SIMILARITY SEARCH
The Metric Space Approach

Pavel Zezula, Giuseppe Amato,
Vlastislav Dohnal, Michal Batko
Table of Contents

Part I: Metric searching in a nutshell
- Foundations of metric space searching
- Survey of existing approaches

Part II: Metric searching in large collections
- Centralized index structures
- Approximate similarity search
- Parallel and distributed indexes
Features of “good” index structures

- **Dynamcity**
 - support insertions and deletions and minimize their costs

- **Disk storage**
 - for dealing with large collections of data

- **CPU & I/O optimization**
 - support different distance measures with completely different CPU requirements, e.g., L_2 and quadratic-form distance.

- **Extensibility**
 - similarity queries, i.e., range query, k-nearest neighbors query
Centralized Index Structures for Large Databases

1. M-tree family

2. hash-based metric indexing

3. performance trials
M-tree Family

- The M-tree
- Bulk-Loading Algorithm
- Multi-Way Insertion Algorithm
- The Slim Tree
- Slim-Down Algorithm
 - Generalized Slim-Down Algorithm
- Pivoting M-tree
- The M\(^+\)-tree
- The M\(^2\)-tree
The M-tree

- Inherently dynamic structure
- Disk-oriented (fixed-size nodes)
- Built in a bottom-up fashion
 - Inspired by R-trees and B-trees

- All data in *leaf nodes*
- *Internal nodes*: pointers to subtrees and additional information
- Similar to GNAT, but objects are stored in leaves.
M-tree: Internal Node

- Internal node consists of an entry for each subtree
- Each entry consists of:
 - Pivot: p
 - Covering radius of the sub-tree: r_c
 - Distance from p to parent pivot p^p: $d(p, p^p)$
 - Pointer to sub-tree: ptr

$$\langle p_1, r_c^1, d(p_1, p^p), ptr_1 \rangle \langle p_2, r_c^2, d(p_2, p^p), ptr_2 \rangle \cdots \langle p_m, r_c^m, d(p_m, p^p), ptr_m \rangle$$

- All objects in subtree ptr are within the distance r_c from p.
M-tree: Leaf Node

- leaf node contains **data entries**
- each entry consists of pairs:
 - object (its identifier): o
 - distance between o and its parent pivot: $d(o,o^p)$

\[
\langle o_1, d(o_1,o^p) \rangle \langle o_2, d(o_2,o^p) \rangle \cdots \langle o_m, d(o_m,o^p) \rangle
\]
M-tree: Example

Covering radius

Distance to parent

Distance to parent

Covering radius

P. Zezula, G. Amato, V. Dohnal, M. Batko: Similarity Search: The Metric Space Approach

Part II, Chapter 3
M-tree: Insert

- Insert a new object o_N:
- recursively descend the tree to locate the *most suitable leaf* for o_N
- in each step enter the subtree with pivot p for which:
 - no enlargement of radius r^c needed, i.e., $d(o_N,p) \leq r^c$
 - in case of ties, choose one with p nearest to o_N
 - minimize the enlargement of r^c
M-tree: Insert (cont.)

- when reaching leaf node N then:
 - if N is not full then store o_N in N
 - else $\text{Split}(N,o_N)$.
M-tree: Split

Split(\(N, o_N\)):

- Let \(S\) be the set containing all entries of \(N\) and \(o_N\)
- Select pivots \(p_1\) and \(p_2\) from \(S\)
- Partition \(S\) to \(S_1\) and \(S_2\) according to \(p_1\) and \(p_2\)
- Store \(S_1\) in \(N\) and \(S_2\) in a new allocated node \(N'\)
- If \(N\) is root
 - Allocate a new root and store entries for \(p_1, p_2\) there
- else (let \(N^p\) and \(p^p\) be the parent node and parent pivot of \(N\))
 - Replace entry \(p^p\) with \(p_1\)
 - If \(N^p\) is full, then **Split**(\(N^p, p_2\))
 - else store \(p_2\) in node \(N^p\)
M-tree: Pivot Selection

- Several pivots selection policies
 - **RANDOM** – select pivots p_1, p_2 randomly
 - **m_RAD** – select p_1, p_2 with minimum $(r_1^c + r_2^c)$
 - **mM_RAD** – select p_1, p_2 with minimum $\max(r_1^c, r_2^c)$
 - **M_LB_DIST** – let $p_1 = p^o$ and $p_2 = o_i / \max_i \{ d(o_i, p^o) \}$
 - Uses the pre-computed distances only

- Two versions (for most of the policies):
 - **Confirmed** – reuse the original pivot p^o and select only one
 - **Unconfirmed** – select two pivots (notation: **RANDOM_2**)

- In the following, the **mM_RAD_2** policy is used.
M-tree: Split Policy

- Partition S to S_1 and S_2 according to p_1 and p_2
- Unbalanced
 - Generalized hyperplane
- Balanced
 - Larger covering radii
 - Worse than unbalanced one

\[p_1 \text{ and } p_2 \]
M-tree: Range Search

Given $R(q, r)$:
- Traverse the tree in a depth-first manner
- In an internal node, for each entry $\langle p, r^c, d(p, p^p), ptr \rangle$
 - Prune the subtree if $|d(q, p^p) - d(p, p^p)| - r^c > r$
 - Application of the pivot-pivot constraint
If not discarded, compute \(d(q,p) \) and
- Prune the subtree if \(d(q,p) - r^c > r \)
- Application of the range-pivot constraint

