H
80 poad
;8 4 P <+ k=1
W sg - /A——A/- - k=3
T 0 o -4+ k=10
30 11 A k=50
20 /:;(/‘/::/rﬁ*‘f o—o—0_0
10 ®
0 M T T T 1
0 0.02 0.04 0.06 0.08
Threshold
UV - NN search
100

0 ol
; g/jl-r' o [
gg, /./‘//ﬂ/- k=3

= 20 - k=10
| R o k=50
E e —

0 0.005 001 0.015 0.02 0.025 0.03
EP

UV - NN search

0.03
0.025 /r_‘ﬁ?:?
0.02 k=1
o = k=3
w 0.015 -4 k=10
0.01 -o- k=50
0.005
0 T T T 1
0 0.02 0.04 0.06 0.08

Threshold

Figure 6.13: Improvement of efficiency (I E) as a function of the derivative threshold
(z,) and the position error (EP). Nearest neighbor queries, UV data set.

162

faster with EP = 0.004.

Figures 6.11, 6.12, and 6.13 show also the dependency between the approximation
threshold and the EP measure. All curves are close enough to allow the user to
control the quality of the approximation almost independently of k. Notice also that,
since the dependency is almost linear, the user can linearly control the quality of
approximation using the threshold parameter. However the improvement of efficiency,
as we said before, strictly depends on the value of k. So, while the user might ignore
k to control the quality of approximation by using the approximation parameter, she
should also consider the value of £ when she wants to control the improvement of

efficiency.

6.8 Method 3: Approximate similarity search us-
ing the slowdown of distance improvement

The algorithm for nearest neighbors search (Algorithm 6.3.2) builds the result set
through several iterations. In every iteration a new current result set can be obtained
by improving the one resulting from the previous iteration. In fact, in every iteration
some of the k£ current nearest objects, found in previous iterations, are possibly re-
placed by new nearest objects found in current iteration. This improvement can be
observed as a reduction of the distance d(Og, O,) of the k-th current object Oy from
the query object. In fact, distances of the new objects found from the query object
are shorter than distances of the replaced objects.

Let us define d" (iter) as follows

do® (iter) = d(Oy(iter), 0,) /dm

163

0,38
0,36

\
0,34
0,32 \
0,28 ﬁﬁﬁ

0,26
0,24
0,22

0,2 ‘ \ \
0 500 1000 1500

Iteration

Distance

Figure 6.14: Trend of d5,""(iter), when k is 3, in HV1.

where Og(iter) is the k-th object in the iter iteration and d,, is the maximum distance
in the considered data set. d9¢"(iter) is the function representing the normalized®
distance of the current k-th object from the query object O, at the iteration iter. As
an example, Figure 6.14 shows the graph of dgq’k(iter) for a 3 nearest neighbors search
in data set HV1 for a particular query object. Considering this figure we can make
some observations. On several iterations, the algorithm is not able to improve the
current result set since no better objects are found. In fact, dgq’k(iter) mainly assumes
constant values in consecutive iterations. The iterations where an improvement of the
current result set is obtained are a minority of the whole iterations. It can also be

noticed that the improvement is very fast in the first iterations of the algorithm, then

“Different data sets have different range of distances. By the normalization, obtained by dividing
the actual distance by d,,, the function is defined in a range that does not depend on the particular
data set used.

164

it slows down and almost no improvement, or negligible improvement, occurs after a

certaln iteration.

We exploit this behavior of the nearest neighbors search algorithm to define a new
approximate similarity search algorithm. The idea here is to stop the similarity search
algorithm before the natural end, when the improvement slows down below a certain
threshold specified by the user. Given the nature of this approximation technique, it
cannot be applied to the range search algorithm.

Unfortunately, dgq’k(iter) is a function that is not known a priori, in fact, its
values become available as the search algorithm proceeds. In addition, as previously
observed, it is a piecewise constant function, that is, there are portions where it is
rigorously constant. Therefore, it cannot be directly used to effectively infer when
improvement slows down. For instance, its derivative would be 0 as soon as in some
consecutive iterations no improvement occurs, which may also happen when the al-
gorithm is very far from the final result. To solve these problems we compute, as the
algorithm proceeds, a regression curve, say regq(iter), which approximate dgq’k(iter),
and we use it for deciding if the algorithms should be stopped. When the derivative
regl(iter) of regy(iter) is above® the user specified (negative) threshold z;, in corre-
spondence of the current iteration, the algorithm stops. The parameter x is used to
control the tradeoff between approximation quality and performance improvement.
Of course, small absolute values of x, result in bad performance but high approxima-
tion quality, since the algorithm might stop close to the natural end. Large absolute
values of z,, on the other hand, result in high performance and bad quality, since

the algorithm may stop too early, when the current result set is not close to the final

SNote that regg(iter) will be defined to be monotonically decreasing so it will always have a
negative derivative

165

result set. When the threshold is set to 0 the algorithm behaves as the exact nearest

neighbors search, since the regression curve is defined in such a way that it has never

a positive derivative.

