Chapter 4

Proximity of ball regions in metric
spaces

4.1 Introduction

The approximate similarity search algorithm, whose details are presented in Section
6.9 of next chapter, is based on an estimation of the quantity of objects shared by
the query region and data regions: data regions that are judged to share few objects
with the query region are discarded. To this aim, this chapter deals with the problem
of estimating, given two arbitrary ball regions defined in a metric space, the amount
of objects contained in their intersection. Large overlap between regions not always
implies that several objects are shared by them. In fact, the number of objects con-
tained in the intersections depends on the distribution of objects in the space. There
may be regions with a large intersection and few objects in common, but also regions
with a small intersection and many objects in common, which happens when the
intersection covers a dense area of the data space. In this chapter, this phenomenon,
called the proxzimity of regions, is analyzed and techniques for its quantification are

proposed.

71



72

The problem of region proximity in vector spaces was studied in [KF92] to declus-
ter nodes of R-trees [Gut84] for parallelism. In this chapter proximity measures are
developed for general metric spaces, which naturally subsumes the case of vector
spaces. Techniques that satisfy the following criteria are proposed: (1) the proximity
is measured with sufficient precision; (2) the computational cost is low; (3) it can be
applied to different metrics and data sets; (4) storage overheads are moderate.

The problem of the proximity of regions is analyzed using a probabilistic approach.
After a discussion about the computational difficulties of the proximity measurement,
heuristics to compute it in an effective and efficient way are proposed. An extensive

validation was performed to prove the quality of the proposed approaches.

4.2 Formal definition of proximity

In some existing applications, such as [CPZ97, TTSF00] where proximity was used to
obtain a better organization of access methods’ structure, a simplified measurement of
the proximity between two ball regions was used. We refer to this simplified version
as the trwial proximity. Specifically, the trivial proximity is computed through a

function, linearly proportional to the overlap of the regions, which can be generalized

as follows.
0 if rp + 1y < d(Oyg, Oy)
X (B(0,,,), B(Oy,my)) = {2000 it max(r,,r,) < min(ry,r,) +d(O,, O,)

2-min(rg,ry)

m otherwise

(4.2.1)
Equation 4.2.1 sets the proximity to 0 when two ball regions do not overlap. Oth-

erwise, the proximity is proportional to the regions’ intersection. The values are
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normalized to obtain proximity values in the range [0,1]. The proximity is 1 when
both regions include all objects, that is when their radii are equal to the maximum

distance d,,.

Although the trivial proximity measure is simple to compute, it is not accurate

because it does not take into account the distribution of objects in the space.

The issue of proximity is far more complex. Intuitively, the proximity of two ball
regions should be a value proportional to the amount of objects that simultaneously
occur in both of the regions. Accordingly, using a probabilistic approach, we may
define the proximity X (B(Oy,75), B(Oy,1y)) of ball regions B(Oy,74), B(Oy,1y) as

the probability that a randomly chosen object O € D appears in both regions, i.e.

X(B(Oy,12), B(Oy, 1)) = Pr{d(0,0,) < 1, Ad(O,0,) < 1,} (4.2.2)

Note that the proximity cannot be quantified by the amount of space covered by the
regions’ intersection. Due to the lack of space coordinates in general metric spaces,

such a quantity cannot be determined.

Our aim is to use proximity to design an approximate similarity search algorithm
that discard data regions with small probability of sharing objects with the query re-
gion. As discussed and proved in Section 6.9, high accuracy of proximity measurement
is fundamental for high precision of the approximate similarity search algorithm. In
fact our experiments give evidence that results obtained using the trivial proximity are
far less accurate than results obtained using the proximity measurements developed

in this thesis.
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4.3 Application considerations

Several practical applications may benefit from the measurement of the proximity

between two regions, for example:

Region splitting Static regions are not typical and the evolution process in storage
structures is regulated by specific split strategies. When a region R splits, two
new regions, say R, and R,, are created. One way of splitting a region may
be more advantageous than another — the content of a region can typically
be split in several ways. When a large number of objects is contained in the
intersection of two new regions (i.e. their proximity is high), the probability
of accessing both regions during query execution is also high, assuming query
objects have the same distance distribution as the data objects. For example,
consider Figure 4.1a where regions R; and Rq, resulting from a split, cover the
shared area of a cluster of objects. Queries ); and ()2 access only one region,
while )3 access both regions. However, respecting the assumption that query
objects have the same distance distribution as the data objects, queries like ()3
are far more frequent than ), or (), so this partitioning is not very beneficial.

