Chapter 3

Access methods for similarity
search

3.1 Introduction

Searching for data in large repository is intrinsically a difficult task. In order to
perform search operations efficiently a physical level support is needed. Accordingly,
several access methods were designed to optimize the execution of both exact match
and similarity search operation.

In the following we introduce three classes of access methods: sequential scan
techniques, hashing techniques, and tree-based techniques. Since the approaches
proposed in this thesis are applied to tree-based access methods, we briefly introduce
sequential scan and hashing techniques. Then, we dedicate more space to tree-based
access methods. We define a general structure for tree-based access methods and we
also introduce the basic similarity search algorithms. The definition of some specific
tree based access methods is finally discussed distinguishing four different application

areas: one dimensional data, multi dimensional data, spatial data, and metric data.

43

44

3.2 Access methods for similarity search

Literature offers several excellent surveys related to access methods for similarity
search. As an example consider [GG98, BBK01, CNBYMO1]. Here we describe some
of the most significant approaches related to the issues discussed in this thesis.

In this chapter, for convenience, we broadly classify the access structures organi-

zations for efficient processing of similarity search queries into three categories:

a) sequential scan
b) hashing
c) tree-based

Access structure organizations for sequential scan organize data in such a way
that a sequential scan of the whole data base can be efficiently executed. Hashing
methods, organize data in buckets according to some hashing functions so that only
a few buckets should be accessed to process a query. Tree-based access methods,
organize data in a tree hierarchy. Only a few nodes of the tree should be accessed to
process a query.

Comparison of different access methods can be performed considering several as-
pects. However, as suggested in [GG98], among the important features of access

methods is worth considering the followings:

Dynamicity: Access methods should allow insertion and removal of entries, without

affecting their performance

Secondary storage: Since databases contains huge amount of data, data structures

45

used to organize entries cannot be maintained into main memory and should

be designed to make an efficient use of secondary storage.

Independence of input sequence: Performance of access methods should not de-

pend on the order in which data are inserted in the index.

Scalability: Performance of access methods should not degrade quickly as the size

of the database increases.

Space efficiency: The space required to maintain the access structure should be

limited.

The algorithms and the techniques presented in this thesis are mainly devoted
to tree-based access method. Therefore, in the following we will briefly introduce
sequential scan and hashing techniques, then we will dedicate more space to the

tree-based techniques.

3.2.1 Sequential scan

The basic technique to process similarity search queries defined in Section 2.4 is to
perform a single scan of the entire database. In order to perform this efficiently, data
can be densely stored on contiguous blocks of a secondary storage. The sequential
scan techniques, access sequentially all data of the database, according to the ordering
used to place data on the secondary storage. This technique is faster than accessing
randomly small blocks spread widely on the secondary storage. In fact, data stored
contiguously can be transferred into main memory very fast, since no head seek
latency occurs. On the other hand, in case of random block transfer, head seek time

is is the main reason for inefficiency. Sequential scan algorithms transfer into main

46

memory large blocks of data, depending on the available amount of main memory.
After a block is transferred, data contained in it are processed, then a new block is
transferred, until all data are processed. Performance of sequential scan techniques is
linearly proportional to the size of the database. Their aim is to improve performance
of similarity search algorithms by minimizing the head seek overhead. However, they
cannot reduce the data transfer and data process overheads, that are linear to the
size of the database.

A relevant approach for data represented in vector spaces, based on the sequential
scan technique, is the VA-File (Vector Approximation File) [WSB98]. It reduces the
size of the data set using a coarse approximate representation of data objects. In
this representation more objects may collapse in one coarse object. Sequential scan is
performed on the reduced data set containing the coarse representation. The resulting
coarse result set is used to lookup in the original data set to find the actual result set.

Notice that in some applications, head seek and data transfer overhead have a
minor impact with respect to data process overhead. In fact, data process overhead
is mainly due to distance computation between data objects and query objects and,
some applications, as for instance genetic databases, require distance functions whose
computation costs much more than disk accesses.

Hashing and tree-based access methods, on the other hand, use data structures

that also aim at minimizing the amount of data transferred and processed.

