Chapter 5

Approximate similarity search

5.1 Introduction

Similarity searching has become fundamental in a variety of application areas, in-
cluding multimedia information retrieval, data mining, pattern recognition, machine
learning, computer vision, computational biology, data compression, and statistical
data analysis. Though a lot of work has been done to develop structures able to
perform similarity search fast, results are still not satisfactory, and much more in-
vestigation is needed. Accordingly, approximate similarity search has emerged as a
relevant research topic. The idea of this promising approach is that a high improve-
ment of efficiency can be obtained at the price of some controlled imprecision in the
results of a query. In the following first an introduction to the issue of approximate
similarity search is given, then some of the most promising approaches proposed so

far are described.

103

104

5.2 Approximate similarity search issues

As discussed in Chapter 3, in order to increase efficiency, tree-based access methods
create a partition of searched data set, and bound elements (set of objects) of such
partition in regions [Gut84, BKK96, BO97, CPZ97, BO99, TTSF00]. Each node
of the tree corresponds to a set of objects. Consider the example in Figure 5.1.
The partition contains three subsets, distinguished respectively by white, black, and
gray points. The subset corresponding to white points is bounded by region R,
the subset corresponding to black points is bounded by region R9, and the subset
corresponding to gray points is bounded by region R3. When a similarity query
should be processed, only nodes bounded by regions overlapping the query region
should be accessed, saving a lot of disk accesses and distance computations.

However, access methods typically suffer from the so called dimensionality curse
problem. It has been observed that, when the number of dimensions of a data set is
greater than 10-15, performance of access methods decreases and a linear scan over
the whole data set would perform better [BGRS99, WSB98|. One consequence of the
dimensionality curse is that the probability of overlaps between the query and data
regions is very high and the execution of a similarity query may require to access
many of the data regions loosing the advantage of any indexing structure what so
ever. Indeed all data regions that overlap the query region must be accessed. For
instance, in Figure 5.1, the query region overlaps regions R;, R2 and R3 so all of
them should be accessed to answer to the query.

Given this inefficiency problem other techniques are being investigated. Here we
discuss the approzimate similarity search approach [AMNT98, PAL99, CP00], that

has recentely emerged as important research issue. The idea behind approximate

105

Figure 5.1: Partitions, data regions, and query regions

similarity search is that queries are processed faster at the price of some imprecision
in the results. The approximation is obtained by relaxing some constraint at the basis

of "exact” similarity search algorithms.

Approximate similarity search is also encouraged by other observations. It can be
noticed that the nature of the similarity based search process is intrinsically interac-
tive. Users, typically, issue several similarity queries, to the search system, eventually
reusing results of current queries to express new ones. For instance, the user may
start using an initial image, to search for similar ones, then uses images returned by
the query to issue new similarity search queries. In this case, efficient execution of
elementary queries is even more important and users may accept some imprecision, in
the temporary results, at the price of faster responses. Furthermore, some controlled
imprecision in the result of a similarity search query may not be noticed by users or
will be accepted when the increase in performance obtained is high. In fact, similarity
is an intuitive and subjective measurement. People, for instance, judge the similarity

between two images differently. However, this subjectivity is lost when similarity is

106

defined by a mathematical formula.

5.3 Survey of existing approaches to approximate
similarity search

In the following, we present a short survey of the most important approaches to the
approximate similarity search in order to highlight our contribution. Approaches to
approximate similarity search can be classified into two broad categories [FTAAO1]:
(1) approaches able to reduce the size of data objects, and (2) approaches able to
reduce the data set that needs to be examined. In the following we discuss these two
categories. Specifically, approaches belonging to the second one will be treated more

deeply since the techniques that we propose in this thesis belong to it.

5.3.1 First category: approaches able to reduce the size of

data objects

The first category is mainly based on dimensionality reduction. Typically linear-
algebraic methods such as Karhunen-Loeve Transformation (KLT) [Fuk90], Discrete
Fourier Transform (DFT) [OS89], Discrete Cosine Transform (DCT) [Kai85], or Dis-
crete Wavelet Transform (DWT) [Cas96] are used. All these methods assume that a
few dimensions are enough to retain the most important information regarding the
represented data objects so the other dimensions can be simply ignored.