Proximity can be used to detect such situations and to determine a good split.

Allocation When a new region is created, it must be placed in the storage system.
In such a situation, region proximity measures can be used to determine the
most suitable storage bucket for the new region. The strategy is different for
single and multiple (independent) disk systems, where parallel processing can
be supported. If parallel disks are available, buckets with a high probability of

simultaneous access (that is buckets whose corresponding regions have a high
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¢) Approximate similarity search

Figure 4.1: Use of the proximity measure for region splitting (a), the allocation of
objects on disks (b), and approximate similarity search (c)
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proximity) should not be put on the same disk, i.e. they should be declustered
for parallel access. In a single disk environment, buckets with a high probability
of being accessed together should be placed as close as possible, i.e. clustered.
Consider the example in Figure 4.1b, where regions R; and Ry (R3 and Ry)
have a high proximity. On the other hand, proximity between R; and R3 ( R2
and R4) is low. The consequence is that R; and Re (R3 and R4) should either
be put on different disks, in the case of multiple disks, or they should be placed

as close as possible, on a single disk system.

Approximate similarity search The proximity measure can also be useful for ap-

proximate similarity search algorithms to prune regions with a small probability
of containing qualifying objects, that is data regions with a small proximity to
the query region. Exact similarity search algorithms access all buckets whose
bounding regions overlap the query region. However, even if the query region
overlaps a data region, no or few data objects may appear in the intersection,
i.e. the proximity between the query region and the data region is small. The
result is that even though all data regions are accessed, few of them actually
contain qualifying data objects (few regions have a non empty intersection with
the query region). Many accesses are thus actually void and could be saved
if the proximity is used as a condition for pruning. In Figure 4.1c, it can be
seen that, although the query region () intersects regions Ri, Ro and Rs3, the
intersection with R; and R3 is empty and thus it is not necessary to access

these regions.

One of the approximate similarity search methods developed in this thesis imple-

ments this idea. Results obtained with this method out-performs those obtained
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with the other three methods. Full details of approximate similarity search by

using proximity are given in Section 6.9.

4.4 Computational issues

To precisely compute proximity according to Definition 4.2.2, the knowledge of dis-
tance distributions with respect to the regions’ centers is required. Since any object
from M can become a region’s center, such knowledge is not likely to be obtained.
However, as discussed in Section 2.3.4 we can assume that, when the index of homo-
geneity of viewpoints is close to one, the distance distribution is (practically) inde-
pendent of the centers themselves and depends on the distance between the regions’
centers instead. This also implies that all pairs of regions with the same radii and con-
stant distance between centers have on average the same proximity, no matter what
their actual centers are. Consequently, we can approximate the proximity of two re-
gions, whose distance between centers is dg,, with the overall prozimity Xq,, (rz,ry) of
any pairs of regions having radii r, and r,, and whose distance between centers is dg,.
Specifically we define the overall proximity as the following conditional probability

[HPST1):
X4, (rz,1my) =Pr{d(0,0x) <71, Ad(O,0y) <71, | d(Ox, Oy) = dyy}, (4.4.1)

where O, Oy, and O are random objects.

The overall proximity X4, (rg,7,) is defined as the probability that a random
object O belongs to the regions with random centers O, and Oy, and radii r, and
Ty, given that the distance between centers O, and Oy is dg,.

The proximity of two ball regions B(O,, r;) and B(O,, r,) such that dy, = d(O,, Oy)
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is therefore approximated as follows:
X(B(Og,72), B(Oy,1y)) = Ky (T2, 7y)-

Now, let us consider the way how Xg,, (74, 7,) can be computed. Let X,Y and Dxy
be continuous random variables corresponding, respectively, to distances d(O, Oy),
d(0,0y), and d(Ox, Oy). The joint conditional density fxy|pyy(%,y|dsy) is the
probability! that distances d(O, Oy) and d(O, Oy) are, respectively, z and y, given

that d(Ox, Oy) = dyy. Then, Xy, (r4,7,) can be computed as

Xa, (royry) = / / T Doy (@, ylday)dyda (4.4.2)
0 0

Unfortunately, an explicit form of fxy|py, (¢,¥|dzy) is unknown. In addition, com-
puting and maintaining joint conditional densities as discrete functions would result
in a very high number of values. The function depends on three arguments so that
the required storage space is O(n?), provided n is the number of samples used for
each argument. This makes the approach totally unacceptable.