This method is only based on the stop condition so the pruning condition performs

the usual (exact) overlap test to discard a node only when its bounding region does

not overlap the query region:

Prune(B(Og4,1,), B(O;,13:),p) = d(Oy, 0;) > 14 + 1

The stop condition, on the other hand, iteration after iteration, refines the regres-

sion curve and checks if the derivative of the regression curve, on the current iteration,

is above the approximation threshold:

Stop(RS,, xs) =

if this is the first iteration
set iteration =1
else
set iteration = iteration + 1;
let Oy be the k-th element of RS,;
compute regy(iter)
using the new point (iteration, d(Oy, O,))
in addition to the points previously used;
if iteration ==
return false
else

return (reg)(iteration) > x;);

The mathematical details about the computation of the regression curve regy(iter),

which approximates the trend of the improvement of distances, is discussed in next

166

subsection.

6.8.1 Approximating the improvement of distances by a re-

gression curve

The function ds,** (iter) cannot be directly used to decide when the search algorithms
can be stopped, since it is a discrete piecewise constant function. However, dgq’k (iter)
has a shape that can be effectively approximated by a continuous function. We
obtain such an approximation by performing the linear regression [Hal52] of points
of dgq’k (iter) using the method of the discrete least squares approximation [BFR78).

Let us suppose that we know the values of a discrete function f(i) when ¢ =
Z1,...,z;. Then, we can chose n (n < j) real functions ¢, (3), ..., ¢, () to obtain, as a

linear combination, a regression curve (i) that approximate f(7):

() = ¢t - p1(1) + oo + ¢ - (1)

The least squares method says that ¢}, ..., ¢/, should be chosen such that ¢(c}, ..., c},),

defined as follows, is minimum:

¢(Clv PP Cn) = Z (Z Cs QDS(IEZ') - f(%))

i=1 s=1

Let us see how this can be applied to our problem. Let us suppose that search
algorithm arrived at iteration j. This means that we have the pairs (i, dy"" (i)), for
1 < < j, where i corresponds to the i-th iteration and d ** (i) to the distance of the
k-th object from the query in the i-th iteration. These points can be used to obtain

. . Ogk /-
a regression curve that approximate d;"" (iter).

167

In our case the regression curve is obtained by using two real functions ¢, (i) and
©2(i). The specific definition of ¢ (i) is discussed later, while @o(i) = 1. Therefore,

our regression curve regq(iter) has the following form:

regq(iter) = @(iter) = ¢y - @1 (iter) + ¢y

According to the least square approximation method we should find ¢} and ¢, such

that ¢(c, c,), defined as follows, is minimum:
13 -2

J
(1, c2) Z(Cl o1 (i +C2—d0‘“())2

=0

It can be easily shown that if ¢;(4) is chosen such that ¢;(¢) > 0 when 1 <4 < j,
then ¢(cy, ¢2) is minimum when its partial derivatives are equal to 0. This corresponds

to find ¢} and ¢, as a solution to the following:

2 = 2 (o, T, 20) + & XL, 01) = XL, e Dd(0)) = 0
c1,C j - . j O,k
6¢>(8612, =2 (Cl i) + e — 30 dy (i)) 0

that is

YL e@dt0) - (XL 4 0) (XL e)
i XL, 26) ~ (Shy o)

!
€ =

and

(SLd2*6) (SL920) - (L e 0d @) (3L, @)
i XL, 260) ~ (SLied)

Notice that the number of iterations j, might be so high that computing regq4(iter)

/]
Cy =

might be inefficient. However, here we used an optimization. As we said previously,

168

0,4
0,38
0,36
0,34 L\
0,32 \\‘_\ — Distance
0,3 \‘\—L\ —— Hyperbolic Regr.
0,28 Logarithmic Regr.
0,26 e
0,24
0,22
0,2 ! \ \
0 500 1000 1500

Iteration

Distance

Figure 6.15: Trend of d5**(iter), when k is 3 in HV1, and two possible regression
curves.

dgq’k(iter) is constant for several consecutive iterations. Therefore, instead of using all
points, regq(iter) can be computed by only using points where the value of dgq’k (iter)
changes. Specifically, regy(iter) is computed using a set of points obtained as follows.
Let i be the current iteration and (i, d""*(s)) the last point added to the set of points.
At iteration i 4 1, if do®* (i) = d5°"(i + 1), then the point (,d>**(i)) is replaced by
(i+1, d9""(i+1)), elsewhere, the point (¢, d5"" (7)) is maintained and (i+1, do** (i+1))
is added to the list of points. This reduces enormously the number of points to be

considered, maintaining a good approximation of dgq’k(iter).

We still have to discuss the definition of function ¢;(z). Its choice depends on
the peculiar properties of dgq’k(iter). In fact, different choices of (i) might give

different approximation qualities depending on their capability of miming the trend

169

of dgq’k(iter). Given the typical shape of dgq’k(iter), we have tried the hyperbola, that
is 1(7) = 1/i and the logarithm, that is 1 (7) = log(7). Figure 6.15 shows graphically
d9“* (iter) and the two resulting approximations. We have used both choices in the
approximate similarity search algorithm, and the average behaviour was practically
the same in both cases. In fact, both choices gave almost overlapped results in term

of IE and EP, even tough different ranges of the threshold parameters z; had to be

used. Next subsection presents the obtained results.