3.2.2 Hashing

The idea behind the hashing techniques [Knu98, WFHC92] is that data objects should

be allocated in a certain number of buckets in order to access just a few of them when

47

a query should be processed. Each bucket typically corresponds to a disk page and has
a specific capacity. A hash function takes as input an object and returns the identifier
of a bucket. The object is added to the obtained bucket. A typical technique used
to handle the situation where adding a new object in a bucket would exceed the
bucket’s capacity is to store the additional entries in overflow buckets associated with

the original bucket.

Hashing techniques for exact match search use arbitrary hash functions: when a
query is processed, the hash function is applied to the query object. The exactly
matching data object is searched in the obtained bucket and eventually in the corre-

sponding overflow buckets.

Hashing techniques for similarity search, as for instance range queries, use hash
functions that preserve the closeness of data objects. Close (similar) objects are stored

in the same bucket.

A significant hashing approach for multi-dimensional data, therefore applicable
to data represented in vector spaces and distances measured using functions of the
Minkowski family, is the grid-file [NHS84]. It partitions the search space symmetri-
cally in all dimensions. Specifically the grid-file put a d-dimensional orthogonal grid
on top of the search space obtaining a set of hyper-rectangular cells, whose shape
and size might be different, depending on the regularity of the grid itself. Each cell
or a group of cells are associated with data buckets. Each cell is associated with one
bucket but each bucket might contain several adjacent cells. When a new object (that
is a vector) should be added to the data set, first the cell that contains it is identified.
If the bucket containing the cell is not full, then the object is inserted. If the bucket

is full, there are two possibilities. If the bucket contains several cells, one checks if

48

one of the existing hyperplane of the grid can be used for splitting the bucket. If
there is not such an hyperplane or if the bucket is associated with only one cell, then
a new hyperplane is added to the grid so that the bucket is split. Exact queries are
executed by locating the cell that contains the query object and searching inside the
corresponding bucket. Range queries are processed by locating cells that overlap the
query region and searching in the corresponding buckets.

Another interesting hashing approach for similarity search in metric spaces is the
D-Index [GSZ02], whose basic techniques were also proposed in [GSZ00, GSZ01]. It
is a multilevel hash structure that takes advantage of the idea of the excluded middle
partitioning, also exploited in [Yia99] for building an access method based on excluded
middle vantage point. In each level of the hash structure a certain number of buckets
are defined. Each level is associated with a hash function that, given an object,
assigns it to either a specific bucket or no buckets in the corresponding level. Objects
that are associated with no buckets in a level become candidate to be stored in the
next level. It might happen that some objects are excluded to be stored in all levels.
These remaining objects are stored in a separate ezcluded bucket. In this access
structure, each object is stored in one bucket of the multilevel structure or in the
excluded bucket. Queries can be processed, by accessing at most one bucket per level
plus the excluded bucket. The upper bound on the number of disk access is limited
by the number of levels, and the number of required distance computations can be
significantly reduced by using some pre-computed distances. Distance computation
between query objects and some accessed objects sometime is not performed since,
by using pre-computed distances, it is possible to infer that they do not belong to the

result set.

49

3.3 Tree-based access methods and similarity search

algorithms

Approaches classified as tree-based access methods currently dominate the field. Their
basic principle is the hierarchical decomposition of the data space. Techniques de-
veloped in this thesis suppose that tree-based access methods are used so we devote
more space to their description.

All tree-based access methods have some common features, concerning their struc-
ture. All of them, for instance, hierarchically organize the space by using regions,
however there are differences concerning the definition of the used regions and the
way the trees are built and maintained. For instance, the Generalized search trees
(GIST) [HNP95] subsumes most of the characteristics of tree-based access methods
under a generic architecture, so it can be used as a reliable framework for the imple-
mentation of new access methods.

In the following we describe the general structure of tree-based access methods,
we outline the generic similarity search algorithms that exploit this structure, finally

we discuss some specific implementation of tree-based access methods.

3.3.1 General structure

Tree-based access methods partition objects and store elements (set of objects) of the
partition in buckets, as hashing methods also do. However, while in hashing methods
a bucket identifier is obtained by applying a hash function to data objects, in tree
based access methods, buckets are accessed by traversing the tree structure.

The tree structure is composed of nodes that contain pointers to other nodes.