We propose to compute the proximity measure by using an approximation of
fx¥\Dxy (2, Y|dsy), designated as f|,  (2,y]dsy), that is expressed in terms of the
joint density fxy (z,y). Note that fxy(x,y) is simpler to determine than fx y|p,, (2, y|dgy).
We can observe that X and Y are independent — if we know the distance between
O and Oy, this does not affect the distance between O and Oy, unless we add some
additional information as for instance the distance between Oy and Oy. Therefore,
by definition, we have that

fxv(z,y) = fx(z) - fr(y)-

LAs also stated in Section 2.3.4, we are using continuous random variables so, to be rigorous,
the probability that they take a specific value is by definition 0. However, in order to simplify the
explanation, we slightly abuse the terminology and use the term probability to give an intuitive idea
of the behavior of the density function being defined.
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Given the definition of the random variables X and Y, it is also easy to show that
fx(d) = fr(d), so we can omit the name of the random variable and substitute them
with the overall distance density f(d) (see Section 2.3.4). Therefore the joint density

is defined as:
fxy(z,y) = f(z) - f(y).

From a storage point of view, such an approach is feasible. The problem re-
mains how to define an accurate transformation that produces the joint conditional
density from the joint density. To achieve this we propose some heuristics and we
prove through experimentation that they are very accurate. This is the topic of next

sections.

4.5 Heuristics for an accurate measurement of the
proximity

Given a metric space M = (D, d) and two objects O, and Oy of D with d(O,,0,) =
dqy, the space of possible distances z = d(0, O,) and y = d(O, O,), measured from
an object O € D, is constrained by the triangular inequality, i.e. z 4+ y > dy,
T+ dygy >y, and y+ dyy > z (see Section 2.3.1). Figure 4.2 helps to visually identify
these constraints. In the gray area, called the bounded area, the triangular inequality
is satisfied, while in the white area, called the external area, the triangular inequality
is not satisfied, so an object O with such distances to O, and O, does not exist in D.

In general, fxy|pyxy(%,yldsy) # fxv(z,y), because the joint density fxv(z,y)
gives the probability that the distances d(O, Ox) and d(O, Oy) are z and y, no matter

what the distance is between Ox and O,. The difference between the two densities
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Bounded area

yt+d,, =X

External area

Y

dy, X

Figure 4.2: Area bounded by the triangular inequality

is immediately obvious when we consider the metric space postulates. Accordingly,
Ixy|Dxy (2, Y|dzy) is 0if 2, y, and dyy do not satisfy the triangular inequality, because
such distances cannot simply exist. However, fxy(z,y) is not restricted by such a
constraint, and any pair of distances < d,, is possible. To illustrate this, Figure 4.3
shows the joint conditional density fxy|p,, (z,y|dsy) for a fixed d,, and the joint
density fxy(z,y). Note that the graph of the joint conditional density has values
greater than zero only in the bounded area, and that quite high values are located
near the edges, while the joint density has values greater than zero also outside the
bounded area. The graphs in Figure 4.3 are obtained using the two dimensional

uniformly distributed data set UV described in Section 2.5.

4.5.1 Definition of the heuristics

Previous observations form the basis for the heuristics we propose to obtain the

approximate joint conditional density f;’;ﬁ’TDXY (z,y|dzy) by means of the joint density.
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The intuitive idea can be outlined as follows:

Given dyy, collect values of fxy(z,y) for © and y from the external area

and put them inside the bounded area.

When distances z, y, and d, satisfy the triangular inequality, the value of ;”QDXY (z,y|dzy)

depends on the specific strategy used to implement the previous idea, otherwise,

appr

XY Dy (z,y|dyy) = 0. In this way, the integral over the bounded area is 1. This is

the basic assumption of any probabilistic model that would be violated if the joint
densities were simply trimmed out by the triangle inequality constraints.

We have tried four different implementations of this heuristic, varying the strategy
applied to move density values. Figure 4.4 provides a visual representation of the
methods, where the circles represent the joint density function, while the arrows
indicate directions in which the necessary quantities are moved from the external

area to the bounded area. The strategies can be briefly characterized as follows.

Orthogonal approximation Collect values of fxy(z,y) outside the bounded area
and accumulate them on top of the corresponding constraint following a direc-

tion that is orthogonal to the constraint.