6.8.2 Results

We have tested the the approximate similarity search algorithm with the slow-down of
distance improvement, by obtaining the regression curve through both the logarithm
and the hyperbola as a definition for ¢,(z). As previously anticipated, the obtained
results were practically the same, so here we only discuss those obtained by using
the logarithm. The same observations hold also for the other possibility considered.
Results are summarized in Figures 6.16, 6.17 and 6.18.

In these experiments the approximation threshold x, is interpreted as a threshold
on the derivative of regy(iter), the curve that approximate the trend of distance of
the current k-th object from the query object. The approximation threshold ranges
in the interval between 0 and -0.004. When the derivative of regy(iter), in the current
iteration, is above the specified threshold, the algorithm stops. The approximation
threshold z, for the pruning condition is not used, since the pruning condition per-
forms the exact overlap test.

A first general observation is that, even if the improvement of efficiency might

arrives up to two orders of magnitude, the approximation threshold x; is not easy

170

HV 1 - NN search

- k=1
& k=3
-4« k=10
-o- k=50
0 -0,001 -0,002 -0,003 -0,004
Threshold
HV 1 - NN search
200
180
160
120 . +kel
W 100 | a = k=3
= a0 A -+ k=10
| ra -o- k=50
60 ya
40 /[
20 ﬁ‘/
O T T T T 1
0 0,02 0,04 0,06 0,08 0,1
EP
HV 1 - NN search
- k=1
& k=3
-4 k=10
-o- k=50

0 -0,001 -0,002 -0,003 -0,004
Threshold

Figure 6.16: Improvement of efficiency (I E) as a function of the derivative threshold
(z5) and the position error (EP). Nearest neighbor queries, HV1 data set.

171

HV 2 - NN search

180
160
140
120 - k=1
& k=3
-4« k=10
-o- k=50
0 -0,001 -0,002 -0,003 -0,004
Threshold
HV 2 - NN search
180
160
140
120 - k=1
W 100 - k=3
80 -4 k=10
60 -o- k=50
40
20
O T T T T T 1
0 0,01 0,02 0,03 0,04 0,05 0,06
EP
HV 2 - NN search
0,06
0,05 r/r./ﬂ
0,04 k=1
o / i k=3
0,03
W= -+ k=10
0,02 -o- k=50
0,01
0 |
0 -0,001 -0,002 -0,003 -0,004
Threshold

Figure 6.17: Improvement of efficiency (I F) as a function of the derivative threshold
(z5) and the position error (EP). Nearest neighbor queries, HV2 data set.

172

UV - NN search

- k=1
& k=3
-+ k=10
6 -o- k=50
4
2
0 T T T T 1
0 -0,001 -0,002 -0,003 -0,004
Threshold
UV - NN search
- k=1
& k=3
-4+ k=10
6 -o- k=50
4
2
0 T T T T T 1
0 0,005 0,01 0,015 0,02 0,025
EP
UV - NN search
0,025
0,02 /
o ’ - k=3

E

0,01 ﬂ/ . /A/‘ & k=10

W B - k=50
0,005
0 M

0 -0,001 -0,002 -0,003 -0,004
Threshold

Figure 6.18: Improvement of efficiency (I E) as a function of the derivative threshold
(zs) and the position error (EP). Nearest neighbor queries, UV data set.

173

to be used to control the tradeoff between performance and effectiveness, when the
number of retrieved objects k is varied. For instance in HV1, given a fixed threshold,
the best improvement of efficiency where observed for k¥ = 3, then £k = 1, £ = 10,
and, finally, £ = 50. That is, the improvement of efficiency depends on k but the
corresponding relationship is not trivial. However, the error on the position EP,
with the exception of data set UV, is almost directly proportional to k. In fact EP

degrades as k increases when the approximation threshold is fixed.

Let us now discuss more in details the obtained results. An improvement of
efficiency up to 2 orders of magnitude was obtained, maintaining a relatively good
quality search results. In fact, in HV1 the nearest neighbor can be obtained on average
190 times faster, with EP = 0.023. Performances obtained for HV1 and HV2 are
comparable, even though slightly better results are obtained for HV2. However, in UV
results are clearly worse. The approximate algorithm can find the nearest neighbor 60
times faster with £P = 0.006 in HV1 and EP = 0.005 in HV2. This means that, for
instance in in HV1, the approximate nearest neighbor is, on average, the 60-th nearest
neighbor (out of 10000). However, when the precise search takes 1 minute to compute,
the approximated result is obtained in 1 second. Similar relationships between HV1
and HV2 can be observed also for other values of k. On the other hand, in the
UV data set, using the same range of approximation threshold, the improvement of
performance arrives only up to one order of magnitude and the results where typically
worse than in the other data sets. In fact, in UV, the nearest neighbor was found
13 times faster with EP = 0.0025, while in HV1 and HV2 the nearest neighbor was

found with the same value of EP respectively 30 and 40 times faster.

174

6.9 Method 4: Approximate similarity search us-

ing the region proximity

Access methods for metric spaces partition the searched data, and bound element of
the partition by ball regions. In order to find qualifying objects, search algorithms
should access all nodes of the tree corresponding to regions that overlap the query
region. All regions that overlap the query region may potentially contain objects that
are also covered by the query regions. Search algorithms might ignore all regions that
do not overlap the query region in order to be more efficient, since accessing a node
(corresponding to a region) has a high cost. However, notice that when a data region
and the query region overlap with each other, there is no guarantee that objects are
included in their intersection. In fact depending on the data distribution, it may
happen that the intersection covers a portion of the space containing very few objects
(or no objects at all). Therefore, some of the data regions that overlap the query
region may not contain searched data, and some regions are more likely to contain

the query response than the others.