All non-pruned entries are searched recursively.
In a leaf node, for each entry $\langle o, d(o, o^p) \rangle$
- Ignore entry if $|d(q, o^p) - d(o, o^p)| > r$
- else compute $d(q, o)$ and check $d(q, o) \leq r$
- Application of the object-pivot constraint
M-tree: \(k \)-NN Search

Given \(k \)-NN(\(q \)):

- Based on a *priority queue* and the pruning mechanisms applied in the range search.

Priority queue:

- Stores pointers to sub-trees where qualifying objects can be found.
- Considering an entry \(E = \langle p, r^c, d(p, p^p), ptr \rangle \), the pair \(\langle ptr, d_{\min}(E) \rangle \) is stored.
- \(d_{\min}(E) = \max \{ d(p, q) - r^c, 0 \} \)

- Range pruning: instead of fixed radius \(r \), use the distance to the \(k \)-th current nearest neighbor.
M-tree Family

- The M-tree
- **Bulk-Loading Algorithm**
- Multi-Way Insertion Algorithm
- The Slim Tree
- Slim-Down Algorithm
 - Generalized Slim-Down Algorithm
- Pivoting M-tree
- The M^+-tree
- The M^2-tree
Bulk-Loading Algorithm

- first extension of M-tree
- improved tree-building (insert) algorithm
- requires the dataset to be *given in advance*

Notation:
- Dataset $X=\{o_1, \ldots, o_n\}$
- Number of entries per node: m

Bulk-Loading Algorithm:
- First phase: build the M-tree
- Second phase: refinement of unbalanced tree
Bulk-Loading: First Phase

- randomly select l pivots $P=\{p_1, \ldots, p_l\}$ from X
 - Usually $l=m$
- objects from X are assigned to the nearest pivot producing l subsets P_1, \ldots, P_l
- recursively apply the bulk-loading algorithm to the subsets and obtain l sub-trees T_1, \ldots, T_l
 - leaf nodes with maximally l objects
- create the root node and connect all the sub-trees to it.
Bulk-Loading: Example (1)
Bulk-Loading: Discussion

Problem of choosing pivots \(P = \{p_1, \ldots, p_l \} \)

- sparse region \(\rightarrow \) shallow sub-tree
 - far objects assigned to other pivots
- dense region \(\rightarrow \) deep sub-tree

- observe this phenomenon in the example
Bulk-Loading: Second Phase

- refinement of the unbalanced M-tree
- apply the following two techniques to adjust the set of pivots $P=\{p_1, \ldots, p_l\}$
 - **under-filled nodes** – *reassign* to other pivots and *delete* corresponding pivots from P
 - **deeper subtrees** – *split* into shallower ones and *add* the obtained pivots to P
Bulk-Loading: Example (2)

- Under-filled nodes in the example: o_1', o_9
Bulk-Loading: Example (3)

- After elimination of under-filled nodes.

![Diagram]

- After elimination of under-filled nodes.
Bulk-Loading: Example (4)

- Sub-trees rooted in o_4 and o_3 in the tree are deeper
- split them into new subtrees rooted in o'_4, o_5, o''_3, o_8, o_6, o_7
- add them into P and remove o_4, o_3
- build the super-tree (two levels) over the final set of pivots $P\{o_2, o'_4, o_5, o''_3, o_8, o_6, o_7\}$ – from Sample (3)
Bulk-Loading: Example (5) – Final

The diagram illustrates the bulk-loading process in a metric space approach. Each object is represented as a node in the tree structure. The objects are divided into clusters indicated by the overlapping circles, and the clusters are further organized into a hierarchical tree structure. The root node is at the top, with sub-trees branching off, representing the final organization of the objects.
Bulk-Loading: Optimization

- Reduce the number of distance computations in the recursive calling of the algorithm
 - after initial phase, we have distances $d(p_j, o_i)$ for all objects $X=\{o_1, \ldots, o_n\}$ and all pivots $P=\{p_1, \ldots, p_l\}$
 - Assume the recursive processing of P_1
 - New set of pivots is picked $\{p_{1,1}, \ldots, p_{1,l'}\}$
 - During clustering, we are assigning every object $o \in P_1$ to its nearest pivot.
 - The distance $d(p_{1,j}, o)$ can be lower-bounded:
 $$|d(p_1, o) - d(p_1, p_{1,j})| \leq d(p_{1,j}, o)$$
Bulk-Loading: Optimization (cont.)

- If this lower-bound is greater than the distance to the closest pivot $p_{1,N}$ so far, i.e.,

 \[|d(p_1,o) - d(p_1,p_{1,j})| > d(p_{1,N},o) \]

 then the evaluation of $d(p_{1,j},o)$ can be avoided.