Parallel approximation Collect values of fxy(x,y) outside the bounded area and
accumulate them on top of the corresponding constraint following a direction

that is parallel to the axis.

Diagonal approximation Collect values of fxy(z,y) outside the bounded area and
accumulate them on top of the corresponding constraint following a direction

that always passes through d,,.
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Normalized approximation Collect values of fxy(z,y) outside the bounded area
to obtain a linear coefficient that modifies (increases) densities inside the bounded

area.

Note that proximity, measured by using the faI;II)TDXY (z,y|dyy) defined accord-

ing to the first three methods, Orthogonal, Parallel, and Diagonal, can also be
obtained directly from the joint density fxy(z,y). In fact, instead of computing
fa%elTny (z,y|dsy) and integrating it, the same result can be obtained by integrating
directly fxy(z,y) in the gray marked area, as illustrated in Figure 4.4: to simulate
the gathering of values of fxy(z,y) outside the bounded area, required to obtain
fapl”'

XY Dy (z,y|dyy), the integration is performed in the external area, covered by the

gray marked areas, as well. Specifically we have the following,

Xapp?(rw,ry / / fap;;)’TlDXy T y|dwy)dyd;p =

bz (d:cy T 77'y) b% (wydwy T 77'y)
= / / fxy (2, y)dydz (4.5.1)
0 b

2 (®,dey Tz ry)

In the following, we simplify the terminology by omitting the dg,, 7, r, parame-
ters in the integration bounds and use only the symbols by(), b, (z) and b2(x). The
integration bounds b,(), b, (z), and b2 (x) are functions that are specific for each ap-
proximation method. In particular, b,() gives the integration range along the z axis,
while b, (z) and b2(z) form the lower and upper bounds of the gray area along the y
axis for a specific z. A detailed definition of these integration bounds is given in next
subsection.

The Normalized technique is even more simple because we only integrate in the
bounded area restricted by the region radii (see the gray marked area in Figure 4.4)

and we multiply the result by the normalization coefficient
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Diagonal Normalized

Figure 4.4: The four heuristics proposed to compute region proximity
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NC(dy) = 1/(1 — E(dgy)), (4.5.2)

where E(d,,) is the integral of fxy(z,y) over the external area.

Integration bounds

In this section we formally define the bounding functions b,, b,(z) and b2(x) of the
four approximation methods described above. Even though the graphical represen-
tation of the integration areas seems to be easy and clear, its formalization is not
straightforward, because several special cases should be taken into account to obtain
the correct behaviour. Notice that in our simplified formalisation of the problem, the
function fxy(z,y) can assume arguments outside the range [0, d,,]. In those cases we
suppose that the returned value is 0.

We decompose the problem in subcases that can be considered separately — see
Figure 4.5 as a convenient graphical reference. First, we distinguish two different
cases: (i) 7, < dgy and (ii) r, > dg,. In these two situations, we identify some
intervals along the z axis.

In case (i), we identify these three intervals:
L I =[0,dgy — 1),
2. I} = [dgy — 7y, min(dgy + 1y, 73)), and
3. I = [min(dgy + 7y, Tz), dm]-
In case (ii), we identify other three intervals:

1. I = [0,min(ry — dey,7z)),
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2. I = [min(ry — dyy, 7)), min(dyy + 7y, 72)), and

3. Iél = [mzn(dwy + Ty, Tw); dm]-

Using the intervals defined above, we define the upper bound b7 (z). First consider
case (i) r, < d. When z € I{, since the regions do not intersect (that is d,—r, > r,),
the proximity is 0 (see Figure 4.5-a3) so the upper bound b2(z) is 0 too. Otherwise,
the upper bound is the straight line, which is specific for a method used, passing
by point A shown in Figure 4.5-(a; and ap). We call a(z) that straight line. When
z € I, the upper bound is always equal to r,. When z € I3, the upper bound is
the minimum between the two, method specific, straight lines passing respectively,
by point By and By. We call b(z) the straight line passing by B; and ¢(z) the one
passing by Bsy. Figures 4.5-(a; and ag) show two different situations. In the first case,

the minimum is b(z), in the other case, the minimum is ¢(z).