In Figure 6.19, it can be seen that, although the query region () intersects regions
R1, Re and Rg, the intersection with R, and R3 is empty and thus it is not necessary

to access these regions.

Proximity between ball regions, discussed in Chapter 4 may help to handle this
situation. In fact, as defined by Equation 4.2.2, proximity of two regions is the
probability that objects can be found in their intersection. The idea here is to use the
proximity to decide when data regions should be accessed to find qualifying objects,

in fact, the higher the proximity, the more ”interesting” the regions.

175

Figure 6.19: Overlap between the query region and data regions: not all data regions
that overlap the query region share objects with it.

This idea constitutes the basis for the approximate similarity search by using
proximity. In fact, approximated results are obtained by considering, in the similarity
search algorithms, only regions with proximity greater than a certain threshold, say
Zp, 1.e. regions in which the probability of containing a qualifying object is greater
than z,. The approximation threshold z, is specified by the user and can be used
to control the approximation. High values correspond to high performance but bad
quality. Small values corresponds to low performance but high quality. When z,, is
set to 0, an exact similarity search is performed, since proximity is greater than 0 as

soon as two regions overlap.

Approximate range search and approximate nearest neighbor search, which use
this specific strategy, can be obtained from Algorithms 6.3.1 and 6.3.2 by defining

the pruning condition and the stop condition as follows.

The pruning condition Prune(B(Oy,r,), B(O;,1i), zp) is defined as

176

Prune(B(Og,7q), B(Oi,73),xp) = X(B(Oy,74), B(Oi, 7)) < zp (6.9.1)

The stop condition on the other hand is always false:

Stop(RS,, zs) = false

The proximity X (B(Oy,r,), B(O;,7;)) between the query region and the selected
data regions was computed using the parallel heuristic, described in 4.5, which proved

to be the more precise among the ones tested.

6.9.1 Results

Results of the experiments using the proximity based approximate similarity search
algorithms are summarized in Figures 6.20, 6.21 and 6.22 for range queries and in
Figures 6.23, 6.24 and 6.25 for nearest neighbor queries.

In these experiments the approximation threshold z,, is interpreted as the prox-
imity threshold. When the proximity of the query region and a data region is below
the specified threshold, the data region is discarded. The proximity threshold ranges
in the interval between 0 and 0.06. The approximation threshold z, for the stop
condition is not used, since the stop condition is always false.

The results show that the best improvement of efficiency is achieved when the size
of the result set is small. The number of retrieved objects is explicitly specified for
the nearest neighbors queries, but is quite difficult to control by specifying a range.
Note that the response sets for our range queries contains on average more than 100
objects (1% of 10,000). In fact, the approach offers better performance for nearest

neighbors queries with small £ rather than for the range queries.

177

HV 1 - Range search

7

6

5 -+-r=1800
w 4 & r=2200
- -4-r=2600

3 --r=3000

2

1 ‘

0 0.02 0.04 0.06
Threshold
HV 1 - Range search

7

6 X

5 -+-r=1800
w4 = r=2200
- '\ -4 1=2600

3 A \ -e-r=3000

2

1 T T T

0 0.2 0.4 0.6 0.8 1
NE
HV 1 - Range search
1

05 Nt=e—s

0.8 -

o — S
w 0.5 \ ‘\‘\‘ ‘\0\.\. & r=2200
< o4 e, A, ~ % -4 r=2600

0.2

0.1

O T T T T T 1

0 0.01 0.02 0.03 0.04 0.05 0.06
Threshold

Figure 6.20: Improvement of efficiency (IE) as a function of the proximity threshold
(z,) and the fraction of exact results (NE). Range queries, HV1 data set.

178

HV 2 - Range search

13
11
9 / -+-r=0.6384
w7 - r=0.7896
- -4-r=0.9408
5 -o-r=1.092
3
l T T 1
0 0.02 0.04 0.06
Threshold
HV 2 - Range search
13
11
9 N -+-1=0.6384
w7 -#-1=0.7896
- -4-1=0.9408
5 -o-r=1.092
3
l T T = T = T T .
0 0.2 0.4 0.6 0.8 1
NE
HV 2 - Range search
1
0.9
0.8
8'2 ~+1=0.6384
Woos 77&% = r=0.7896
z oy -4 r=0.9408
0.3 \\\\- -o-1=1.092
0o | Hu el
or e ey
0 \
0 0.02 0.04 0.06

Threshold

Figure 6.21: Improvement of efficiency (IE) as a function of the proximity threshold
(z,) and the fraction of exact results (NE). Range queries, HV2 data set.