Another approach in this category is the VA-file [WSB98], also introduced in
Section 3.2.1. It reduces the size of multidimensional vectors by quantizing the original

data objects. In this approach, nearest neighbor search is performed in two steps. In

107

the first step, the approximated vectors are scanned identifying candidate vectors. In
the second step, the found candidates are visited in order to find the actual nearest
neighbors. A modification to VA-files was proposed in [FTAAQ0], where the creation
of a VA-file is improved by first transforming the data using KLT in a more suitable
domain. Though the improvement of such techniques is significant, they only work
for vector spaces.

An interesting approach also falling in this category, which can also be applied
to non vector data, is the FASTMAP [Fal96]. It supposes to have n objects and an
N x N distance matrix. FASTMARP tries to project these objects in a dim dimensional
vector space, by only using the information given by the distance matrix, in such a
way that distances are preserved. Of course, Euclidean distance between points in the
vector space approximates the real distance between objects defined in the matrix.
The quality of the approximation depends on the number of dimensions of the target
vector space and on the specific distance matrix. The idea behind FASTMAP is to
project objects on a specific line passing by two pivot objects in a dim dimensional

vector space. A special heuristic is used to carefully select the two pivot objects.

5.3.2 Second category: approaches able to reduce the data

set that needs to be examined

Algorithms of the second category use strategies to reduce the data set that needs to
be examined. These can be further classified depending on the specific strategy used

to achieve their goal:

Relaxed branching strategies This strategies can be used with access methods

based on hierarchical decomposition of the space. Their aim is not to access

108

regions when they are not likely to contain desired results, or when access would
only marginally improve the existing results. In this case, an approximate

pruning condition is used to decide if a region should be accessed or not.

Early termination strategies In this case, search algorithms are prematurely stopped
when current result is judged to be satisfying the approximation requirements.
This strategies uses a stop condition to decide if it is time to stop the algorithm
— the search terminates as soon as the chances for obtaining significantly better
results become low. Here the hypothesis is that after some steps of search it-
eration, good approximation is obtained while further improvement is of minor

importance and consume most of the total search costs.

Our algorithms for approximate similarity search belongs to this category since
they aim at reducing the portion of the data set needed to be examined in order to
find the result. Two of them use relaxed branching strategies, the other two adopt
early termination strategy. Accordingly, they relay on an accurate definition of either
a pruning condition or a stop condition respectively.

In the following we discuss more in details some of the most authoritative ap-

proaches belonging to this category.

5.3.3 Approximate nearest neighbors searching using BBD
trees
Suppose to have a set of points DS in a dim dimensional vector space and a query

object O4. Let Oy be the nearest neighbor of O,, and O4 some other object in the

searched collection. Given € > 0, provided that 0 < d(On,0,) < d(O4,0,), O4 is an

109

(1+€)-nearest neighbor of O, if

d(O4,0y)
— =< 1l+e
d(On,O,) —

That is, O4 is within relative error € of the true nearest neighbor. This idea can
be generalized to the case of the j-th nearest neighbor of O, for 1 < j < n, where
n is the size of the database. Using respectively Oﬂl and Of\, to designate, the j-th
approximate and nearest neighbor, the constraint should be modified as follows

0L00 _ .,
d(Oy;Oq) ~

If this constraint is satisfied, Oﬂl is called the (1+€)-j-approzimate nearest neighbor of
O,

The algorithm proposed in [AMNT98], given a data set DS represented in a vector
space with distances measured using functions of the Minkowski family, and given a
query object O, guarantees to find an (1+¢)-approximate nearest neighbor of O, in
O(logn) time. Alternatively, when k-nearest neighbors search is considered, the algo-
rithm guarantees to find k£ (1+¢)-k-approximate nearest neighbors' of O, in O(klogn)
time. The parameter € can be used to control the tradeoff between efficiency and qual-
ity of the approximation. The higher €, the higher the performance, the higher the
error.

This algorithm uses as underlying indexing structure a so called balanced box-
decomposition (BBD) tree that is a variant of a quad-Tree [Sam95] and is similar
to other balanced structures based on box-decomposition [BET95, Bes95, CK95].

Specifically, this structure is based on a hierarchical decomposition of the space where

INotice that also one of the techniques proposed in this thesis is designed in such a way that it
returns k (14€)-k-approximate nearest neighbors, see Section 6.6 and [ZSAR9S|.