Now consider case (ii) r, > d,,, that is there is always an intersection between
the two regions. When z € I}, the upper bound is the minimum between the two,
method dependent, straight lines passing, respectively, by point A; and A;. We call
d(z) the line passing by A; and e(x) the one passing by A,. Figures 4.5-(by and b)
show two different situations. In the first case the minimum is e(z), while in the
other case the minimum is d(z). When z € I, the upper bound is always equal to
ry. Since If is defined exactly as I3, the same arguments apply as can be seen in

Figures 4.5-(b; and by).

More formally, b2(x) can be defined as follows:
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4 (
it d,, — 1y <
alw) WMoy =121y e
0 elsewhere i
< if ry < dgy
Ty ifx €I
by () = 4 [ min(b(z), o(2)) if v € I (4.5.3)
min(d(z),e(x)) ifz eI
§ Ty ifzell elsewhere
| | min(b(z),c(z)) fzelf

where a(x), b(z), c(x), d(z), and e(x) are defined for the individual approximation

methods as follows.

Let us now specifically define the integration bounds b.(), b, (z), and b2 (x) for each
specific approximation method, using previous observations.

In the Orthogonal method, to define b2(x), that is the upper bound of the in-
tegration area, the required straight lines a(x), b(x), c(z), d(z), and e(z) are the

following:

a(z) =2-ry—dgy+x
b(z) =2 -1y+dy —x
c(z) =21y —dy — 2
dz) =2-1p+dgy —x

e(z) =21y —dy —x

The lower bound b, (z) of the integration area is defined as

dopy —2 -1, +2 d,,—71, <71

0 elsewhere

0 elsewhere
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Case (i) ry <y

Y
T
y<=x+d,y
Y>=X-Oyy
Oy B,
Y=ty X
Ty A By
—>
dy e doy X
1 [ e I's o
< < >ie >
when dy+ ry<ry
Y, (1)
dn—
y<=x+yy
y>=X-Chy
dy
Y>= Gy X
Ty A By
B,
Il
dy I dm“ X
Mgy [P I i
-« pe > >
when dy+ ry>ry
Y ()
dn—
y<=x+0y,
dx‘/
r
’ ¥>=dy %
yo=xedy
+—>
T dy A X

whendy - r>ry
(%)

Figure 4.5: Cases to be taken into

Case (i) ry=dyy:

A
dn—
y<=xtd, /
B,
B
Ty
Oy
¥>= dy X
y>=xdy
Il
d, [ dn
R 1", O T
< >
when dy+ ry<r,and rr-dy,
3 (by)
A
..
Y<=XtOyy
A,
Ty B
dy
)
a
"y < 1”5 >t 1”3 >:
when diy+ ry=r,and 1,2 -y
v (b2)
dn
y<=xtehy
|
dn

(b3)

when ry <ry-Oyand dhy - 1<y

account when defining bounding functions
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That is, when r, is smaller than d,,, and r, is such that d,, — r, < 7, the lower
bound is the straight line y = « + dgy, — 2 - 7, passing by point B — see Figure 4.5-bs.
In all other cases the lower bound is 0.

Last, we need to define b,, that is the range of the integration. If r, is smaller
than d,, the integration is made in the interval [0,7;], otherwise in the interval
[0, min(ry, )], where r; and 7o are such that, respectively, b(r;) = 0 and ¢(r) = 0.

We can make it explicit as follows:

b — Tw if rg <dgy
¢ min(2 -1y + dgy, 21y — dygy) i1y > dyy

To define bZ(x) for the Parallel method, we use again the outline of equation 4.5.3

and define a(z), b(x), c(z), d(z) and e(x) as follows:

b,(z) is always 0 so:

Last, b, is defined as follows:

b :{ Ty iy <dgy

dp 71y >dgy
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That is, if r, is smaller than d,,, then the integral is made in the interval [0,7,],
otherwise in the interval [0, dp,].

To define b7(z) for the Diagonal method, we use again the layout of equation 4.5.3

and define a(z), b(x), c(z), d(z) and e(x) as follows:

a(z) =
T T
o) = —— v T g
() =ty —dy T A, —d, ¢
_ _Tw Ty Ty dwy
C(IE) dm_rw v dm_rw dm
A, — Ty

Bounding functions b, (z) and b, for the Diagonal method are defined exactly the

same as for the Parallel method so we make no further discussion on them.

