AM-Trees

AM-Tree is an implementation of an access method for approximate similarity search of data represented in a metric space. Details can be found in http://pc-erato2.iei.pi.cnr.it/amato/thesis .

It is based on the M-Tree software available at http://www-db.deis.unibo.it/Mtree/ .

It implements the following four approximate similarity search methods:

First method

The first technique of approximate similarity search discards regions, containing data, guaranteeing that the maximum relative error on distances introduced, when regions containing qualifying data are discarded, is smaller than a user predefined threshold. This method can be used both for range and nearest neighbours queries.

Second method

The second technique of approximation stops the search algorithm when the current result set belongs to a user defined percentage of the most similar object in the whole database. This method can be used for nearest neighbours queries only.

Third method

Similarity search algorithm are based on an iterative process where a current result set is improved in every iteration. The third approximation method stops the search algorithm when the improvement of the current result set slows down. This method can be used for nearest neighbours queries only.

Fourth method

The fourth approximation method discards regions when it is judged that they do not contain qualifying objects. This estimation is obtained by measuring the proximity of ball regions, that corresponds to the amount of objects shared by two ball regions in a metric space. This method can be used both for range and nearest neighbours queries.

Access Methods Interface Specification

Approximate similarity search (approximate nearest neighbours search and approximate range search) of features represented in a metric space will be supported by the AMTree component. It is a COM object distributed as self-registering DLL implementing the interface type IAMTree described in the following. The AMTree component is able to deal with any type of feature whose distance measure is a metric. When a feature should be managed with the AMTree component, the feature implementation (the data structure representing it and the distance function) should be encapsulated in a component (COM object) implementing the interface type IMTobject described in the following.

Interface of the AMTree component

An AMTree component implements the IAMTree interface that has the following methods:

HRESULT Create(unsigned char * directory, double max_distance, GUID MTobject_guid);

Creates a new index in the directory directory. The directory should exist before Create is called. Maximum distance between objects in this index will be max_distance (an error is produced when this maximum distance is exceeded). The COM objects that encapsulate the indexed features are instances of the class associated with MTobject_guid. After that the index has been created executing the method Create on a specific AMTree object all remaining request submit to this object (with exception of Create and Open) will refer to the new created index. The index will be closed when either a Create request is submit, an Open request is submit, or the COM object is released. Since the index is initially empty, dummy statistics (needed for performance improvement) are generated.

HRESULT Open(unsigned char *directory, GUID MTObject_guid);

Open an existing index in the directory directory. The COM objects that encapsulate the indexed features are instances of the class associated with MTobject_guid. The specified MTobject_guid must be associated with the same class specified when the index was initially created. After that the index has been opened executing the method Open on a specific AMTree object all remaining request submit to this object (with exception of Create and Open) will refer to the opened index. The index will be closed when either a Create request is submit, an Open request is submit, or the COM object is released.

HRESULT NNSearch(IMTobject *queryObject, int k);

Searches for the k objects closest to the queryObject. Result set is internally maintained in the AMTree object and can be accessed by a cursor. The cursor’s initial position is before the first element. The result set is overwritten when a new query is processed. Before executing this method an index should be either opened or created.

HRESULT RangeSearch(IMTobject *queryObject, double radius);

Searches for the objects whose distance to the queryObject do not exceeds radius. Result set is internally maintained in the AMTree object and can be accessed by a cursor. The cursor’s initial position is before the first element. The result set is overwritten when a new query is processed. Before executing this method an index should be either opened or created.

HRESULT next(BOOL *b);

Move the cursor to the next element of the result set. b is set to false if no next element exists, true elsewhere. It can only be executed after that at least one query was processed.

HRESULT getObject(IMTobject **obj);

Sets *obj to a copy of the object contained in the current cursor position. It can be executed after that next has been executed at lest once and b was set to true. This objects should be released by the client.

HRESULT getObjectId(unsigned long *oid);

Sets *oid to the object id (e.g. identifier of the picture) contained in the current cursor position.