90

Nodes that do not refer other nodes are called leaf nodes. The remaining are called
internal nodes. Each node of the tree is associated with a region that represents a
subspace of the entire search space. The region associated with a node V; is contained
in the region associated with the N;’s parent node and contains all regions associated
with the N;’s descendants.

A leaf node is simply a container of references to data records along with the
objects that represent them. Let’s suppose that N; is a leaf node of a tree. The

generic structure of N; is the following:
N; = ((pzi, Oi)? R (pim OTZL,))

where n; is the number of objects contained in N;, pé is a pointer to a record (for
instance an image), and the object O; is the corresponding representation (for instance
the image color histogram). All objects O;, 1 < j < n;, belong to the region associated
with NV;. Notice that in traditional database systems, objects O; are typically called
keys.

The definition of the region associated with a node is stored in its parent node,
along with its reference. In fact, an internal node is a container of references to
other nodes, either internal or leaf nodes, along with the definition of their associated
region. Let’s suppose that N; is an internal node of the tree. The generic structure
of N; is the following:

Ni = ((r, R, - (1, Rn,))
where 7%,1 < j < ny, is a reference to another node, say Nj, and R, 1 < j < n,
is the region associated with V;. Regions are not necessarily disjoint, that is, it is
possible that some regions associated with nodes referred by the same parent node

overlap.

o1

In some tree-based access methods also internal nodes, in addition to leaf nodes,
may contain references to searched data and the object that represents it. The cor-

responding (extended) node structure is the following:
N; = (((pzh Oi)? Ti? RZI)? R ((p:.w 022)7 wa R:L,)) .

We will generally suppose that only leaf nodes contain pointers to real data, so
we will use the simplified node structure. However, when needed we will mention the
other possibility.

Let’s suppose that N, is an internal node and node N, one of its child nodes. Let
R, be the region associated with IV, and R, the one associated with N.. As we have
previously said, region R, is included in region R,, that is if object O € R, then
0 €eR,.

The number of elements n; in a node NN;, either leaf or internal node, and the type
of regions associated with nodes depend on the specific access method.

The entry point to the tree is the root node. The root node is associated with a
region representing the entire universe.

Notice that even if regions associated with different nodes might overlap, a refer-
ence to a record whose representation is contained in the intersection of two regions
is typically stored just in one node.

When only leaf nodes contain references to real data, leaf nodes represent a parti-
tion of the whole data set. The strategies used to partition the data set and to bound
elements of the partition with regions are specific for each access method.

Some tree-based access methods are designed to be maintained into main memory
and do not take into consideration secondary memory storage. These are not suitable

for large databases. Other access methods are primarily designed to be maintained

92

into secondary storage. In this case, in order to minimize disk access overhead, size
of nodes of the tree corresponds to the size of a disk page. In this way reading a node
of the tree corresponds to one disk access.

Most tree-based access methods are built using strategies that maintain them
height-balanced. Therefore, the lengths of the paths from the root node to all leaf
nodes are identical. In these cases, the length of the path from the root to the leaf

nodes is called the height of the tree.

3.3.2 General similarity search algorithms

The hierarchical structure of tree-based access methods allows similarity search algo-
rithms to ignore subsets of objects where qualifying objects cannot be found. Search
algorithms traverse the tree structure top down, starting from the root, discarding
paths corresponding to sub-trees where no qualifying objects can be found. Leaf
nodes reached by search algorithms are exhaustively searched for qualifying objects.

For the sake of simplicity we suppose that data objects and references to searched
data are only contained in the leaf nodes. However, it is straightforward to modify
the algorithms in order to have a correct behaviour on tree structures where also
internal nodes contain references to searched data.

The algorithms described in this section solve range and nearest neighbors queries
defined in Section 2.4. The intuition behind these algorithms is the following. In case
of range queries, only nodes associated with regions intersecting the query region
B(Oy,74), where O, is the query object and 7, the query radius, should be accessed.
If the region associated with a node does not intersect the query region, all regions

associated with nodes belonging to the sub-tree rooted at this node do not intersect

93

the query region and leaf nodes of the sub-tree do not contain objects that are covered
by the query region. Therefore the entire sub-tree can be safely pruned. In case of
nearest neighbors search, the behaviour is similar, since we will see that the nearest
neighbors search algorithm is in fact defined as a range search algorithm where the
query radius is reduced step by step. A query region with a large radius is used at the
beginning. Then the radius is reduced step by step depending on the nearest objects
currently found.