- Cuts costs by 11%
 - It uses pre-computed distances to a single pivot.
 - by 20% when pre-computed distances to multiple pivots are used.
M-tree Family

- The M-tree
- Bulk-Loading Algorithm
- **Multi-Way Insertion Algorithm**
- The Slim Tree
- Slim-Down Algorithm
 - Generalized Slim-Down Algorithm
- Pivoting M-tree
- The M^+-tree
- The M^2-tree
Multi-Way Insertion Algorithm

- another extension of M-tree insertion algorithm
- objective: build more compact trees
 - reduce search costs (both I/O and CPU)
- for dynamic datasets (not necessarily given in advance)
- increase insertion costs slightly
- the original single-way insertion visits exactly one root-leaf branch
 - leaf with no or minimum increase of covering radius
 - not necessarily the most convenient
Multi-Way Insertion: Principle

- when inserting an object o_N
- run the point query $R(o_N, 0)$
- for all visited leaves (they can store o_N without radii enlargement): compute the distance between o_N and the leaf’s pivot
- choose the closest pivot (leaf)
- if no leaf visited – run the single-way insertion
Multi-Way Insertion: Analysis

Insertion costs:
- 25% higher I/O costs (more nodes examined)
- higher CPU costs (more distances computed)

Search costs:
- 15% fewer disk accesses
- almost the same CPU costs for the range query
- 10% fewer distance computations for k-NN query
M-tree Family

- The M-tree
- Bulk-Loading Algorithm
- Multi-Way Insertion Algorithm
- The Slim Tree
- Slim-Down Algorithm
 - Generalized Slim-Down Algorithm
- Pivoting M-tree
- The M+-tree
- The M²-tree
The Slim Tree

- extension of M-tree – the same structure
 - speed up insertion and node splitting
 - improve storage utilization
- new node-selection heuristic for insertion
- new node-splitting algorithm
- special post-processing procedure
 - make the resulting trees more compact.
Slim Tree: Insertion

Starting at the root node, in each step:

- find a node that covers the incoming object
- if none, select the node whose pivot is the nearest
 - M-tree would select the node whose covering radius requires the smallest expansion
- if several nodes qualify, select the one which occupies the minimum space
 - M-trees would choose the node with closest pivot
Slim Tree: Insertion Analysis

- fill insufficiently occupied nodes first
 - defer splitting, boost node utilization, and cut the tree size
- experimental results (the same `mM_RAD_2` splitting policy) show:
 - lower I/O costs
 - nearly the same number of distance computations
 - this holds for both the tree building procedure and the query execution
Slim Tree: Node Split

- splitting of the overfilled nodes – high costs
- `mM_RAD_2` strategy is considered the best so far
 - Complexity $O(n^3)$ using $O(n^2)$ distance computations
- the Slim Tree splitting based on the *minimum spanning tree* (MST)
 - Complexity $O(n^2 \log n)$ using $O(n^2)$ distance computations
- the MST algorithm assumes a full graph
 - n objects
 - $n(n-1)$ edges – distances between objects
Splitting policy based on the MST:

1. build the *minimum spanning tree* on the full graph
2. delete the *longest edge*
3. the two resulting sub-graphs form the *new nodes*
4. choose the *pivot* for each node as the *object* whose distance to the *others* in the group is *the shortest*
Slim Tree: Node Split – Example

- (a) the original Slim Tree node
- (b) the minimum spanning tree
- (c) the new two nodes
Slim Tree: Node Split – Discussion

- does not guarantee the balanced split
- a possible variant (more balanced splits):
 - choose the most appropriate edge from among *the longer edges* in the MST
 - if no such edge is found (e.g., for a star-shaped dataset), accept the original unbalanced split

- experiments prove that:
 - tree building using the MST algorithm is at least forty times faster than the `mM_RAD_2` policy
 - query execution time is not significantly better
M-tree Family

- The M-tree
- Bulk-Loading Algorithm
- Multi-Way Insertion Algorithm
- The Slim Tree
- **Slim-Down Algorithm**
 - Generalized Slim-Down Algorithm
- Pivoting M-tree
- The M^+-tree
- The M^2-tree
Slim-Down Algorithm

- post-processing procedure
- reduce the *fat-factor* of the tree
 - basic idea: reduce the overlap between nodes on one level
 - minimize number of nodes visited by a point query, e.g., $R(o_3, 0)$
Slim-Down Algorithm: The Principle

For each node N at the leaf level:

1. Find object o furthest from pivot of N
2. Search for a sibling node M that also covers o. If such a not-fully-occupied node exists, move o from N to M and update the covering radius of N.

- Steps 1 and 2 are applied to all nodes at the given level. If an object is relocated after a complete loop, the entire algorithm is executed again.

