
Query optimization for wireless sensor network
databases in the MadWise system �

(Extended Abstract)

1 Giuseppe Amato, 1,2 Paolo Baronti, and 1,2 Stefano Chessa

1ISTI-CNR Pisa, Italy, 2Department of Computer Science, University of Pisa, Italy.

Abstract. We propose a comprehensive approach to distributed query processing
in wireless sensor networks. In our proposal we reinterpret the classical approach
to database system design according to the wireless sensor networks context, and
we redefine the aspects related to the definition of a query language, data model,
query algebra, and query optimization strategies. We show that our approach en-
ables optimizations of the query plan which may reduce the costs, in terms of
consumed energy, of orders of magnitude.

1 Introduction

Wireless Sensor Networks [4, 6] are composed of a set of (tiny) devices (hereafter called
sensors), which are microsystems, each comprising a processor, a memory, a set of
transducers, and a low-range, low-bandwidth radio transceiver. Sensors are powered by
on board batteries thus their energy efficiency is critical in most applications. Applica-
tions of sensor networks include, among others, environment sampling, disaster areas
monitoring,and health monitoring.

The MaD-WiSe system [8],[2] allows interaction with a wireless sensor network as
a traditional database management system. In a traditional database system queries are
used to search for data contained in a persistent storage repository. In a wireless sensor
network, the data base consists of the environmental data that can be measured/acquired
by the transducers available on the sensor nodes. Queries instruct nodes on the manage-
ment, filtering, and processing of the data acquired from the environment. The wireless
sensor network and the software running on the nodes are the means that allow data to
be acquired when needed from the environment, exactly in the way that a traditional
database software allows data to be accessed on disks. In a wireless sensor network
data is not stored anywhere: environmental data is acquired by transducers of the nodes
when needed, in accordance with the query that the network is being processing. A new
data is available every time a transducer is activated.

The MaD-WiSe system consists of a set of modules that implement a distributed
stream management system on a wireless sensor network. A part of the MaD-WiSe
modules (the distributed query processor) run on the nodes of the wireless sensor net-
work (network side) and the rest of the modules (query parser, and query optimizer) run

� Work funded in part by the European Commission in the framework of the FP6 projects PER-
SONA (contract N. 045459) and INTERMEDIA (contract N.38419)

2 1 Giuseppe Amato, 1,2 Paolo Baronti, and 1,2 Stefano Chessa

on a generic client node connected to the wireless sensor network. MaD-WiSe is im-
plemented on the MICAz motes platform [1], relying on TinyOS [3]. The query parser
and optimizer are implemented in Java and run on a standard PC. A sample MaD-WiSe
query is the following:

SELECT roomB.Temp
FROM roomA, roomB
WHERE roomA.Temp > roomB.Temp and roomA.Temp > 50
EVERY 10000

2 About the data model and the query algebra

A natural way to imagine data processed by a wireless sensor network is that of a
stream or sequence of tuples. We define three different types of streams to model the
different tuple access modes: sensor streams, which represent streams of data acquired
by the transducers, remote streams, which model streams of data sent by a source node
to a destination node, and local streams, which represent streams of data generated by
execution of local operations and sent as input of other local operations.

We have considered two different modes for updating the tuple of a sensor stream:
i) the periodic update mode where the transducer is activated with a fixed period (the
sampling period) to update the stream (this mode can be used to collect transducer
readings every x seconds) and the ii) on-demand update mode where the transducer is
activated as a consequence of a read request and causes the stream update (this mode
can be used to obtain transducers readings only under specific conditions).

Remote streams support the transfer of intermediate query results between remote
nodes. Note that remote streams require communication between nodes through their
radio interfaces. Since radio activation is one of the primary causes of energy consump-
tion, it should be carefully managed.

Local streams model data transfers between operators located on the same node in
order to enable pipelined executions of the operations. We distinguish local from remote
streams since they have different costs in terms of energy consumption. Local streams
mainly consume memory resources, while their energy consumption is negligible.