IE

IE

NE

15
1.45
1.4
1.35
1.3
1.25
1.2
1.15
11
1.05
1

15
1.45
1.4
1.35
1.3
1.25
1.2
1.15
11
1.05
1

0.9

0.99
0.98
0.97
0.96
0.95
0.94
0.93
0.92
0.91

UV - Range search

. A
A [-

B ST E e TR

0 0.01 002 0.03 0.04 0.05
Threshold

UV - Range search

Kl‘
Ty

TR,

0.92 0.94 0.96 0.98 1
NE

UV - Range search

TR e

N LN e
A,

-+-r=340
=660
-4 =980
-e-r=1300

0.06

-+-r=340
-# =660
—-A-r=980

-o-r=1300

0.9

-+-r=340
= =660
-4 r=980
-o-r=1300

0 0.01 0.02 0.03 0.06

Threshold

0.04 0.05

Figure 6.22: Improvement of efficiency (IE) as a function of the proximity threshold
(z,) and the fraction of exact results (NE). Range queries, UV data set.

180

HV 1 - NN search

800
700 "
600 ¥ |
500 Raadl Pl re=}
W 400 ’/,/ : ';fio
300 _

-e- k=50
200
100 /!/./ N M
0 M
0 0.01 0.02 0.03 0.04 0.05 0.06
Threshold

HV 1 - NN search
800 /
700
600 ,/'"/{ -
/‘.”/v - k=1
500 //
W 400 k=3

300 / k=10

-o- k=50
200
100 " s st

0 0.005 0.01 0.015 0.02 0.025 0.03
EP

HV 1 - NN search

0.03
0.025
0.02 - k=1
o - k:3
0.015
| -4 k=10
0.01 -o- k=50
0.005
0 r T T T T T 1
0 0.01 0.02 003 004 0.05 0.06
Threshold

Figure 6.23: Improvement of efficiency (I E) as a function of the proximity threshold
(z,) and the position error (EP). Nearest neighbor queries, HV1 data set.

181

HV 2 - NN search

800
700

600 e
500 + k=1
400 aad = k=3

w
= v e -+ k=10
300 Wt - k=50
200 e
a A A A
100 .
0
0 0.01 0.02 0.03 0.04 0.05 0.06
Threshold
HV 2 - NN search
800
700
600
W 400 / & k=3
= J -+ k=10
300 Fad k=50
200
lOO i A/‘_‘/‘—‘*‘
0
0 0.005 0.01 0.015 0.02 0.025
EP
HV 2 - NN search
0.025
0.02 /
k=1
N 0.015 = k=3
w 0.01 - k=10
' -8 k=50
0.005 +

0 001 0.02 003 004 0.05 0.06
Threshold

Figure 6.24: Improvement of efficiency (IFE) as a function of the proximity threshold
(z,) and the position error (EP). Nearest neighbor queries, HV2 data set.

182

UV - NN search

k=1
-2 k=3
-4 k=10
-o- k=50
0 0.01 0.02 0.03 0.04 0.05 0.06
Threshold
UV - NN search
k=1
& k=3
& k=10
-e- k=50
O T T T T T 1
0 0.005 0.01 0.015 0.02 0.025 0.03
EP
UV - NN search
0.03
k=1
o - k=3
w -+ k=10
-e- k=50

0 0.01 0.02 0.03 0.04 0.05 0.06
Threshold

Figure 6.25: Improvement of efficiency (IE) as a function of the proximity threshold
(z,) and the position error (EP). Nearest neighbor queries, UV data set.

183

Let us now consider the range queries more closely. The improvement of efficiency
decreases when the query radius grows. In all data sets, the improvement obtained
is less than one order of magnitude. As expected, IF increases as the NFE measure
decreases. Note that we do not report results for NE = 0. Results seem to be better
for the HV1 data set rather than the HV2 and UV data sets. In HV1, for instance,
when the query radius is 2200, a query can be executed on average 6.5 times faster,
with NE = 0.2, that is 20% of objects retrieved by the exact search were found by
the approximate search. When the HV2 data set is used, results are slightly better in
terms of an improvement of efficiency, however the N E measure returns worse results
than for the HV1 data set. In fact, improvement of efficiency higher than 3 typically
results in VE close to 0. For all radii considered, when the improvement of efficiency
is 6.5, the NE measure is about 0.05. In case of the UV data set it was not possible
to obtain improvement of efficiency higher than 1.4. In fact, when the approximation
parameter was chosen a little bit larger suddenly the number of retrieved objects was

0. Next sub-section gives an explanation for this behaviour.

In the case of nearest neighbor queries, results are much better. In fact, an im-
provement of efficiency up to 2 orders of magnitude was obtained, still maintaining
good quality search results. There is no significant difference between HV1 and HV2,
even though slightly better results are obtained for HV1. However, in UV was again
difficult to obtain improvements comparable with the other data sets. For instance,
the approximate algorithm can find the nearest neighbor in HV1 60 times faster with
EP = 0.0005. This means that the approximate nearest neighbor is on average actu-
ally the 5-th nearest neighbor. However, provided the precise search takes 1 minute

to compute, the approximated result is obtained in 1 second. If the requirements

184

regarding precision are not so high, the approximate algorithm can perform much
faster. For example, a 300 times faster approximate search implies an error in posi-
tion EP = 0.003. In this case, the approximate nearest neighbor is the 30-th actual
neighbor, but even queries which would require 5 minutes to get precise results, can
be performed through approximation in 1 second. On the other hand, in the UV data
set the nearest neighbor can be found 60 times faster with EP = 0.008. That is, the

approximate nearest neighbor is the 80-th nearest neighbor.