Similarity search algorithms on tree-based access methods traverse multiple branches
of a tree to collect objects that satisfy the query. Accordingly, both algorithms use
a dynamic queue of Pending Requests, PR, to temporarily store pointers to tree’s
nodes, whose bounding regions potentially contain qualifying objects, to be accessed
in the next iterations of the algorithms. Each node corresponds to a different branch

to be searched in the trees structure.

Range search algorithm

The response range(O,,7,) to the similarity range query of query object O, and
search radius 7, can be determined by the Algorithm 3.3.1.

The algorithm takes as input values the query region, composed of the query
object O, and the query radius r,. It returns the set of pairs range(Oy,r,) =
{(p1,01), (p2, 02), ..., (;i, O1) } where p; is a pointer to a record, O; is the object that
represents it, and [is the number of elements retrieved.

The algorithm starts with an empty result set and a queue of pending requests
PR containing only the pointer to the root of the tree (Step 1). Then the algorithm

iterates while PR contains some nodes to be accessed (Steps 2 and 11). At each

o4

Algorithm 3.3.1. Range
Input: query object Oy; query radius ry.
Output: response set range(Oy, 7).

1. Enter pointer to the tree root into PR; empty range(Og,).
2. While PR # (), do:
3. Extract entry N from PR. Suppose that N is bounded by region R.

Read N.
If N is a leaf node then:
For each (p;,0;) € N do:

4
5
6
7. If d(Oq, O;) < rq then (p;, O;) — range(Oy,ry).
8. If N is an internal node:

9 For each child node N, of N, bounded by region R, do:

10. If Overlap(B(Oy,7q), Rc) then insert pointer to N, into PR.

11. End

iteration, a node is extracted from PR (Step 3) and its content is read (Step 4).
Notice that in case of secondary storage access methods, reading a node corresponds
to one disk access. If the extracted node is a leaf node (Step 5) the algorithm checks
if the contained objects are covered by the query region. Covered objects, along
with the corresponding record pointers, are inserted in the result set (Steps 6 and
7). If the extracted node is an internal node (Step 8) it refers to other nodes of the
tree, so the algorithm checks if these child nodes should be accessed. Each referred
node is inserted in PR, to be examined in the next iterations, if the region, they are

associated with, overlaps the current query region (Steps 9 and 10).

99

1.

NS o s N

10.
11.
12.

Algorithm 3.3.2. Nearest neighbors
Input: query object O4; number of neighbors k.

Output: response set nearest(Og, k).

Enter pointer to the tree root into PR, fill nearest(Oy, k) with k (random) objects;
determine r4 as the max. distance in nearest(Oy, k) from O,.

While PR #), do:
Extract the first entry N from PR. Suppose that N is bounded by region R.
If Overlap(B(Oy,14), R) then read N, exit otherwise.
If N is a leaf node then:
For each (p;,0;) € N do:

If d(Oy, O5) < rq then update nearest(Oy, k) by inserting (p;, O;) and removing
the most distant pair from Og; set 1, as the max. distance of objects in nearest(Oy, k)
from O,.

If N is an internal node:
For each child node N, of N bounded by region R, do:

If Overlap(B(Oy,7q), Rc) then insert pointer to N, into PR.
Sort entries in PR with increasing distance to O,.

End

Nearest neighbors search algorithm

The response nearest(O,, k) to the nearest neighbors query for query object O, and

k nearest neighbors, according to [HS95), can be executed by the Algorithm 3.3.2 in

the optimum way, i.e. with the minimum number of accessed nodes.

There is a strong similarity between Algorithms 3.3.1 and 3.3.2. However we can

highlight two main differences. First, the nearest neighbors algorithm maintains a

dynamically shrinking query radius while the search radius (specified as input pa-

rameter) is constant for range queries. Second, the queue of pending requests PR

does not assume any ordering for the range queries, while increasing distance to the

query object is used for ordering in the approximate nearest neighbors algorithm — a

o6

node close to the query object should be accessed first.