- Observe moving of o_3 from N to M on previous slide.
Slim-Down Algorithm: Discussion

- Prevent from infinite loop
 - cyclic moving of objects o_4, o_5, o_6
- Limit the number of algorithm cycles

- Trials proved reducing of I/O costs of at least 10%
- The idea of *dynamic object relocation* can be also applied to *defer splitting*.
 - Move distant objects from a node instead of splitting it.
M-tree Family

- The M-tree
- Bulk-Loading Algorithm
- Multi-Way Insertion Algorithm
- The Slim Tree
- Slim-Down Algorithm
 - Generalized Slim-Down Algorithm
- Pivoting M-tree
- The M^+-tree
- The M^2-tree
Generalized Slim-Down Algorithm

- generalization of Slim-down algorithm for non-leaf tree levels
- the covering radii r_c must be taken into account before moving a non-leaf entry
- the generalized Slim-down starts from the leaf level
 - follow the original Slim-down algorithm for leaves
- ascend up the tree terminating in the root
Generalized Slim-Down: The Principle

For each entry $E=\langle p, r^c, \ldots \rangle$ at given non-leaf level:
- pose range query $R(p, r^c)$,
- the query determines the set of nodes that entirely contain the query region,
- from this set, choose the node M whose parent pivot is closer to p than to p^p,
- if such M exists, move the entry E from N to M,
- if possible, shrink the covering radius of N.
Generalized Slim-Down: Example

- **Leaf level:**
 - move two objects from o_3 and o_4 to o_1 – shrink o_3 and o_4

- **Upper level:**
 - originally node M contains o_1, o_4 and node N contains o_2, o_3
 - swap the nodes of o_3 and o_4
M-tree Family

- The M-tree
- Bulk-Loading Algorithm
- Multi-Way Insertion Algorithm
- The Slim Tree
- Slim-Down Algorithm
 - Generalized Slim-Down Algorithm
- Pivoting M-tree
- The M^+-tree
- The M^2-tree
Pivoting M-tree

- upgrade of the standard M-tree
- bound the region covered by nodes more tightly
 - define additional ring regions that restrict the ball regions
 - ring regions: pivot p and two radii r_{min}, r_{max}
 - such objects o that: $r_{\text{min}} \leq d(o,p) \leq r_{\text{max}}$

- basic idea:
 - Select additional pivots
 - Every pivot defines two boundary values between which all node’s objects lie.
 - Boundary values for each pivot are stored in every node.
 (see a motivation example on the next slide)
PM-tree: Motivation Example

- original M-tree
- range query $R(q,r)$ intersects the node region

- PM-tree (two pivots)
- this node not visited for query $R(q,r)$
PM-tree: Structure

- select additional set of pivots \(|P|=n_p\)
- leaf node entry: \(\langle o, d(o, o^p), PD \rangle\)
 - \(PD\) – array of \(n_{pd}\) pivot distances: \(PD[i]=d(p_i, o)\)
 - Parameter \(n_{pd} < n_p\)
- internal node entry: \(\langle p, r^c, d(p, p^o), ptr, HR \rangle\)
 - \(HR\) – array of \(n_{hr}\) intervals defining ring regions
 \[
 HR[j].\min = \min(\{d(o, p_j) | \forall o \in ptr\})
 \]
 \[
 HR[j].\max = \max(\{d(o, p_j) | \forall o \in ptr\})
 \]
 - parameter \(n_{hr} < n_p\)
PM-tree: Insertion

- insertion of object o_N
- the HR arrays of nodes visited during insertion must be updated by values $d(o_N, p_i)$ for all $i \leq n_{hr}$
- the leaf node:
 - create array PD and fill it with values $d(o_N, p_j), \forall j \leq n_{pd}$
 - values $d(o_N, p_j)$ are computed only once and used several times – $\max(n_{hr}, n_{pd})$ distance computations
- insertions may force node splits
PM-tree: Node Split

- node splits require some maintenance

- leaf split:
 - set arrays HR of two new internal entries
 - set $HR[i].min$ and $HR[i].max$ as min/max of $PD[j]$
 - compute additional distances: $d(p_j, o), \forall j (n_{pd} < j \leq n_{hr})$
 and take them into account
 - can be expensive if $n_{hr} >> n_{pd}$

- internal node split:
 - creating two internal node entries with HR
 - set these HR arrays as union over all HR arrays of respective entries
PM-tree: Range Query

Given $R(q,r)$:

- evaluate distances $d(q,p_i)$, $\forall \ i \ (i \leq \max(n_{hr} , n_{pd}))$
- traverse the tree, internal node $\langle p, r^c, d(p,p^p), ptr, HR \rangle$ is visited if both the expressions hold:

 $$d(q, p) \leq r + r^c$$

 $$\forall \ i \ (i \leq \max(n_{hr} , n_{pd}))$$

 $$\bigwedge_{i=1}^{n_{hr}} (d(q, p_i) - r \leq HR[i].\max \wedge d(q, p_i) + r \geq HR[i].\min)$$

- leaf node entry test: $\bigwedge_{i=1}^{n_{pd}} (|d(q, p_i) - PD[i]| \leq r)$

- M-tree: the first condition only
PM-tree: Parameter Setting

- general statements:
 - existence of PD arrays in leaves reduce number of distance computations but increase the I/O cost
 - the HR arrays reduce both CPU and I/O costs

