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1 Introduction

We propose a new approach to perform approximate similarity search in metric spaces
[8]. The idea at the basis of this technique is that when two objects are very close one to
each other they ’see’ the world around them in the same way. Accordingly, we can use
a measure of dissimilarity between the view of the world, from the perspective of the
two objects, in place of the distance function of the underlying metric space. To exploit
this idea we represent each object of a dataset by the ordering of a number of reference
objects of the metric space according to their distance from the object itself. In order to
compare two objects of the dataset we compare the two corresponding orderings of the
reference objects. We show that efficient and effective approximate similarity searching
can be obtained by using inverted files, relying on this idea. We also show that the
proposed approach performs better than other approaches proposed in literature.

2 Perspective based space transformation

LetD be a domain of objects and d : D×D → R be a metric distance function between
objects ofD. Let RO ⊂ D, be a set of reference objects chosen fromD. Given an object
o ∈ D, we represent it as the ordering of the reference objects RO according to their
distance d from o. More formally, an object o ∈ D is represented with ō = ORO

d,o , where
ORO

d,o is the ordered list containing all objects of RO, ordered according to their distance
d from o.

We denote the position in ORO
d,o of a reference object roi ∈ RO as ORO

d,o (roi). For
example, if ORO

d,o (roi) = 3, roi is the 3rd nearest object to o among those in RO. We
call D̄ the domain of the transformed objects. ∀o ∈ D, ō ∈ D̄. Figure 1 exemplifies
the transformation process. Figure 1a) sketches a number of reference objects (black
points), data objects (white points), and a query object (gray point). Figure 1b) shows
the encoding of the data objects in the transformed space. We will use this as a running
example throughout the reminder of the paper.

As we anticipated before, we assume that if two objects are very close one to each
other, they have a similar view of the space. This means that also the orderings of the
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ō1= (5,2,1,3,4) 

ō2= (4,3,5,1,2) 

ō3= (5,2,3,1,4) 

ō4= (3,5,2,1,4) 

q̄ = (5,1,2,3,4) 
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Fig. 1. Example of perspective based space transformation. a) Black points are reference objects;
white points are data objects; the gray point is a query. b) Encoding of the data objects in the
transformed space. c) Distances in the transformed space

reference objects according to their distance from the two objects should be similar. In
order to measure the similarity between two orderings we use the Spearman Footrule
Distance (SFD) [5], which is a popular measure to compare ordered lists. Given two
ordered lists S1 and S2, containing all objects of RO, the SFD between S1 and S2 is
computed as the sum of the absolute differences between positions of objects in the two
orderings. More formally

SFD(S1, S2) =
∑

ro∈RO

|S1(ro)− S2(ro)|

We denote the distance between objects in the transformed domain as d̄(ō1, ō2) =
SFD(ORO

d,o1
, ORO

d,o2
).

The transformed domain D̄ and the distance d̄ can be used to perform approximate
similarity search in place of the domainD and the distance function d. Figure 1c) shows
the distance, computed in the transformed space, of the data objects from the query
object. It can easily be seen that it is consistent (it gives the same ordering) with the
actual distance of data objects from the query.

3 Using inverted files

Let us suppose that we have a dataset X ⊂ D and a query q ∈ D. Suppose we want to
search for the k objects of X nearest to q. An exhaustive approach is that of ordering
the entire dataset X according to the distance from q and to select the first k objects.
Let X̄ be the dataset in the transformed space and q̄ ∈ D̄ the transformed query. The
approximate ordering of X with respect to q can be obtained in D̄ by computing the
distance d̄(q̄, ō), ∀o ∈ X . In the following we will show that this ordering can be ob-
tained by representing (indexing) the transformed objects with inverted files and using
search algorithms derived from the full text search area [6, 7]. Let us see this in details.