HRESULT getResultSetSize(int *n);

Sets n to the size of the result set.

HRESULT getObjectDistance(double *dist);

Sets dist to the distance of the object, contained in the current cursor position, from the query object.

HRESULT Insert(unsigned long oid, IMTobject *obj);

Insert the object obj in the index, associated with the object identifier oid (e.g. identifier of the picture). After the execution of Insert the object obj can be safely released by the client. After several insertions have been executed, statistics should be re-generated by using the method generateStatistics.

HRESULT setMaxDistance(double d);

Changes the maximum allowed distance. It might make sense to use it, just before re-generating statistics.

HRESULT setApproximationMethod(int method);

By default, the an AMTree component execute exact similarity search. By using this method the approximate similarity search can be used. Currently four approximation methods are supported. They are identified by the following constants:

#define APPROX_METHOD_EXACT

0
//exact similarity search

#define APPROX_METHOD_PROXIMITY

1
//proximity (fourth method); suggested thresholds between 0 and 0.06

#define APPROX_METHOD_ERROR

2
//distance error (first method); suggested thresholds between 0 and 8

#define APPROX_METHOD_DISTRIBUTION
3
//user defined percentage of the most similar object in the whole database (second method); suggested thresholds between 0 and 0.01

#define APPROX_METHOD_DISTANCE

4
//result set improvement (third method); suggested thresholds between 0 and –2E-4 (negative values)

After that this method is executed next queries will use the specified approximation method. It is compulsory to execute setApproximationThresholds at least once, to set the approximation thresholds, before processing any query, in case something different than APPROX_METHOD_EXACT was specified.

HRESULT setApproximationThresholds(double *thresholds, int num);

Sets the approximation thresholds. The number of thresholds and values depend on the specific approximation method. Currently implemented approximation methods needs just one approximation threshold. It is compulsory to execute this method at least once, to set the approximation thresholds, before processing any query, in case something different than APPROX_METHOD_EXACT was specified by setApproximationMethod. The user interface may provide the user with a slider by which the approximation threshold can be specified.

HRESULT generateStatistics();

Re-generate statistics. It is highly recommended to execute this after populating the index and after several insertions.

HRESULT getComputedDistances(int *num);

Sets num to the number of distance computations executed since the index was open or since last execution of method resetCounters. This is useful for objective performance comparison and tuning.

HRESULT getIOReads(int *num);

Sets num to the number of disk reads executed since the index was open or since last execution of method resetCounters. This is useful for objective performance comparison and tuning.

HRESULT getIOwrites(int *num);

Sets num to the number of disk writes executed since the index was open or since last execution of method resetCounters. This is useful for objective performance comparison and tuning.

HRESULT resetCounters();

Resets disk computation, disk reads, and disk writes counters,

Interface of the Object component

In order to have the AMTree component working with a specific feature, a COM class encapsulating the feature should be defined. This class should implement the IMTobject interface.

The IMTobject interface contains the following methods:

HRESULT distance(IMTobject *o, double *d);

Computes distance of this object from the object o. d is set to the computed distance.

HRESULT compress(unsigned char* buff, int *size);

Marshals the state of the object in the buffer buff. The buffer should be allocated before calling this method and needed size can be obtained by calling compressedSize. size is set to the size of the buffer. This has the opposite behaviour of the initialize method. compress and initialize methods are used by an AMtree component to store/retrieve objects in the index.

HRESULT compressedSize(int *size);

Sets size to the space required by a buffer to store the marshalled object. In current implementation, objects must have fixed size.

HRESULT initialize(unsigned char *buff);

Objects are created by the COM engine are not initialised. This method initialises the state of an object by using a buffer containing a marshalled object. This has the opposite behaviour of the compress method. compress and initialize methods are used by an AMtree component to store/retrieve objects in the index.

HRESULT equal(IMTobject *obj, int *res);

Checks if obj is structurally equal to this object. res is set to 1 if yes, 0 if not.