The algorithm for approximate nearest neighbors search takes as input values the
query object O,, the number of neighbors required £. It returns the set of pairs
nearest(Oy, k) = {(p1,01), (2, 02), .., (pr, Ox) } where p; is a pointer to a record, O;

is the object that represents it, and d(O,4, O;) < d(Oy, 0;),i < j.

The algorithm starts with a result set initialized with k£ random objects from
the data set, the current query radius r, set to the maximum distance between the
query object and the objects in the result set, and the queue of pending requests
PR containing only the pointer to the root of the tree (Step 1). Then the algorithm
iterates while PR contains some nodes to be accessed (Steps 2 and 12). At each
iteration, a node is extracted from PR (Step 3). The content of the node is read
only in case the region associated with it overlaps the query region (Step 4) elsewhere
the algorithm exits since no other region in PR may overlap the query region, given
the ordering used in PR (Step 11). If the extracted node is a leaf node (Step 5)
the algorithm checks if the contained objects are nearer to the query objects than
those in the current result set. In this case, these nearer objects are inserted in the
result set, along with the corresponding record pointer, elements exceeding the k-th
position of the updated result set are removed, and the current query radius r, is
set to the distance between the query object and the object that represent the k-th
element in the result set (Steps 6 and 7). If the extracted node is an internal node
(Step 8) the algorithm checks if pointed nodes should be considered or not. Each
pointed node is inserted in PR, to be examined in the next iterations, if the region
they are associated with overlaps the current query region (Steps 9 and 10). The

entries in PR are sorted according to their distance to the current query object (Step

a7

11); the distance of an object from a region is the nearest possible distance of any
point inside the region from the object. Notice that given the dynamic behaviour of
the query radius 7,4, a node that is inserted in PR at Step 10 can be pruned at Step 4

since, after its insertion and before its extraction, the query radius might be reduced.

3.4 Specific tree-based access methods

In this section we describe some specific tree-based access methods. We have con-
sidered four different application areas and for each of them we have described the
most popular tree-based access methods. The first application area is that of one
dimenstonal data, where an absolute ordering among data can be conveniently ex-
ploited. This is a typical case in traditional database systems. B-Trees are the most
popular tree-based access methods in this case. The second application area is that
of point or multi-dimensional data, where data are represented by points in a multi-
dimensional vector space. The point access methods described here are k-d-Trees and
quad-Trees. The third application area is that of spatial data, where spatial objects
like polygon, or curves, in addition to points, are managed. R-Trees are typically
used as access methods in this case. Finally, the fourth application area is that of
metric or distance only data, where no coordinate information can be exploited since
only distances among data objects can be computed. M-Trees are a significant access

method for this kind of data.

As previously stated, techniques developed in this thesis are defined for metric

data. Specifically they were tested by using M-Trees as access method.

o8

3.4.1 Omne dimensional access methods: B-Trees

B-Trees [BM72], and their extensions [Com79], especially B*-Trees, are the most
popular tree-based access methods. They can be used for one dimensional data, that
is in those case where an absolute ordering among data can be exploited, and are
widely used for high performance primary key accesses, in traditional databases. B-
Trees are secondary storage structures, therefore, node’s size corresponds to the size
of a disk page. Each node, either leaf or internal node, may have several pointers to
descendant (either nodes or data records).

The structure of a leaf node of a B-Tree is defined exactly as in Section 3.3.1. That
is, it just contains a certain number of objects (keys) along with the corresponding
references to real data (records).

Regions associated with nodes are disjoint adjacent intervals of the one dimen-

sional space. The region R; associated with the j-th child of the ¢-th node is

RE = [ai. bi.)

J 3777
Notice that, since intervals are adjacent,
by = aj,
so the structure of the node can be conveniently simplified by only storing the left
bounds of the intervals.
Internal nodes of B-Trees, in addition to references to child nodes and associated
regions, also contain references to data records, as in the extended internal node
representation given in Section 3.3.1. Let us call pé the j-th reference contained in

node Nj. p} points to the record identified by the left bound b of the j-th interval,

that is, O; = b’ is the key of the pointed record.

99

bt P2 p3 Pa ps Ps p7 ps Po DPro Pt P12

Internal nodes

bt P2 p3 Pa ps Ds p7 ps Po DPro Pt P12

Figure 3.1: B-Trees structure example, supposing that the maximum number of en-
tries in a node is three

Figure 3.1 shows the structure of a B-Tree and how intervals are organized.