We can index transformed objects with inverted files as follows. Entries (the lexi-
con) of the inverted file are the objects of RO. The posting list associated with an entry



IN: query: q,
reference objects: RO,
posting lists associated with reference objects;

OUT: The set of accumulators: A
1. Set A ← {}.
2. For each ro ∈ RO
3. Let pl be the posting list associated with ro
4. For each (o, ORO

d,o (ro)) ∈ pl
5. If ao /∈ A
6. Set ao = 0
7. Set A ← A ∪ {ao}
8. Set ao = ao + |ORO

d,q (ro)−ORO
d,o (ro)|

Fig. 2. Basic searching algorithm using inverted files.

ro ∈ RO is a list of pairs (o,ORO
o (ro)), o ∈ X , that is a list where each object o of the

dataset X is associated with the position of the reference object ro in ō. In other words,
each reference object is associated with a list of pairs each referring an object of the
dataset and the position of the reference object in the transformed object’s representa-
tion. For instance, an entry (o, 7) in the posting list associated with reference object ro,
indicates that ro is the 7th closest object to o among those in RO.

Therefore, the inverted file has the following overall structure:

ro1 → ((o1, O
RO
o1

(ro1)), . . . , (on, ORO
on

(ro1)))
. . .
rom → ((o1, O

RO
o1

(rom)), . . . , (on, ORO
on

(rom)))

where n is the size of the dataset X and m is the size of the set of reference objects
RO.

A basic algorithm that quickly computes the distance d̄ of all objects of the dataset
X from q using an inverted file data structure is given in Figure 2. The Algorithm uses
an accumulator ao, associated with each object o found, to incrementally compute the
distance d̄(ō, q̄). The set of accumulators A is initially empty (line 1.). The posting lists
of the various entries are accessed (lines 2. and 3.) and for each entry in a posting list
(line 4.) if the object is seen for the first time a new accumulator is added to the list of
accumulators (lines 5.–7.). Then the value of the accumulator is updated by adding the
difference in position of the current reference object ro, in ORO

d,q and ORO
d,o (line 8.). At

the end of the algorithm execution all objects are associated with an accumulator that
contains their distance d̄ from the query object. It is easy to maintain the accumulators
ordered during the algorithm execution so that at the end we have the entire dataset
ordered. This algorithm is very similar to algorithms that incrementally compute the dot
product in text retrieval systems. The difference is that here we compute the Spearman
Footrule Distance.

In the reminder of the article we will modify this basic idea to gain orders of magni-
tude in performance. We will proceed according to these guidelines: 1) we will reduce



the search cost by reducing the number of posting lists accessed during search (the
approach proposed above accesses all posting lists); 2) we will reduce the size of the
inverted file by reducing the number of posting lists where each object is referred (at
the moment each object is referred by every posting list); 3) we will further reduce the
search cost by reducing the amount of entries read in every posting list (at the moment
all entries of a posting list are read).

4 Searching with the ks closest reference points

In order to improve the performance of the above described approach, we can simply
represent the query objects with a subset of RO. More specifically, when we want to
process a query object q, instead of representing it as the ordering ORO

d,q of all the objects
in RO, we rather represent it as the ordering of the ks (ks ≤ #RO) reference objects
of RO closest to q. We denote this ordering as q̄ = ORO

ks,d,q . The distance d̄ is now
computed by using a variant of the Spearman Footrule Distance, the Induced Footrule
Distance (IFD), defined as:

IFD(S1, S2) =
∑

ro∈S1

|S1(ro)− S2(ro)|

In order to support this optimization, the search algorithm given in Figure 2 needs
only to be modified in line 2. In fact, it should not access the posting lists associated
with all reference objects. Rather it only accesses the posting lists associated with the ks

closest reference objects to q. Line 2. is therefore changed to ”For each ro ∈ ORO
ks,d,q”.

5 Indexing with the ki closest reference points

The idea of taking just the closest reference objects can also be used to represent any
object that has to be indexed, rather than just the query. Let ki ≤ #RO be the number
of reference objects used for indexing. In this case every object can be represented
as ō = ORO

ki,d,o, using a smaller amount of reference objects. Note that, in this case,
different objects will be typically represented by different reference objects, given that
different objects will have different neighbor reference objects. This representation of
an object will be clearly smaller than using all reference objects. In addition, this has
also the effect of reducing the size of the inverted file. In fact every object will be just
inserted into ki posting lists, by reducing their size and by also reducing the search cost.