Notice the dependency between the proximity threshold and the EP measure in
Figures 6.23 and 6.24. All curves are almost overlapped and this suggests that it is
possible to control the effectiveness by using the threshold parameter, independently
of the value of £. In addition, since the dependency is almost linear, it means that
the user can linearly control the quality of approximation using the threshold param-
eter. However, in UV this linear dependency is less marked, see Figure 6.25, and no
profitable dependency between the threshold and NE can be observed in case of the

range queries, see Figures 6.20, 6.21, and 6.22.

We have also tested our approach to approximate similarity search by substitut-
ing the probabilistic proximity with the trivial one, defined by Equation 4.2.1. Not
only did much higher values of approximation threshold have to be used, but also the
performance of approximated queries with respect to trivial proximity was system-
atically worse. When the same values of efficiency are considered, it is evident that
the quality of approximation for the probabilistic approach is much higher than for
the trivial approach. For example, see Figure 6.26 where the error on the position

E P and improvement of efficiency I E are related for k = 10, separately for HV1 and

185

HV2 data sets. In HV1, IE increases almost linearly with EP for the probabilis-
tic approach, while IE is almost constant up to values of EP = 0.01 and then it
increases slowly. In HV2, again, I E increase almost linearly with EP for the proba-
bilistic approach, while I'E is almost constant up to EP = 0.04 and then it increases,
but more slowly than in HV1. For example, when EP = 0.01, the probabilistically
approximated query performed 70 times faster than the precise query and about 25
times faster than the approximated query with the trivial proximity. Such behavior

was identical both for HV1 and HV2.

6.9.2 Further observations

When the query radius is small, the query response set can become empty, even for
small values of the proximity threshold. Though it might look strange, the explanation
is easy and provisions can be made to avoid such situations to happen.

It is easy to show that the proximity of two ball regions is smaller than or equal
to the probability that a randomly chosen point belongs to the smaller of the two
regions. Such probability can be approximated by F(r) (see Section 2.3.4), where F'
is the overall distance distribution and r is the radius of the smaller region. Since
for small values of the query radius F'(r,) is very small, the proximity between the
query region and any other region is also small. When z, > F(r,), the pruning
condition prunes every node of the tree. In fact, in this case, proximity between
the query region and any other region is always smaller than z,. Notice that the
result is anyway correct, but empty approximated result is meaningless. In order to
avoid such situations, the relationship between the proximity threshold and the query

radius must be respected.

186

HV1- NN search

200
180

160 /o"l
140
igg I,f "o k=10, Probabilistic

80 r = k=10, Trivial

40

20 /r

O I I I 1
0 0.01 0.02 0.03 0.04 0.05

EP

IE

HV2- NN search

160
140
120

100
80 ; -+~ k=10, Probabilistic
-& k=10, Trivial

IE

60

40

20 i

O I I I I I I
0 0.01 0.02 0.03 0.04 0.05 0.06

EP

Figure 6.26: Comparison of the trivial and probabilistic approximation techniques

187

Several strategies can be used to find an appropriate query specification, because
the distance distribution function F' is known. For example, the system can suggest
the smallest threshold that can be specified for a given query radius. Vice-versa, given
a threshold, the system can tell which is the smallest radius that can be used with that
threshold. Another possibility is to have the threshold automatically corrected (nor-
malized) by the system. For instance the pruning condition X (B(O,,r,), B(O;, 1)) <
Tp, can be substituted by X (B(O,, 1), B(Oi,73))/F(r4) < xp, obtaining an automatic
normalization.

This problem is not relevant for nearest neighbors queries. In fact, for this type
of similarity query, the radius of the query region is dynamically changed as the
algorithm proceeds. It is very big at the beginning and it becomes small just towards
the end of query evaluation, so the influence of the threshold on the number of
requested objects is less evident and a response set of k objects is always provided.
However, in case of nearest neighbors queries, this phenomenon has another effect. In
fact, when the dynamic radius of the query region reduces such that z, > F(r,), then
all remaining regions are pruned and, since the queue of pending requests become
immediately empty, the algorithm immediately stops. The result is that, even if this
method is defined as an approximate pruning condition, due to this phenomenon, this

method implicitly acts also as if a stop condition was defined.

6.10 Cross comparisons

Previous sections were devoted to the individual description of the various approxi-
mation methods proposed in this thesis and to the analysis of the experimental results

obtained by testing them. In this section, on the other and, we compare together all

188

methods proposed and we discuss their advantages and disadvantages. First a direct
comparison of the performance of the various methods is presented, separately for
range and nearest neighbors search. Then some global considerations not strictly

related to performance are discussed.

6.10.1 Range queries

Figure 6.27 compares the results obtained by executing range queries. Only the first
approximation method, the one based on the relative error on the distances, and the
fourth, the one based on the proximity, are presented, since only these two methods
can be used for range queries. To simplify the presentation, we do not show the
comparison for each radius considered in the tests, but results obtained for only one
radius are shown. In particular the comparison is presented by using the third radius
used in each data set, specifically 2600 in HV1 , 0.9408 in HV2, and 980 in UV. The

graphs in the figure relate the VE measure with the improvement of efficiency /F.