Last, we have to consider the Normalized method. Because of the different nature of
this method, also the definitions of the bounding functions have a different layout. In
particular, there is not need for extending the integration area, so just the intersection
between the original constraints (z < r, and y < r,) of the integration area and the

triangular inequality constraint are needed. The result is the following:

bwzrw

bgl,(x) = |z — dwy|

b2 () = & + dgy
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4.5.2 Computational complexity of the heuristics

The computational cost of Equation 4.5.1 is clearly O(n?), where n is the number of
samples needed for one integration. Since one of our major objectives is efficiency,

such a cost is still high. However, we can transform the formula as follows:

bz () bz ()
/ / fxv(z,y)dydx —/ / y)dydx =
b b

= f() (F(by(z)) — F(b,(2)))dx (4.54)

0

Provided that density f(d) and distribution F'(d) functions are explicitly maintained
in the main memory, Equation 4.5.4 can be computed with complexity O(n). This
assumption is realistic even for quite high values on n, so the computational com-
plexities of the Orthogonal, Parallel and Diagonal methods are linear. As far as the
Normalized method is concerned, we can see that the normalization coefficient, de-
fined by Equation 4.5.2, is not restricted by specific region radii, thus it only depends
on dgy. Such information can also be maintained in the main memory. Consequently,

the computational complexity of the Normalized method is also O(n).

4.6 Validating the approaches to the proximity mea-

sure

In this section, we investigate the accuracy of the proposed approaches to computing
the proximity. Before presenting the simulation results, we first describe the evalua-

tion process and define comparison measures.
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4.6.1 Experiments and comparison measures

We computed the actual prozimity X g;;ual(rw, ry) for all data sets described in Section
2.5 as follows. We uniformly chose 100 values of dyy, 75, and 7, in the range of possible
distances. The proximity X gg;“al (1, y) was computed for all possible combinations of
the chosen values. To accomplish this task, we found for each d, 400 pairs of objects
(O, 0y), i.e. the centers of the balls, such that |d(Og, Oy) — dsy| = 0. For each pair
of objects, we used the predefined values of r, and r, to generate ball regions. Then,
we only considered pairs of intersecting regions, because non intersecting balls have
0 proximity and no verification is needed. For each pair of balls, we counted the
number of objects in their intersection. The actual proximity was finally obtained
by computing the average number of objects in the intersection for each generated
configuration of dy,, 7, and r, and by normalizing (dividing by the total number of
objects in the data set) such values to obtain the probability.

We did not consider distances d, of very low densities, because it was not possible
to compute the actual proximity with sufficient precision — the data sets contained
only very few objects at such distances.

Once the actual proximity was determined, we computed the approximate prox-
imity for the same values of dgy, 7y, and r,. The comparison between the actual
and the approximate proximity was quantified for each possible configuration as the

absolute error

e(rw,Ty, dwy) = |X¢(;§;ual(rwvry) - Xg:fT(rmry”

An alternative way to evaluate our approaches would be to use the relative error,
defined as the ratio of the absolute error and the actual proximity. However, our

choice for the absolute error can be justified as follows. Suppose that the actual
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proximity is almost 0 (e.g. 107°), while the approximate proximity is exactly 0. In
this case, the relative error is 1, i.e. we have a high error. Consider now the opposite
case where the actual proximity is zero, and our approximation is 107°. In this
case, the relative error is co. However, given the meaning of proximity (see Section
4.1 and Section 4.3), and considering previous examples, we can say that such an
approximation is good, because it almost produces the correct results. For example,
when it is applied for approximate similarity search, as discussed in section 6.9, regions
can be safely pruned if the proximity is 10~® because, statistically, only one object in
100,000 can be lost. This means that the absolute error is a more objective measure,
i.e. more suitable for our purposes.

Given the large number of results, we summarized them by computing the average
error €, (dzy) for all pairs of radii at a given distance between the centers, and the
average error e, (ry,m,) for all distances between the ball centers at a given pair of
radii, specifically:

€u(day) = AVgrer, (€(rx, Ty, day))
and

€,(T2,Ty) = AvGa,, (€(74, Ty, dxy)).

In a similar way, we computed the variance of the error for a given distance dg,:

€, (doy) = VaTrer, (€(rx, Ty, dzy))

The evaluation of ¢, is used to measure the average error of approximations for specific
distances between the ball centers. However, ¢, alone is not sufficient to correctly
judge the quality of the approximation. In fact, it is obtained as the average error for

all possible values of r, and r, so that some peculiar behaviors may remain hidden.
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In this respect, the stability of the error must also be considered. For this purpose,
we computed the variance €/ . Note that high average errors and small variances may
also provide good approximations. To illustrate this, suppose that we want to use
the proximity to order (rank) a set of regions with respect to a reference region. The
ranking results obtained through the actual and approximate proximity may turn out
to be identical even though €, is quite high. In fact, when the variance of error is very
small, it means that the error is almost constant, and the approximation somehow
follows the behavior of the actual proximity. In this case, it is highly probable that
the approximated proximity increases (or decreases) according to the trend of the
actual one, thus guaranteeing the correct ordering.