BT -Trees, simplify the B-Tree structure. In fact, in BT-Trees only leaf nodes refer
to data records, while internal nodes only refer to other nodes.

B-Trees and Bt-Trees are always height-balanced. The technique to guarantee
this is to have the tree growing from the leaves to the root. Insertion first locates the
leaf node where the new entry should be inserted. If the node is full, it is split in two.
As a consequence of this, the entry referring the old node should be modified and a
new entry, corresponding to the new node should be added in the parent node. If the
parent node is also full, it is also split in two and splits may propagate up to the root
of the tree. When also the root is split, a new level (a new root) is added to the tree,

guaranteeing the height-balancing.

60

3.4.2 Point access methods: k-d-Trees and quad-Trees

Access methods described in this section are able to deal with points in a vector space,
even if some of them were extended to deal also with spatial data as for instances
polygons. We describe two different tree-based point access methods, namely k-d-

Trees and quad-Trees, and discuss some of their extensions.

k-d-Trees

K-d-Trees [Ben75, Ben79] are binary search trees that exploit a recursive subdivision
of the space. Let us suppose that our objects are vectors with dim dimensions. In
every level of the tree a value (key) is used as discriminator for branching decision
of a specific dimension of the corresponding vector space. The root node (level 0)
discriminates for the first dimension. Nodes pointed by the root (level one) discrimi-
nate for the second dimension. And so on, up to the level dim — 1. If more than dim
levels are needed, the process starts again from the first dimension. Space subdivision
is obtained by (dim — 1)-dimensional hyperplanes. Each splitting hyperplane has to
contain at least one data object. See Figure 3.2 for an example.

Leaf nodes just contain a reference to a record and the object (vector) that repre-
sents it, or they are empty in case that no objects are contained in the corresponding
region. Of course empty leaf nodes can be materialized when needed, saving a lot of
unused memory space.

The structure of internal nodes is slightly different than that described in Section

3.3.1:

N; = ((pi7 Oi): (Tliv R?)? (Tviw R:"))

An internal node contains a single pointer to a record, along with its representation,

61

[]
P3 []
p7
L g
P2 *— $ N
Pe °
ps
[]
Ps P3 © 5
[]
P 6 Ps
L
P4 O
p7

Figure 3.2: k-d-Trees structure example

and two entries. The left entry points to the left child node and contains a description
of the region associate with it. The right entry, symmetrically points to the right
child node and contains a description of its bounding region. Modifications of search

algorithms for this modified structure are straightforward.

Let us suppose that N is a node at level lev of the tree, and object O = (oy, . . ., Ogim_1)
is the object contained in it. Let X = (=z¢,...,Zgm-1) be the axis of our dim-
dimensional vector space. The left region R;, associated with the left child node,
is obtained by the intersection of the semi-space Ty mod dim) < O(lev mod dim) and
the region R associated with the node N itself. Symmetrically, the right region
R, associated with the right child node, is obtained by intersecting the semi-space

Z(lev mod dim) > O(lev mod dim) and the region R. Notice that the hyperplane Z(ey mod dgim) =

O(lev mod dim) CONtains the object O.

It is straightforward to observe that the structure of a node can be conveniently
simplified by only storing the value 0es mod dim), corresponding to the (lev mod dim)

dimension, and the pointers ; and r, respectively to the left and right nodes.

62

The name k-d-Trees stands for k-dimension tree, where k is used as the dimen-
sionality of the indexed space.

k-d-Trees have been designed as main memory access structures, but the extended
k-d-Trees [CF80] has been modified for secondary storage environments. This scheme
uses the k-d structure as a directory to data stored in pages, but only the leaves of
the directory contain these page pointers.