110

a) b)

Figure 5.2: Possible regions in a BBD tree: a) dim-dimensional rectangle and b) set
theoretic difference of two rectangles.

regions are represented by nodes of a tree that has O(logn) height. Each node of the
tree is associated with a region and points to other nodes. Regions associated with
nodes pointed by the same parent node do not overlap each other. There are two
types regions in a BBD tree. A region can be a dim-dimensional rectangle or the set
theoretic difference of two rectangles, one enclosed within the other, as depicted in
Figure 5.2 respectively by picture a) and b). These rectangles are fat, in the sense
that the ratio between the longest and the shortest sides is bounded. The tree has
O(n) nodes and it can be built in O(dim - n - logn) time, where n is the size of the
data set. Each region associated with a leaf node contains a single object. The set of

leaf regions defines a partition of the space.

The nearest neighbor algorithm on this data structure is intuitively defined as
follows. Given a query object Oy, the tree is traversed and the leaf node associated
with the region containing the query is found. Given the properties of the BBD trees,
the leaf node is found in O(logn) and there is only one leaf node that contains it. At
this point, a priority search is performed by enumerating leaf regions in increasing
order of distance from the query object. The distance from an object O to a region

is computed as the distance of O to the closest point that can be contained in the

111

region. When a leaf region is visited, the distance of the associated object from O, is
measured and the closest point seen so far is recorded. Let us call O4 such a current
closest point. The algorithm stops when current leaf region is such that its distance
is larger than d(O,, O4), that is, the current region cannot contain objects whose
distance from the query object is shorter than that of O4. Since all remaining leaf
regions are farther than current region, it means that O4 is the nearest neighbor to

0,.

The approximate nearest neighbor algorithm uses a stop condition to prematurely
stop the search algorithm. Specifically, the algorithm stops as soon a the distance
to the current leaf region exceeds d(O,4, 04)/(1 + €). It is easy to show that in
these circumstances O4 is a (1 4 €)-approximate nearest neighbor. To clarify the
behavior of the exact and approximate nearest neighbor search algorithms consider
Figure 5.3. Data objects are represented by black spots. Each object is included in a
rectangular region associated with a leaf node. Each region is identified by a number
assigned incrementally according to the distance of the region from the query object
O,. Thus, region 1 is the closest to O, in fact it contains O, while region 10 is the
farthest. The search algorithm starts from region 1 to collect the potential nearest
object to O4. In the figure, we suppose that region 3 was accessed and object O4
was found as the current closest object. The circumference in the figure has in fact
radius equal to d(Oy, O4). The exact algorithm would continue accessing regions that
overlap the circumference and it would stop after accessing region 10, which contains
the exact nearest neighbor. The approximate algorithm, on the other hand, would
access only regions that overlap the dotted circumference, which has a radius equal

to d(Og4,04)/(1 + €). Therefore it would stop after accessing region 8, missing the

112

Figure 5.3: Overview of the approximate nearest neighbors search algorithm using
BBD trees

exact nearest neighbor.

The priority search can be performed in O(logn) times the number of regions that
are visited, by using an auxiliary heap. Let m be the number of regions visited, m has
an upper bound depending only on dim and e, for any Minkowski metric, defined as
[1+ 6dim/e]|¥™. This bound arises from the maximum number of disjoint dim-cubes
of diameter €¢/3 that can intersect a dim-ball region of radius 1. Since the upper
bound can be considered a constant, provided that dim and € are fixed, the algorithm

finds the (1 + €)-approximate nearest neighbor in O(logn) time.

The algorithm can be easily extended to the case of £ nearest neighbors. In fact,
in this case the current & closest objects are recorded and the algorithm stops when
the distance of the current k-th closest object O is such that d(O,, O%)/(1 +¢). In
this case O is a (1+¢)-k-approximate nearest neighbor. In this algorithm, the upper
bound for the number of accessed regions m is 2k + [1 + 6dim/e]%™. Therefore,

provided that dim and e are fixed, the algorithm finds the (1 4 €)-k-approximate

113

nearest neighbor in O(klogn) time.

Notice that upper bound m does not depend on the size of the data set n. However,
it depends exponentially on dim so this algorithm can be practically used only on
vector spaces with a small number of dimensions, e.g. in the range from 2 to 20.
This algorithm can only be used in case of data represented in a vector space with
distances measured by using Minkowski metrics. In particular, it cannot be used in

case of data represented in a generic metric space.