On the other hand, €}, represents the average error from a different point of view
and complements ¢,. It is determined for a given pair of radii (r,r,) by varying dg,.
This measure offers a finer grained view on the error behavior, since the average is

only computed varying the distance dg,.

4.6.2 Discussion on the experimental results

For all data sets, the actual proximity was compared with our techniques and the
trivial proximity (defined by Equation 4.2.1). Figures 4.6, 4.7, and 4.8 presents
the average error ¢, and its variance ;. Note that all the approximation methods
outperform the trivial one, and the error of the trivial method may even be one order
of magnitude higher. The same holds for the variance of the errors. For all the
proposed techniques, €/ is one order of magnitude smaller than the value obtained
with the trivial technique. This implies that the trivial proximity may provide results

that significantly differ from the actual proximity. In addition, the proposed methods
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Figure 4.6: Average and variance of errors given dg, in HV1

95



96

HV2 dataset: average error
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HV1: Trivial method
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Figure 4.9: Comparison between the errors of the trivial method and the

method given r, and r, in HV1
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HV2: Trivial method

™ 4,00E-01-4,50E-01
0 3,50E-01-4,00E-01

I 3,00E-01-3,50E-01
TN ,‘,‘y\\ N B 2,50E-01-3,00E-01
A} 77 A
3,50E-01 ,/,’l,’,’,','t:.w\\\‘) 7 7 2,00E-01-2,50E-01
‘ OSS ) _01- -
eSS it 0 1,50E-01-2,00E-01

UHIIITY
& S l“"‘““" O1,00E-01-1,50E-01
Sl “‘“-‘-l = 5,00E-02-1,00E-01

@ 0,00E+00-5,00E-02

Ey lll'l'iiillli\\v— :
1% \\\4
aarfigfy WY
[/} \\\\\‘|‘|v‘“—“
i
el l’l’l{l’l’ ”’lllll’ y=2.037
RRLLLTT] y=1.701

HV2: Parallel method

4.50E-01— Nwmwmm

0 3.50E-01-4.00E-01
4.00E-01— B 3.00E-01-3.50E-01
8 2.50E-01-3.00E-01
¥ 2.00E-01-2.50E-01
0 1.50E-01-2.00E-01
0 1.00E-01-1.50E-01
B 5.00E-02-1.00E-01

3.50E-01—

3.00E-01—

2.50E-01— 0 0.00E+00-5.00E-02
g’ e
U
2.00E-01—
1.50E-01—
1.00E-01—
s y=2.037
5.00E-02—f T R I -
= e et
0.00E+00— e U S N W
e S

RRRLLALLART
e e
LR LA

Figure 4.10: Comparison between the errors of the trivial method and the parallel
method given r, and r, in HV2
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UV: Trivial method
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Figure 4.11: Comparison between the errors of the trivial method and the

method given 7, and 7, in UV
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provide very good and stable results. They have a small variance as well as small
errors, so that they can be reliably used in practice.

Although there is not a clear winner among the proposed methods, the Parallel
methods gives the best results in the most frequently used range of distances. If we
compare the proposed methods for the UV data set, we can see that the Parallel
method provides good and stable results. The quality of this method deteriorates,
both in terms of €, and ¢, for high values of dg,, which are not likely to occur in
practice. Here the best results are obtained through the Normalized method. In the
HV1 and HV2 data sets we can see again that the Parallel method provides the best
performance, though the differences with respect to the other techniques described
are even less significant.

Consider now the average error for a given pair of radii eZ. For the sake of simplic-
ity, we only compare €, for the Parallel and the trivial method. The results are shown
in Figures 4.9, 4.10, and 4.11. As an additional confirmation of the observation that
we have made for ¢, and ¢, the error €, for our approximations is again significantly
smaller than the one measured for the trivial method. In particular, the error of the
trivial method is always quite high, while for a substantial range of r, and r, values,

the error of the Parallel method is close to 0.
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