In HV1 the best results are achieved by the fourth method (proximity). In fact,
given any value of NE, the corresponding value of I E is always higher for the proxim-
ity based method than for the other. In HV2 the method based on the relative error
of distances is better. However, for small values of NE, that is when the accuracy
of the approximation is low, the trend of fourth method is to rapidly increase the
performance in term of improvement of efficiency. In UV, again, the best results are
given by the fourth method. In fact, in this case, it offers high values of IE even

when NFE is still high.

189

HV1 - r=2600
3,5
3 &
" 25 -+ Error
- > -@- Proximity
15 M '\.\-\\'
l T T T T
0 0,2 0,4 0,6 0,8 1
NE
HV2 - r=0.9408
8
3
6
" 51 - Error _
— 44 -@- Proximity
3 -\
2 \
1 T T T T ®
0 0,2 04 0,6 0,8 1
NE
UV - r=980
1,2
1,18 ®
1,16 \\“ 1
1,14 v\ &
W 1,12 el % e Error
W 11 .
s -~ Proximity
1,08 \.\
1,06 ~ %
1,04
1,02 \i
l T T T T
0 0,2 0,4 0,6 0,8 1
NE

Figure 6.27: Comparison of the approximation methods that support range queries
in the various data sets.

190

HV1 - k=10

250

200
150 y.o’ -o- Error

-& Distribution

:

-A- Distance

100 o
f‘/‘_ -&- Proximity
50

0 0,01 0,02 0,03 0,04
EP
HV2 - k=10

200

180 u

160 Pl

140 :;' - Error
120

W 100 - Dfstrlbutlon
80 -4 Distance
60 4 -0~ Proximity
40
20
0 T 1
0, 005 0, Ol 0,015 0,02
EP
UV - k=10
70
60
50 -o- Error
w 40 -m- Distribution
~ 30 -4 Distance
-@- Proximity
10 _ M‘/‘
0 T 1
0,01 0,02 0,03
EP

Figure 6.28: Comparison of all approximation methods for nearest neighbor queries
in the various data sets.

191

6.10.2 Nearest neighbors queries

Let us now consider the results of executing nearest neighbor queries. Comparisons
are presented in Figure 6.28. All methods can be used to execute nearest neighbor
queries so all methods are compared. Also here for simplicity, as we did for range
queries, we do not show the comparisons for all k£ values that were tested. The
comparison is presented only for £ = 10 in all data sets. The graphs presented relate

the E'P measure with the improvement of efficiency IE.

With exception of the first method (distance error), all methods offer an improve-
ment of efficiency up to two orders of magnitude. The first method offers a very
limited improvement in efficiency. Even using high approximation thresholds high
improvements cannot be obtained. In the graph, the experimental values of this
methods are very close to the origin of the axis and can be barely noticed, given
the higher performance of the other methods. As we said in section 6.6, where the
first method was presented, it immediately saturates and no relevant improvement is
obtained. In HV1 and HV2 the highest performance is offered by the second method
(distance distribution), while in UV the best method is the fourth method (proxim-
ity). In HV1 and UV, the curves of the second and the fourth method, however,
are close to each other, and their performance is definitively better than that of the
third method. In HV2, on the other hand, there is no significant difference among

the performances of all methods.

Looking at the maximum performance obtained by our approximate nearest neigh-
bors search algorithms in the different data sets, we can see that the improvement
of efficiency seems to be more significant for the 45 (that is HV1) rather than the

32-dimensional (that is HV2) vectors. In addition, the improvement in efficiency is

192

negligible in case of the 2-dimensional vectors (that is UV). We have also experimented
with other data sets and the general conclusion is that our methods of approximation
for nearest neighbors queries are suitable above all when the precise similarity search
tends to access many data nodes in the supporting tree structure. Such a situation
often happens when the data partitioning results in highly overlapping regions, which
is common for high-dimensional vector spaces. In these cases, the improvement is
typically registered in hundreds, which is not possible to achieve for low dimensional
spaces where even the exact similarity search algorithms are efficient. For this reason,
results with the 2-dimensional UV data set are always worse that those obtained with

the other data sets.

As previously pointed out, no clear relationship between the performance and the
number of retrieved nearest neighbor was found for the first and the third method in
the various data sets. On the other hand, in the second and in the fourth method, per-
formance systematically deteriorates when the number of nearest neighbors retrieved
increases. This can be explained as follows. We can observe that at any specific itera-
tion of the search algorithm the distance of the current k-th nearest neighbor from the
query object increases as k increases. To illustrate this, consider Figure 6.29 which
relates the distance of the current k-th nearest neighbor from the query object and
the number of iteration of the exact nearest neighbors search algorithm, separately
for K = 1,3, and 10. Observe that these distances for £ = 1 are systematically below
those for £ = 3, and these are systematically below those for £ = 10. In case of the
second method, this means that the higher k, the larger F(O,, OF), so more iterations
should be executed before that it goes below the approximation threshold. On the

other hand, in case of the fourth method, at each iteration of the nearest neighbors

193

3000

2500

2000

1500 k=3
k=10

1000

500

distance of the k-th from the query

O T T T T 1
0 200 400 600 800 1000

Iteration

Figure 6.29: Average trend of the distance of the current k-th object from the query
object during the exact nearest neighbor search execution in HV1

algorithm, the query radius is set to the distance between the query and the current
k-th nearest neighbor. This means that a higher k£ systematically results in bigger
query regions. While searching, the set of data regions is fixed so the bigger the query
region, the higher the proximity of specific data and query regions. Consequently, a
systematically higher proximity has a greater chance of exceeding the approximation

threshold, thus more data regions are accessed.