5.3.4 Approximate range searching using BBD trees

The use of BBD trees, briefly described in previous section, was also exploited to de-
sign an approximate range search algorithm. This approach was proposed in [AM95].
Let us suppose to have a data set DS of objects defined in a dim dimensional vector
space, and to use a function of the Minkowski family to measure distances among
objects. Let us also suppose to have a range query range(O,,r,) defined by the
ball region B(O,,7,). Typically, the goal of a range query is to retrieve the set of
objects of DS included in B(O,,7,). Alternatively, in some cases one may just need
to count the number of objects that qualify for the range query or, more generally,
we may suppose that objects of DS have been assigned a weight, and the goal is to
compute the accumulated weight weight(range(O,,r,)) of the objects that qualify
for the query. Retrieving the set of objects included in a range query has in general
a cost higher than counting them, however in this work only the counting version of
the problem was considered.

The exact range search algorithm returns the exact weight of the result set, while

the approximate range search algorithm returns a weight that approximates the real

114

weight of the actual result set. The idea of this approximation technique is to consider
range queries as fuzzy range queries. In a fuzzy range query objects that are ”close”
to the boundary of the query may or may not be included in the count.

Given a range query defined by the ball region B(O,,,), and given a real value
€ > 0, regions B~ (O,,7,/(1 +€)) and BT(O,, 7, - (1 + €)) can be defined. Regions B~
and BT have the same center of B, however, their radius is respectively reduced or
increased of a factor 1+¢. In the following, for sake of simplicity, by using B~, B, and
BT we also refer to the set of objects of DS respectively included by these regions.

The value weight(R*), where R* C DS, is a legal answerto an (1+¢)-approzimate

range query when

B~ CRAC B .

That is, all objects of B~ should be included, all objects of DS \ BT should not be
included, and objects of BT \ B~ may or may not be included.

Notice that this approach allows for false dismissals and false hits. In fact, when
some objects of B\ B~ are not included false dismissals occur, while when some
objects of BT \ B are included false hits occur.

Range queries can be answered by using search algorithms on BBD trees. Let us
first consider the exact range search algorithm. We suppose that, given a node N of
a BBD tree, the value weight(N), defined as the sum of the weights of all objects
included in the region associated with N, is also registered in the node N, so no
access to children is required to compute it. In the following, by using N we also refer
to the set of objects contained in node N. Given a range query range(QO,,7,), the
exact range search algorithm traverse the BBD tree counting the weight of objects

inside B(Og4,7,) as follows. The algorithm starts from the root node of the tree and

115

initialize a global variable count to 0. Given a node N; of the tree the algorithm does

the following:
(a) if NV; C B add weight(N) to count; Stop.
(b) if N;N B =0 do nothing; Stop.

(c) if IV; is a leaf node check if the associated object is included in B, and in that

case add its weight to count; Stop.

(d) if N; is an internal node, recursively consider all its children and add the weights

respectively obtained.

The behaviour of this algorithm is sketched in Figure 5.4a). If the region associated
with the current node is included in B, its weight is immediately considered, since
it is stored in the node, without accessing its children. Therefore, in the figure, the
weight of R, is immediately considered. If the region associated with the current
node is outside the query region, as R3 in the figure, it is immediately discarded. In
the other cases, the specific children are accessed. Therefore, children of the node
corresponding to region R, are accessed.

This algorithm can be slightly modified to answer to an (14¢)-approximate range

query using an approximate pruning condition as follows:
(a) if N; C Bt add weight(N) to count: Stop.
(b) if N;N B~ =0 do nothing; Stop.

(c) if IV; is a leaf node check if the associated object is included in B, and in that

case add its weight to count; Stop.

116

a) b)

Figure 5.4: Range queries using BBD tree: a) exact behaviour and b) approximate
behaviour
(d) if N; is an internal node, recursively consider all its children and add the weights

respectively obtained.

The behaviour of the approximate algorithm is sketched in Figure 5.4b). If the
region associated with the current node is included in BT, its weight is immediately
considered without accessing its children — false hits may occur, since objects outside
the query region B may be counted. In the figure, the weight of R, is consequently
immediately considered. If the region associated with the current node is outside the
region B~ and not included in B*, as R3 in the figure, it is immediately discarded
— false dismissals may occur, since objects inside B may be missed when they are
outside B~. In the remaining cases, children of the corresponding node are accessed.
Thus, in the figure, children of the node corresponding to region R, are accessed.