- experiments proof that:
 - $n_{pd}=0$ decreases I/O costs by 15% to 35% comparing to M-tree (for various values of n_{hr})
 - CPU cost reduced by about 30%
 - $n_{pd}=n_{hr}/4$ leads to the same I/O costs as for M-tree
 - with this setting – up to 10 times faster

- particular parameter setting depends on application
M-tree Family

- The M-tree
- Bulk-Loading Algorithm
- Multi-Way Insertion Algorithm
- The Slim Tree
- Slim-Down Algorithm
 - Generalized Slim-Down Algorithm
- Pivoting M-tree
- The M^+-tree
- The M^2-tree
The M^+-tree

- modification of the M-tree
- restrict the application to L_p metrics (vector spaces)
- based on the concept of key dimension
- each node partitioned into two twin-nodes
 - partition according to a selected key dimension
M$^+$-tree: Principles

- in an n-dimensional vector space
- *key dimension* for a set of objects is the dimension along which the data objects are *most spread*
- for any dimension D_{key} and vectors $(x_1, \ldots x_n), (y_1, \ldots y_n)$
 \[
 |x_{D_{\text{key}}} - y_{D_{\text{key}}}| \leq \sqrt{(x_1 - y_1)^2 + \cdots + (x_n - y_n)^2}
 \]
- this holds also for other L_p metrics
- this fact is applied to prune the search space
M⁺-tree: Structure

- internal node is divided into two subsets
 - according to a selected dimension
 - leaving a *gap* between the two subsets
 - the greater the gap the better filtering

- internal node entry:
 \[
 \langle p, r^c, d(p, p^p), D_{\text{key}}, ptr_{\text{left}}, d_{\text{lmax}}, d_{\text{rmin}}, ptr_{\text{right}} \rangle
 \]
 - \(D_{\text{key}}\) – number of the key dimension
 - \(ptr_{\text{left}}, ptr_{\text{right}}\) – pointers to the left and right twin-nodes
 - \(d_{\text{lmax}}\) – *maximal* key-dimension value of the left twin
 - \(d_{\text{rmin}}\) – *minimal* key-dimension value of the right twin
M⁺-tree: Example

- splitting of an overfilled node:
 - objects of both twins are considered as a single set
 - apply standard \texttt{mM_RAD_2} strategy
- select the \textit{key dimension} for each node separately
M⁺-tree: Performance

- slightly more efficient than M-tree
- better filtering for range queries with small radii
- practically the same for larger radii
- nearest neighbor queries:
 - a shorter priority queue – only one of the twin-nodes
 - save some time for queue maintenance
- moderate performance improvements
- application restricted to vector datasets with L_p
M-tree Family

- The M-tree
- Bulk-Loading Algorithm
- Multi-Way Insertion Algorithm
- The Slim Tree
- Slim-Down Algorithm
 - Generalized Slim-Down Algorithm
- Pivoting M-tree
- The M^+-tree
- The M^2-tree
The M^2-tree

- generalization of M-tree
- able to process complex similarity queries
 - combined queries on several metrics at the same time
 - for instance: an image database with keyword-annotated objects and color histograms
 - query: *Find images that contain a lion and the scenery around it like this.*
- qualifying objects identified by a scoring function d_f
 - combines the particular distances (according to several different measures)
M²-tree: Structure

- each object characterized by several features
 - e.g. $o[1], o[2]$
 - respective distance measures may differ: d_1, d_2

- leaf node: M-tree vs. M²-tree

 \[
 \langle o, d(o, p) \rangle \quad \langle o[1], d_1(o[1], p[1]), o[2], d_2(o[1], p[2]) \rangle
 \]

- internal node: M-tree vs. M²-tree

 \[
 \langle p, r^c, d(p, p^p), ptr \rangle \\
 \langle p[1], r^c[1], d_1(p[1], p^p[1]), p[2], r^c[2], d_2(p[2], p^p[2]), ptr \rangle
 \]
The space transformation according to particular features can be seen as an n-dimensional space.

The subtree region forms a hypercube.
M²-tree: Range Search

Given R(q,r):

- M-tree prunes a subtree if \(|d(q,p^p) - d(p,p^p)| - r^c > r \)
- M²-tree: compute the lower bound for every feature
 \(\forall i, \min(|d_i(q[i], p^P[i]) - d_i(p[i], p^P[i])| - r^c[i], 0) \)
- combine these bounds using the scoring function \(d_f \)
- visit those entries for which the result is \(\leq r \)
- analogous strategy for nearest neighbor queries
M²-tree: Performance

- running k-NN queries
- image database mentioned in the example
- M²-tree compared with sequential scan
 - the same I/O costs
 - reduced number of distance computations
- M²-tree compared with Fagin’s A_0 (two M-trees)
 - M²-tree saves about 30% of I/Os
 - about 20% of distance computations
 - A_0 have higher I/O cost than the sequential scan
Centralized Index Structures for Large Databases

1. M-tree family

2. hash-based metric indexing
 - Distance Index (D-index)
 - Extended D-Index (eD-index)

3. performance trials
Distance Index (D-index)

- Hybrid structure
 - combines pivot-filtering and partitioning.
- Multilevel structure based on hashing
 - one ρ-split function per level.
- The first level splits the whole data set.
- Next level partitions the exclusion zone of the previous level.
- The exclusion zone of the last level forms the exclusion bucket of the whole structure.
D-index: Structure

4 separable buckets at the first level

2 separable buckets at the second level

exclusion bucket of the whole structure
Based on excluded middle partitioning

- ball partitioning variant is used.