The IFD computes the distance by summing the position differences of reference
objects in the query and data object encoding. However, now it can happen that a refer-
ence object occurs in the query encoding and it does not occur in an object’s encoding.
When this happens we suppose that the position difference of the missing reference
objects is greater than the maximum possible. That is, we suppose that the difference is
ki + 1.

Let us now discuss how the search algorithm has to be used with this modifica-
tion to the indexing strategy. The basic algorithm that we gave previously in Figure
2, computes the distance of objects from the query incrementally using the accumula-
tors. This techniques relies on the fact that every object appears exactly once in every



IN: query: q,
reference objects: RO,
posting lists associated with reference objects,
number of reference objects used for indexing: ki,
number of reference objects used for searching: ks;

OUT: The set of accumulators: A
1. Set A ← {}.
2. For each ro ∈ ORO

ks,d,q

3. Let pl be the posting list associated with ro
4. For each (o, ORO

d,o (ro)) ∈ pl
5. If ao /∈ A
6. Set ao = (ki + 1) ∗ ks

7. Set A ← A ∪ {ao}
8. Set ao = ao − (ki + 1) + |ORO

d,q (ro)−ORO
d,o (ro)|

Fig. 3. Searching algorithm that uses an inverted file where the closest ki reference objects were
used to index objects.

posting list. Therefore every posting list contributes to compute the distance of every
object. However, as discussed above, some reference objects might not occur in some
object’s encoding and consequently some objects might be missing from some posting
lists. In fact, when an object is indexed with its ki closest reference objects, it will ap-
pear just in ki posting lists. This means that when processing a query, an object might
be encountered in some posting lists and it might not be seen in others. This leads to
miscalculation of the distance. In fact, when an object is not seen in a posting list, it
is as if 0 is erroneously summed to its accumulator, in correspondence of the reference
object associated with the posting list. However, note that 0 means that the position of
the reference object in an object is exactly the same than its position in the query, while
the actual position difference (so the distance) should be higher.

To solve this, we change the way in which the accumulators are used. Figure 3
shows the modified algorithm. When objects are seen for the first time the associated
accumulator is initialized with the maximum possible distance for an object, which is
(ki + 1) · ks (line 6.). In fact an object can be seen at most in ks posting lists and we
assume an unseen reference object having position (ki + 1), as discussed before. Every
time an object is encountered its current distance is reduced by replacing (subtracting)
the maximum possible difference, which is (ki + 1), with the actual position difference
from the query (line 8.).

6 Accessing a fraction of the posting lists

Previous algorithms read the entire content of the accessed posting lists. However, also
here we can find some opportunity for reducing the search cost. We can observe that in
the posting lists there are some pairs that are more promising that others. Specifically,
the most promising pairs are those whose position (the position of the reference object)



is closer to that of the query. In fact, the IFD is computed by summing the position
difference of a reference object in the query and in the searched objects. Given that
we are interested in the k closest objects to the query, it is likely that objects whose
position difference is high will fall outside the first k. Therefore, we can use a threshold
parameter MPD which indicates the Maximum Position Difference and we can access
just the pairs whose position difference is below the threshold.

In order to do that efficiently we can maintain the pairs of the posting lists ordered
according to their position and, rather than accessing the entire posting lists, we can
sequentially scan just the portion that contain pairs whose position difference is below
the threshold. For instance, suppose that reference object ro has position p in the query
q, that is ORO

d,q (ro) = p. Then, the search algorithm will just access the consecutive pairs
of the posting list, associated with ro, whose position is in the interval [p−MPD, p +
MPD].

Note that the number of possible positions is much smaller than the number of pairs
in a posting list. Therefore, sorting of the entries of the posting lists, according to the
position, can be efficiently performed in linear time using a count-sort algorithm, after
bulk insertion.