The complexity of the search algorithm is proven to be O(logn+ (1/¢)%™) and the

117

lower bound of the maximum number of nodes visited is logn + (1/€)¥™~!. Notice
that for values of € smaller that 1, the complexity increases exponentially with the
number of dimensions.

The algorithm as it is, can only be used to count (compute weight of) objects that
qualify for an approximate range query. Specifically, it cannot be used to retrieve
the set of objects qualifying for the approximate range query. In fact, in order to
obtain that, leaf nodes should always be accessed, since leaf nodes are the only nodes

containing pointers to real objects.

5.3.5 Approximate nearest neighbors searching using angle
property

In [PAL99, PL99] an original technique for reducing the number of node accessed
during nearest neighbors searching is proposed. The main novelty of this technique
consists in the use of the angle between objects contained in a ball region, defined
in a vector space, and a query object, with respect to the center of the ball region
as shown in Figure 5.5. Exploiting this angle, some heuristics to decide whether a
region should be accessed or not are proposed. This technique was applied to SS-
Trees [WJ96], however it can be applied to all access methods for vector spaces that
partition the space, bound elements of the partition with ball regions, and organize
regions hierarchically.

The proposed heuristics are justified by the following three properties of data sets

represented in high dimensional vector spaces:

Pri: As dimensionality rises, the points that are bounded by a ball region become

almost equidistant from the center of the ball region.

118

Figure 5.5: Angle between objects contained in a ball region and a query object with
respect to the center of the ball region

Pry: As dimensionality increases, the radii of the, smaller, child ball regions grow
nearly as large as the radius of the larger parent ball region, thus also their

centers tend to be close each other.

Pr3: Given a set of points within a bounding ball region and some query point in
the vector space, the angle between the query point and each point in the ball

region falls inside a decreasing interval of angles around /2.

Let us discuss in detail the proposed heuristics. Exact nearest neighbors search
algorithms access all regions that overlap the current query region. The proposed
heuristics uses an approximate pruning condition to decide whether a region should

be accessed or not.

119

In [PAL99] they propose to access a region if one of the following conditions is

true:
C1: The corresponding node is an internal node.
C5: The current query region includes the center of the region’s parent

Cs: The center of the region resides in the half of the parent ball region closer to the
query object (that is the angle between the center of the region and the query

object, with respect to the center of the parent’s ball region is smaller than

7/2).

Condition C; forces all internal node to be examined. This is justified because in
SS-Trees much of the performance degradation in nearest neighbor searching is due
to the accesses to the leaf nodes. Properties Pry, Pry and Prs suggest that in high
dimensional vector spaces, objects reside close to the border of their bounding region,
and in particular since child regions tend to be as large as their parent, objects are
close to the border of the parent region. In addition these objects fall close to a 90
degree angle with a given query object. Therefore as suggested by Figure 5.6 regions
whose center are in the half ball region closer to O, as required by condition Cjs,
are more likely to contain qualifying objects. Finally Cy; was proposed to avoid cases
where applying C5 can be harmful since several qualifying objects may be missed.
In order to check C5 the evaluation of the angle between the query region and
the region’s center, with respect to its parent’s center is needed. If the angle is acute
then the region’s center is in the half of the parent region closer to the query region.
Deciding if the angle is acute, obtuse, or right can be done by using the dot product.

Let us suppose that the query region O, is (v{,...,v%,,), the region’s center O, is

120

00,

Figure 5.6: Objects belonging to children whose center is in the closest half of the
parent node are more likely to contain nearest neighbors

(vf,...,0}m), and its parent’s center O, is (vf,...,v%,). Then, the dot product
O, - O;lo, of O, and O,., with respect to O, is computed as follows:
q P q p

dim

04+ Orlo, =) (vf = o) (v] — of)

1

When [Oy - O,]o, > 0 the angle is acute. If [0, - O,]o, < 0 the angle is obtuse.
Finally, if [O, - O,]o, = 0 the angle is right.