- \(bps^{1,\rho}(x) = \begin{cases}
0 & \text{if } d(x,p) \leq d_m - \rho \\
1 & \text{if } d(x,p) > d_m + \rho \\
- & \text{otherwise}
\end{cases} \)

Exclusion set

Separable set 1

Separable set 0
D-index: Binary ρ-Split Function

- Binary mapping: $bps^{1,\rho}: \mathcal{D} \rightarrow \{0,1,-\}$
 - ρ-split function, $\rho \geq 0$
 - also called the first order ρ-split function

- Separable property (up to 2ρ):
 \[\forall x,y \in \mathcal{D}, \ bps^{1,\rho}(x) = 0 \text{ and } bps^{1,\rho}(y) = 1 \Rightarrow d(x,y) > 2\rho \]
 - No objects closer than 2ρ can be found in both the separable sets.

- Symmetry property: $\forall x,y \in \mathcal{D}$, $\rho_2 \geq \rho_1$,
 \[bps^{1,\rho_2}(x) \neq -, \ bps^{1,\rho_1}(y) = - \Rightarrow d(x,y) > \rho_2 - \rho_1 \]
D-index: Symmetry Property

- Ensures that the exclusion set “shrinks” in a symmetric way as ρ decreases.
- We want to test whether a query intersects the exclusion set or not.

![Diagram showing the symmetry property of the D-index](image)
D-index: General ρ-Split Function

- Combination of several binary ρ-split functions
 - two in the example
D-index: General ρ-Split Function

- A combination of n first order ρ-split functions:
 - $bps^{n,\rho}: \mathcal{D} \rightarrow \{0..2^n-1, -\}$
 - $bps^{n,\rho}(x) = \begin{cases} - & \text{if } \exists i, bps_{i,\rho}^{1}(x) = - \\ b & \text{all } bps_{i,\rho}^{1}(x) \text{ form a binary number } b \end{cases}$

- Separable & symmetry properties hold
 - resulting sets are also separable up to 2ρ.

P. Zezula, G. Amato, V. Dohnal, M. Batko:
Similarity Search: The Metric Space Approach
Part II, Chapter 3
D-index: Insertion
D-index: Insertion Algorithm

- \(D_{\text{index}}^\rho(X, m_1, m_2, \ldots, m_h) \)
 - \(h \) – number of levels,
 - \(m_i \) – number of binary functions combined on level \(i \).
- Algorithm – insert the object \(o_N \):

  ```
  \text{for } i=1 \text{ to } h \text{ do }
  \text{if } bps^{m_i,\rho}(o_N) \neq '-' \text{ then }
  \quad o_N \rightarrow \text{bucket with the index } bps^{m_i,\rho}(o_N).
  \quad \text{exit}
  \text{end if}
  \text{end do}
  o_N \rightarrow \text{global exclusion bucket.}
  ```

P. Zezula, G. Amato, V. Dohnal, M. Batko: Similarity Search: The Metric Space Approach Part II, Chapter 3 80
D-index: Insertion Algorithm (cont.)

- The new object is inserted with one bucket access.

- Requires \(\sum_{i=1}^{j} m_i \) distance computations
 - assuming \(o_N \) was inserted in a bucket on the level \(j \).
D-index: Range Query

- \(Dindex^{\rho}(X, m_1, m_2, \ldots, m_h) \)
 - \(h \) – number of levels,
 - \(m_i \) – number of binary functions combined on level \(i \).

Given a query \(R(q,r) \) with \(r \leq \rho \):

- \texttt{for } \(i=1 \) \texttt{to } \(h \) \texttt{ do}
 - search in the bucket with the index \(bps^{m_i,0}(q) \).
- \texttt{end do}
 - search in the global exclusion bucket.
 - Objects \(o, d(q,o) \leq r \), are reported on the output.
D-index: Range Search (cont.)
The call \(bps_{mi,0}(q) \) always returns a value between 0 and \(2^{mi}-1 \).

Exactly one bucket per level is accessed if \(r \leq \rho \)
- \(h+1 \) bucket access.

Reducing the number of bucket accesses:
- the query region is in the exclusion set \(\Rightarrow \) proceed the next level directly,
- the query region is in a separable set \(\Rightarrow \) terminate the search.
D-index: Advanced Range Query

\[
\text{for } i = 1 \text{ to } h \\
\quad \text{if } bps^{mi,\rho+r}(q) \neq - \text{ then } \quad \text{(exclusively in the separable bucket)} \\
\quad \quad \text{search in the bucket with the index } bps^{mi,\rho+r}(q). \\
\quad \quad \text{exit} \quad \text{(search terminates)} \\
\quad \text{end if} \\
\quad \text{if } r \leq \rho \text{ then } \quad \text{(the search radius up to } \rho) \\
\quad \quad \text{if } bps^{mi,\rho-r}(q) \neq - \text{ then } \quad \text{(not exclusively in the exclusion zone)} \\
\quad \quad \quad \text{search in the bucket with the index } bps^{mi,\rho-r}(q). \\
\quad \quad \text{end if} \\
\quad \text{else } \quad \text{(the search radius greater than } \rho) \\
\quad \quad \text{let } \{i_1, \ldots, i_n\} = G(bps^{mi,\rho-r}(q)) \\
\quad \quad \quad \text{search in the buckets with the indexes } i_1, \ldots, i_n. \\
\quad \text{end if} \\
\text{end for} \\
\text{search in the global exclusion bucket.}
\]
D-index: Advanced Range Query (cont.)