The revised ranking algorithm, which accesses a subset of the posting lists content,
is given in Figure 4. It first computes the minimum (mp) and the maximum (Mp)
position that read pairs should have (lines 3. and 4.). Then, it accesses just the pairs in
that interval (line 5. 6.). Note that direct access to the initial position of the interval can
be obtained by maintaining an index (an array) for each posting list that indicates the
offset corresponding to possible positions. The index for a posting list has size equal to
the maximum possible position, which is ki, and can be stored at the beginning of the
posting list itself. Note that the use of an index for the positions in the posting list makes
it possible to store only the reference to the object, rather than the pair containing the
object and its position. In fact the position can be inferred from the index, knowing the
absolute position of the object in the posting list.

7 Comparisons

In this section we assess the performance of the proposed approach in contrast with
other methods of approximate similarity search in metric spaces, proposed in literature.
Comparisons among some relevant methods [9, 1, 3] were already presented in other
works [1, 8]. Thus, for brevity we just compare the proposed technique with the method
of approximate similarity search based on region proximity [1], which was previously
recognized as the one offering the best performance.

Approximate similarity search based on region proximity uses the M-Tree [4] access
method, and relies on a strategy of pruning non promising subtrees, during the search
phase, measuring the probability of overlap of the underlying ball regions with the query
region. Tradeoff between accuracy and search cost can be tuned using a threshold on
this probability of overlap. In order to have an objective comparison we used a dataset
of image visual features, as described in [2]. We also set to 4 KBytes the size of the disk
block (the unit of disk access) in both cases.



IN: query: q,
reference objects: RO,
posting lists associated with reference objects,
number of reference objects used for indexing: ki,
number of reference objects used for searching: ks,
maximum allowed position difference: MPD;

OUT: The set of accumulators: A
1. Set A ← {}.
2. For each ro ∈ ORO

ks,d,q

3. Let mp = max(0, ORO
ks,d,q(ro)−MPD),

Mp = min(ki, O
RO
ks,d,q(ro) + MPD)

4. Let pl be the posting list associated with ro
5. Let plMp

mp the subset of pl containing pairs with positions
between mp and Mp

6. For each (o, ORO
d,o (ro)) ∈ plMp

mP

7. If ao /∈ A
8. Set ao = ki ∗ ks

9. Set A ← A ∪ {ao}
10. Set ao = ao − ki + |ORO

d,q (ro)−ORO
d,o (ro)|

Fig. 4. Search algorithm that accesses a fraction of the posting lists.

Results are reported in Figure 5. The graphs show the performance of the four vari-
ants of our proposal and the proximity based method when the number k of searched
objects is 50. For each method we plotted the search cost, in terms of disk block reads,
against the recall and the precision error (their description can be found in [8]). A log-
arithmic scale is used for the search cost axis.

Leaving out of consideration our baseline method, where all reference objects are
used for indexing and searching, the remaining variants typically offer much higher
accuracy at the same search cost with respect to the method based on proximity. Specif-
ically, when the search cost is between 100 and 1000 disk accesses, our methods offers
a recall around 0.5 and a position error of about 0.02. On the other hand, the proximity
based method offers a recall around 0,1-0,2 and a position error above 0.03. Note that
the point with highest accuracy (recall 1 and error 0), offered by the proximity based
method, was obtained with extreme settings of the approximation threshold correspond-
ing to execute in fact exact similarity search.

From the graphs it is also evident how the best variant of our method is when just a
portion of the posting lists are accessed.

8 Conclusions

In this paper we presented an approach to approximate similarity search in metric spaces
based on a space transformation that relies on the idea of perspective from a data point.
We proved through extensive experimentation that the proposed approach has clear ad-
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Fig. 5. Comparisons of various setting of the proposed approach against a state-of-the-art method.
We consider the case when the number k of retrieved objects is 50. We measured the average
recall and the position error in correspondence of the search cost, measured as number of disk
clock reads.

vantages over other methods existing in literature. A major characteristics of the pro-
posed technique is that it can be implemented by using inverted files, thus capitalizing
on many years of investigation on efficient and scalable searching algorithms on this
data structure. The proposed approach belongs to the category of general purpose access
methods for similarity search. It can be applied to any application where the similarity
search paradigm can be modelled using metric spaces.
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