In [PL99] the previous pruning conditions were improved. In fact, the zone where
is more likely to find qualifying objects according to properties Pri, Pry, and Prs,
is close to the border of the data region, and forms an angle of about 90 degree with

the query object, with respect to the region’s center. Let suppose to indicate by 6

121

Figure 5.7: If the query region does not intersect promising portions of the data
region, this is discarded.

the expected angle of the promising zone. If the angle o obtained considered the
intersection between the two regions and the line passing from their centers, with
respect to the data region’s center, is higher than 6 then the region is accessed,
elsewhere it is discarded. Figure 5.7 sketches this situation. Notice that when 6 is set

to 0 all regions overlapping the query region are accessed.

These methods can only be applied to nearest neighbors search in vector spaces.
The first version of the proposed approach cannot be tuned to trade performance
with quality of results, while the second allows one to use the angle 6 as a threshold

to decide when regions can be discarded.

122

5.3.6 PAC nearest neighbor searching

In [CP00] an approach for Probably Approzimately Correct nearest neighbor search
in metric spaces is proposed. The idea is to bound the error on the distance of
the approximate nearest neighbor so that an (14€)-approximate nearest neighbor is
found, similarly to the technique using BBD trees, see [AMN*98] and Section 5.3.3. In
addition, the proposed algorithm may prematurely stop when the probability that the
current approximate nearest neighbor is not an (1+¢)-approximate nearest neighbor
is below a user defined threshold 6. In this proposal the approximation is controlled
by two parameters. The e parameter is used to specify the upper bound on the desired
relative error on the distance of the approximate nearest neighbor. The § parameter
is used to specify the degree of confidence that the ¢ upper bound is not exceeded.
Notice that if § is set to zero, the proposed algorithm stops when the resulting object
is guaranteed to be a (1+¢)-approximate nearest neighbor. Values of § greater than
zero may return an object that is not an (14€)-approximate nearest neighbor. On
the other hand, when ¢ is set to zero, d controls the probability that the retrieved
object is not the real nearest neighbor. Of course, when both € and § are set to zero,
the exact nearest neighbor is always found.

More formally, let O, be the query object, On the exact nearest neighbor, and
O#% the approximate nearest neighbor found. Let ¢, the actual error on distances,

that is
__d(0,08) _
act d(Oq, ON)

The proposed approximate nearest neighbor algorithm retrieve a (1+¢)-approximate

1.

nearest neighbor with confidence d. That is, the retrieved object is such that

Pr {€gt > €} < 4.

123

These ideas were applied to the algorithm for searching the nearest neighbor to a
query object in M-Trees [CPZ97]. Therefore this method is not limited to the case of
data represented in vector spaces, but data represented in a generic metric space can
be searched using this approach.

The authors observe that a similarity search process can be conceptually split in

two phases.

Locating In the first phase the search algorithm locates the object that will be

returned

Stopping The second phase, the longest one, is used to determine that the object

retrieved is in fact the correct one

Accordingly the two approximation parameters € and ¢ are used respectively to
control how the object should be located, and when the algorithm should stop.

Let us see how this two actions are accomplished. The nearest neighbor search
algorithm for M-Trees recursively access data regions (nodes) of the tree starting from
the root nodes. When the query region, defined by the query object and the distance
of the current nearest object found, and a data region overlap, the data region is
accessed. The overlap test here is relaxed so that (14-€)-approximate nearest neighbor
are considered. This relaxed overlap test was inspired by the technique proposed in
this thesis, see Section 6.6 and [ZSAR98]. The exact algorithm stops when no more
overlapping regions are found. The proposed algorithm, on the other hand, stops
when the probability that the effective error does not exceed € is smaller than d. This

stop condition is obtained using Go,(z), the distribution of the nearest neighbors of

124

O, with respect to a specific data set DS of size n, defined as follows [CPZ98a]:
Go,(z) =Pr{30 € DS : d(0,,0) <z} =1— (1 — Fp (x))".

As previously stated, the algorithm should stop when Pr {e, > €} < d, where €4 is

the actual relative error on distances. That is when

Pr{30 € DS : d(0,, 04)/d(0,,0) — 1> €} =
= Pr {30 € DS : d(0,,0) < d(0,08)/(1+€¢)} <6

and this correspond to check if
Go,(d(0g, 0R) /(1 +€)) < 6.

This algorithm can be used for generic metric spaces and its performance is good,

however it is limited to the case of just a single nearest neighbor search.