- The advanced algorithm is not limited to $r \leq \rho$.
- All tests for avoiding some bucket accesses are based on manipulation of parameters of split functions (i.e. ρ).
- The function $G()$ returns a set of bucket indexes:
 - all minuses (-) in the split functions’ results are substituted by all combinations of ones and zeros,
 - e.g. $bps^{3,\rho}(q)='1--'$
 - $G(bps^{3,\rho}(q)) = \{100,101,110,111\}$
D-index: Features

- supports disk storage
- insertion needs one bucket access
 - distance computations vary from m_1 up to $\sum_{i=1..h} m_i$
- $h+1$ bucket accesses at maximum
 - for all queries such that qualifying objects are within ρ
- exact match ($R(q,0)$)
 - successful – one bucket access
 - unsuccessful – typically no bucket is accessed
The similarity join can be evaluated by a simple algorithm which computes $|X| \cdot |Y|$ distances between all the pairs of objects.

$= NM$ distance computations
The similarity self join examines all pairs of objects of a set X, which is $|X||X|$ distance computations.

Due to the symmetry property, $d(x,y) = d(y,x)$, we can reduce the costs.

$$X \stackrel{\longrightarrow}{\longrightarrow} \frac{N(N-1)}{2} \text{ distance computations}$$

This is called the nested loops algorithm (NL).
Similarity Self Join Query (cont.)

- Specialized algorithms
 - usually built on top of a commercial DB system, or
 - tailored to specific needs of application.

- D-index provides a very efficient algorithm for range queries:
 - a self join query can be evaluated using

 Range Join Algorithm (RJ):

  ```
  for each o in dataset X do
    range_query(o, μ)
  end do
  ```
Extended D-index (eD-index)

- A variant of D-index which provides a specialized algorithm for similarity joins.
- Application independent – general solution.
- Split functions manage replication.
- D-index’s algorithms for range & k-NN queries are only slightly modified.
Similarity self join is elaborated independently in each bucket.
The result set is a union of answers of all sub-queries.

The lost pair!!!

Separable set 0

Separable set 1

Exclusion set
eD-index: Overloading Principle

- Lost pairs are handled by replications
 - areas of width ε are replicated in the exclusion set.
- $\mu \leq \varepsilon$

Objects replicated to the exclusion set
The modification of ρ-split function is implemented in the insertion algorithm by varying the parameter ρ

- the original stop condition in the D-index’s algorithm is changed.
eD-index: Insertion Algorithm

- $eDindex^{\rho, \varepsilon}(X, m_1, m_2, \ldots, m_h)$

- Algorithm – insert the object o_N:

 for $i=1$ to h do

 if $bps^{m_i, \rho}(o_N) \neq \text{'}-\text{'}$ then

 $o_N \rightarrow$ bucket with the index $bps^{m_i, \rho}(o_N)$.

 if $bps^{m_i, \rho+\varepsilon}(o_N) \neq \text{'}-\text{'}$ then (not in the overloading area)

 exit

 end if

 end if

 end do

 $o_N \rightarrow$ global exclusion bucket.
Bucket of 1st level

Bucket of 2nd level

1st level

2nd level

3rd level

The duplicates received brown & green colors.

brown

green

blue
Given similarity self-join query $SJ(\mu)$:

- Execute the query in every separable bucket on every level
 - and in the global exclusion bucket.
- In the bucket, apply *sliding window* algorithm.
- The query’s result is formed by concatenation of all sub-results.
Use the triangle inequality

- to avoid checking all pairs of objects in the bucket.

Order all objects on distances to one pivot.

The sliding window is then moved over all objects.

- only pairs of objects in the window are examined.

Due to the triangle inequality, the pair of objects outside the window cannot qualify:

- \(d(x,y) \geq d(x,p) - d(y,p) > \mu \)
The algorithm also employs
- the pivot filtering and
- the eD-index’s coloring technique.

Given a pair of objects \(o_1, o_2 \):
- if a color is shared, this pair must have been reported on the level having this color – the pair is ignored without distance computation, else
- if \(d(o_1, o_2) \leq \mu \), it is an original qualifying pair.
Similarity self-join queries only
- the query selectivity must satisfy: $\mu \leq \varepsilon$.
- it is not very restrictive since we usually look for close pairs.