A successful attempt to generalize the B-Trees and k-d-Tree ideas in one is pre-
sented in [Rob81] and called the k-d-B-Trees. In geometric terms, the data space is
divided into a set of dim-dimensional boxes, which are also divided in boxes, etc.,
down to the depth of the tree. Instead of a set of one-dimensional points, each branch
node in a k-d-B-Tree contains a set of regions. Each region is represented by the set
of 2 - dim coordinates which define its boundaries. The union of all regions in a
branch node is the region which encloses them. The lowest level nodes, representing
the ”innermost” regions, contain pointers to sets of tuples pertinent to these regions.
Alternatively, the leaf nodes may contain coordinates of their content points, plus

another level of indirection to the actual tuples corresponding to these points.

quad-Trees

As previously discussed, k-d-Trees are binary trees where each node discriminate val-
ues of a single dimension of the vector space. The problem is that this data structure
degrades its performance when the number of dimensions is high. An alternative pos-
sibility is to build a data structure where each node provides 2%™ descendants in order
to ensure discrimination for all dimensions at the same time. This multi-way trees,

extensively discussed in [Sam95|, are called quad-Trees even if usually this term refers

63

p3 | J
p7

P2 L4

Ps)

pt

P4

Figure 3.3: Point quad-Trees structure example

to the two-dimensional variant, where each node has four descendants. Quad-trees
as k-d-Trees were also originally designed as main memory data structures.

In the two dimensional case, regions associated with nodes are rectangles. Let us
suppose that N; is an internal node. Its four descendants are associated with the four
rectangles obtained by cutting the rectangle associated with NV; with an horizontal
and a vertical straight lines. The four obtained rectangles are typically referred as
the NW, NE, SW and SE (northwest, etc.) quadrants.

There are several variants of the quad-Tree structure. A very important one is
the point quad-Tree [FB74]. In point quad-Trees, internal nodes have the following

structure:
Ny = (93, 00), (M, R, -, (P, Risi)

Similarly to k-d-Trees, each internal node contain a single reference to record along
with the object that represents it. However, 2%™ entries, are included instead of
just two. Each entry refers to a child node and contains a description of the region

(hyper-rectangle) associated with the child node. See Figure 3.3 for an example.

64

As in k-d-trees leaf nodes either just contain one object, or they can be empty, in
case no objects are contained in the corresponding region.

In a point quad-tree, objects (points in the dim-dimensional vector space) can be
inserted consecutively. When a new object is inserted, first a point search is performed
to check if the object already exist. If the object is not found, then it is inserted in the
leaf node where the search stopped. If the leaf node already contains another object,
then the associated region is divided into 2%™ subspaces, by using dim hyperplanes
all containing the object contained in the leaf node. The former leaf node become an
internal node containing 2%™ regions and referring 2%™ empty leaf nodes. The new
object is inserted in the new leaf node referred by the entry containing the unique
region that includes it.

Another popular variant of quad-Trees are the region quad-Trees [Sam95|. In this
variant, regions are always partitioned regularly. That is, the 2%™ subspaces resulting
from a partition are always of equal size. The hyperplanes used to cut regions do not
necessarily contain the associated data object, as in point quad-Trees. For instance
in a 2 dimensional vector space, they are such that they divide each side of the
rectangular region in two segments of equals length. Some complex versions of region
quad-Trees, as for instance the PM quad-Trees [SW85] or those described in [Sam88],

are able to deal with spatial data in addition to points.

3.4.3 Spatial access methods: R-Trees

Spatial access methods are able to deal with spatial data such as polygons, curves,
regions, etc. in addition to points. The most significant proposal of spatial access

methods are the R-Trees, discussed in the following. Other spatial access methods

65

mainly refine the original design of R-Trees.
R-Trees were originally proposed in [Gut84]. They are height-balanced trees sim-
ilar to B*-Trees [BM72] (see also Section 3.4.1). Spatial objects are represented by

their minimum bounding box. Therefore, objects are defined as follows:
Oi = (Lo, - - - Lgim—1)

where I; is an interval [a, b] of the i-th dimension of the vector space, describing the
extent of the spatial object along the ¢-th dimension. Of course, other representations
for the bounding boxes are also possible.

Leaf nodes contain sets of objects (bounding boxes of spatial objects), along with
references to real spatial objects.

Internal nodes are defined exactly as in Section 3.3.1. The region R, associated
with a child node N, is the minimum bounding box including all objects contained
in the leaf nodes of the sub-tree whose root is N.. Regions associated with nodes at
the same level of the tree may overlap, however each object is stored only in one leaf
node even if it is covered by several regions. See Figure 3.4 for an example.