6.10.3 Global considerations

Summarizing, the approximation methods that we have proposed give moderate im-
provement of performance for range queries, while very high improvement is obtained

for nearest neighbor queries. The method that offers the highest performance is the

194

second one, however it can only be used for nearest neighbor queries. On the other
hand, the fourth method offers similar, even if slightly worse, results for nearest
neighbors queries, and it can also be used for range queries. The improvement of
performance of the third method also arrives up to two orders of magnitude, but it is
always below that of the other two. The first method can hardly be compared with
the others given its very low performance. The (minor) drawback of the second and
the fourth methods, is that they require to pre-compute, store, and handle distribu-
tion functions (both second and fourth) and density functions (the fourth). However,
as discussed earlier, this overhead can be easily handled. The first and the third
methods do not need any pre-analysis of the data sets and do not require any other
storage overhead, however their performance is worse that that of the other two meth-
ods and they are also more difficult to be used since, as we said when we discussed in
details their results, there is not a clear dependency between the threshold and the
improvement of efficiency in the various data sets, when k£ varies. In conclusion it
appears that the most promising method is the fourth one, since it offers very high
performance for nearest neighbor queries and it also does a good job in case of range

queries.

6.11 Comparison with other techniques

In Section 5.3 we have described the most significant approaches for approximate
similarity search, which belong to the category of algorithms reducing the examined
result set [AM95, AMN'98, PAL99, PL99, CP00]. In this section we make some
performance and qualitative comparisons of our proposed techniques with these tech-

niques.

195

Notice that a rigorous performance comparison cannot be assessed by using the
performance figures reported by the articles describing these techniques. In fact, typ-
ically different data sets were used for the specific experiments, different underlying
access methods were used, in some cases the efficiency was measured by consider-
ing the computational complexity in terms of floating point operations, and different
measurements for determining the accuracy were performed. However we are able to
make some informal comparison anyway. For what concerns the efficiency, the im-
provement provided by these techniques is generally lower than that provided by our
techniques. Specifically, no other techniques offer improvement of efficiency analogous
to that offered by our best techniques, namely the second and the fourth proposed
approaches. For what concerns the accuracy, given that some of these methods used
as indication of the accuracy the relative distance error, whose use we have contested
in Section 6.4, we have also performed some preliminary tests using it, to have similar
accuracy figures, and our results confirm that the trade-off between improvement of

efficiency and loss of accuracy is generally more advantageous in our cases.

The behaviour of our algorithms is more general than the other techniques. We
offer wider applicability since our techniques were defined for generic metric spaces
and some of them can be used both for nearest neighbors and range queries. In the

following we discuss specifically the limits of the other techniques.

The technique for nearest neighbor searching using BBD trees (see Section 5.3.3
and [AMNT98]) can only be used with data represented in vector spaces and distances
measured by using functions of the Minkowski family. Its performance depends expo-
nentially on dim. As a consequence the algorithm can be practically used when the

vector space has number of dimensions in the range from 2 to 20. For vector spaces

196

with higher dimension this approach suffer from the dimensionality curse.

The technique for approximate range queries using BBD trees (see Section 5.3.4
and [AMO5]), solves the counting version of the range search problem in vector spaces
when distances are Minkowski distances. Specifically it can only be used to count or
compute the weight of objects contained in the result set of an approximate range
query. It does not retrieve the set of objects qualifying for the approximate range
query. The counting problem is generally easier to be addressed than the problem
of obtaining the set of objects qualifying for a range query, since it might be solved
without accessing the, otherwise needed, leaf nodes of the tree, where pointers to real

objects are stored. Performance of this algorithm is moderate.

The techniques based on the angle property (see Section 5.3.5 and [PAL99, PL99])
are only able to answer to nearest neighbors search in vector spaces and Minkowski
distances. The approach described in [PAL99], in its original definition, cannot be
tuned to trade performance with quality of results, in fact it does not use any ap-
proximation parameter that can be used by the user to chose the desired degree
of approximation. The performance obtained by these algorithms is generally low

compared to ours.

The PAC nearest neighbor algorithm (see Section 5.3.6 and [CP00]) can be used in
generic metric spaces. However in its original definition it is limited to the case of just
a single nearest neighbor search and fails to handle both generic nearest neighbors
and range queries. It offers moderate performance, limited to the case of one nearest

neighbor search.

Summarizing, with the exception of the PAC nearest neighbor searching tech-

nique all other techniques can only be used in vector spaces and distances should be

197

measured using functions of the Minkowski family. In addition all of them, with the
exception of the technique for approximate range queries using BBD trees, can only
be used for nearest neighbors queries and in some cases just for one nearest neighbor
queries. To the best of our knowledge, there are no techniques that support at the

same time range and nearest neighbor queries in generic metric spaces.

198