The parameters ρ and ε depend on each other.
- $\varepsilon \leq 2\rho$
- If $\varepsilon > 2\rho$, the overloading zone is wider than the exclusion zone.
 - because we do not replicate objects between separable sets – only between a separable set and the exclusion zone,
 - some qualifying pairs might be missed.
Centralized Index Structures for Large Databases

1. M-tree family

2. hash-based metric indexing

3. performance trials
Performance Trials

- experiments on M-tree and D-index
- three sets of experiments:
 1. **comparison** of M-tree (tree-based approach) vs. D-index (hash-based approach)
 2. processing different **types of queries**
 3. **scalability** of the centralized indexes – growing the size of indexed dataset
Datasets and Distance Measures

- trials performed on three datasets:
 - **VEC**: 45-dimensional vectors of image color features compared by the *quadratic distance* measure
 - **URL**: sets of URL addresses; the distance measure is based on the similarity of sets (*Jaccard’s coefficient*)
 - **STR**: sentences of a Czech language corpus compared using an *edit distance*
Datasets: Distance Distribution

- distribution of distances within the datasets:
 - VEC: practically normal distance distribution
 - URL: discrete distribution
 - STR: skewed distribution
Trials: Measurements & Settings

- CPU costs: number of distance computations
- I/O costs: number of block reads
 - The same size of disk blocks

- Query objects follow the dataset distribution
- Average values over 50 queries:
 - Different query objects
 - The same selectivity
 - Radius or number of nearest neighbors
Comparison of Indexes

- Comparing performance of
 - M-tree – a tree-based approach
 - D-index – hash-based approach
 - sequential scan (baseline)

- Dataset of 11,100 objects

- Range queries – increasing radius
 - maximal selectivity about 20% of the dataset
Comparison: CPU Costs

- generally, D-index outperforms M-tree for smaller radii
- D-index: pivot-based filtering depends on data distribution and query size
- M-tree outperforms D-index for discrete distribution
 - pivot selection is more difficult for discrete distributions
Comparison: I/O Costs

- M-tree needs twice the disk space to store data than SEQ
- Inefficient if the distance function is easy to compute
- D-index more efficient
- A query with $r=0$: D-index accesses only one page (important, e.g., for deletion)
Different Query Types

- comparing processing performance of different types of queries
 - range query
 - nearest neighbor query
 - similarity self join

- M-tree, D-index, sequential scan
Range vs. k-NN: CPU Costs

- nearest neighbor query:
 - similar trends for M-tree and D-index
 - the D-index advantage of small radii processing decreases
 - expensive even for small k – similar costs for both 1 and 100
 - D-index still twice as fast as M-tree
Range vs. \(k\)-NN: I/O Costs

- nearest neighbor query:
 - similar trends for I/O costs as for CPU costs
 - D-index four times faster than M-tree
Similarity Self Join: Settings

- \(J(X, X, \mu) \) – very demanding operation
- three algorithms to compare:
 - NL: nested loops – naive approach
 - RJ: range join – based on D-index
 - OJ: overloading join – eD-index
 - for \(\mu: 2\mu \leq \rho \), i.e. \(\mu \leq 600 \) for vectors
- datasets of about 11,000 objects
- selectivity – retrieving up to 1,000,000 pairs (for high values of \(\mu \))
Similarity Self Join: Complexity

- Quadratic complexity
 - prohibitive for large DB
 - example: 50,000 sentences
 - a range query:
 - sequential scan takes about 16 seconds

- a self join query:
 - nested loops algorithm takes 25,000 times more
 - about 4 days and 15 hours!
Similarity Join: Results

- RJ and OJ costs increase rapidly (logarithmic scale)
- OJ outperforms RJ twice (STR) and 7 times for VEC:
 - high distances between VEC objects
 - high pruning effectiveness of pivot-based filtering for smaller μ
Scalability: CPU Costs

- range query: $r = 1,000; 2,000$
- k-NN query: $k = 1; 100$

- labels: radius or $k + D$ (D-index), M (M-tree), SEQ
- data: from 100,000 to 600,000 objects
- M-tree and D-index are faster (D-index slightly better)
- linear trends
Scalability: I/O Costs

- the same trends as for CPU costs
- D-index more efficient than M-tree
- **exact match** contrast:
 - M-tree: 6,000 block reads + 20,000 d. c. for 600,000 objects
 - D-index: read 1 block + 18 d. c. regardless of the data size
Scalability: Similarity Self Join

- We use the *speedup* s as the performance measure:

$$s = \frac{N(N-1)}{2n}$$

- Speedup measures how many times is a specific algorithm faster than NL.
Scalability: Similarity Self Join (cont.)

- RJ: range join
- OJ: overloading join

- STR dataset: from 50,000 to 250,000 sentences
- constant speedup
 - E.g. a join query on 100,000 objects takes 10 minutes.
 - The same join query on 200,000 objects takes 40 minutes.
- OJ at least twice faster than RJ
Scalability Experiments: Conclusions

- similarity search is expensive
- the scalability of centralized indexes is linear

- cannot be applied to huge data archives
 - become inefficient after a certain point

Possible solutions:

- sacrifice some precision: **approximate techniques**
- use more storage & computational power: **distributed data structures**