When a new object is inserted, the tree is traversed by choosing at each level
the child node whose region needs the minimum enlargement to contain the object.
If several children satisfy the same criterion, the one associated with the smallest
region is chosen. Once arrived to a leaf node, if the corresponding region needs to
be enlarged, it is adjusted appropriately, propagating the changes upward. If the leaf
node is full, it is split and entries are distributed in the new and old node creating
two new regions. These updates are also propagated upwards with eventually other
splits in the internal nodes. Various strategies were proposed to minimize the overlap

during insertion. Some were proposed in the original R-Trees paper [Gut84], other

66

T pa s Ips | s 1p7 | bs [| [lp |

pL

Figure 3.4: R-Trees structure example, supposing that the maximum number of en-
tries in a node is two

were proposed later by other authors as for instance the packed R-Tree [RL85], or a

packing techniques based on the use of the Hilbert Curve [KF93].

Zero overlap among regions is in general not obtainable. When a new data object
(bounding box) that overlaps two regions is inserted, since we want to store it in just
one leaf node, one of the two regions has to be enlarged, to include the object, and the
consequence is that the enlarged region will overlap the other region. However, if we
allow a data object, which overlaps more regions, to be stored in all overlapped leaf
nodes, we can obtain non overlapping regions at the price of storing objects in several
nodes. This is the main idea behind the R*-tree [SRF87]. Another variation of the
R-tree, called R*-tree [BKSS90], does not change the properties of the basic structure,
but rather has a more complex insertion algorithm that build the tree improving the

overall performance.

67

3.4.4 Metric access methods: M-Trees

M-Trees [CPZ97] are secondary storage height balanced access methods. They or-
ganize data objects by creating partitions where set of objects are bounded by ball
regions (see Section 2.3.2).

Data objects and references to real data records are stored in leaf nodes, whose
structure is defined exactly as described in Section 3.3.1.

Internal nodes contain references to child nodes along with their bounding regions.

In M-Trees bounding regions are ball regions defined as follows:
Rz’ = B (Ou TZ')

where O; is a reference objects, or routing object, used as center of the region and r;
is the radius of the ball region.

The ball region B(O;, r;) associated with the node N; covers all regions associated
with the nodes belonging to the sub-tree whose root is N; and all objects contained
in the leaf nodes of the sub-tree. That is, if R = B(O,r) is a region associated with
any node of the sub-tree, then d(0;,0) + r < r;. If O is any object belonging to a
leaf nodes of the sub-tree, then d(O;, 0) < r;. See Figure 3.5 for an example.

When a new object O should be inserted, the tree is traversed choosing in each
level the child node that needs the minimum expansion (possibly no expansion) to
contain the new object. In case of ties, the node associated with a region with the
closest center is chosen. Finally the node is added to a leaf node. If it is full, it is split
in two. Two new objects are chosen as centers of the two new regions, associated with
the old and new node. Objects are distributed in the two nodes and their regions are
defined by using the previously chosen centers and the distance from the centers to

the farthest object in each node as corresponding radii. There are several strategies

68

|P4 |P5 | |P6 |P7 | |P3 | | |P1 |P2 |

Figure 3.5: M-Trees structure example, supposing that the maximum number of
entries in a node is two

that can be used to chose the two new representatives and to distribute objects in
the two nodes. From various experiments, the authors say that the best strategy is
trying a split that minimizes the maximum of the covering radii obtained. Notice
that a split in a leaf node needs an insertion in the parent node. In case also the
parent node is full then it has to be split too and the split can be propagated up to
the root of the tree, as in B-Trees (see Section 3.4.1) and R-Trees (see Section 3.4.3).

As in R-Trees, regions of M-Trees may overlap and objects are stored in only one
leaf node. A variation of the original design of the M-Trees that tries to minimize the
overlap between regions are the Slim-Trees [TTSF00]. The basic structure of Slim-
Trees is the same of the M-Trees. However, they use a new splitting algorithm based
on Minimal Spanning Tree, a new algorithm to chose the most appropriate child node

during insertion that leads to higher storage utilization, and a ”Slim-down” algorithm

69

to be used in a post-processing step to reduce the sizes of the ball regions thus their

overlaps.

70