Differently than the relational query algebra [7] our operators supporting the query
language deal with streams of tuples according to the model defined above. These op-
erators have a strictly pipelined behavior that avoids the use of temporary buffers for
producing results.

In particular we have changed the definition of the join operator to adapt to the
needs of data management in wireless sensor networks. This because in this context it
is very useful to relate tuples generated at the same instant (or approximatively the same
instant) by different transducers and/or nodes. For this reason we define a join operator,
�� (SI1 , SI2), that relates tuples having the same timestamp TS. For every new tuple
read on one of the input streams the join operator checks if the last tuple read from
the other stream has the same timestamp. This operation is clearly non-blocking and its
execution requires only single-position buffers. We also provide a further implementa-
tion of the join operator called sync-join, ��sync (SI1 , SI2), where SI2 is an on-demand
stream. The sync-join requests the activation of SI2 only when a tuple arrives on SI1 .

Title Suppressed Due to Excessive Length 3

3 The cost model

We measure the cost of a query execution plan by evaluating the power P needed to
process the query in terms of energy E consumed per unit of time (P = E/t). We
estimate the cost in terms of the energy required to send records across streams because
the cost required by an operator to process a data is negligible with respect to the cost
of sending data in a stream

Let E(S, s) be the energy required to send a single record of size s across the stream
S and f(S) be the frequency of records traversing the stream S. The cost of stream S,
that is its power, is P (S) = f(S)E(S, s). The cost of a query execution plan, say QEP ,
is the sum of the cost of its streams. Let S be the set of streams contained in the query
execution plan QEP . The cost of QEP is P (QEP) =

∑
S∈S P (S).

Energy required for sending a record: The cost of sensor streams is dominated by
the energy required to sample a value with the associated transducer. The cost of a local
stream is that needed to store the records in the temporary buffer. The cost of a remote
stream is dominated by the activity of the radio interfaces of the nodes in the multi-hop
path from the source node to the destination node.

The energy required to store a record in a local stream is negligible with respect to
the cost incurred by the other types of stream. Thus we can reliably consider a zero cost
in this case. Given a local stream LS we have E(LS, s) = 0.

We suppose that the records of sensor streams have fixed size and structure, thus
the cost solely depends on the transducer used. Given a sensor stream SS associated
with transducer TR, we have E(SS, s) = energy per sample(TR). Thermistor, Ac-
celerometer, and Magnetometer transducers embedded in the Crossobow [1] sensor
boards consume respectively 0.0000891, 0.03222, and 0.2685 mJ per sample.

In case of remote streams the situation is a bit more complex. Transmission of a
tuple along a remote stream requires that the nodes involved in the corresponding multi-
hop path collaborate to forward the tuple toward the destination node.

Let Et(s) be the energy required for transmitting a record of size s over the radio
interface, and Er(s) be the energy required for receiving it. Thus the energy required
to send a record of size s over a remote stream RS along a n hops path can be ap-
proximated by E(RS, s) = n(Et(s) + Er(s)). In many real cases the number of hops
between two nodes is proportional to the distance between the two nodes [5]. Therefore,
we can express the energy needed to send a record of size s across a remote stream S,
where source and destination nodes have distance d as E(S, s) = d ·c ·(Et(s)+Es(s)),
where c is a tuning parameter that depends on the density and transmission range of the
nodes in the network.

The energy required to send and receive a 50 bytes packet by the MICAz platform
[1] is respectively 0.1494225 mJ and 0.161445 mJ.
Frequency of records in streams: The frequency of records across streams depends
on the periodicity of the data acquisition of the sensor streams, and on the specific
operators used to connect streams.

In case of sensor streams, we distinguish between periodic and on-demand streams.
In a periodic stream Sp with period p data are acquired and sent with frequency f(Sp) =
1/p. An on-demand stream is intended to be used as input to a sync-join operator as
in SO ←��sync (S, Sod), where Sod, is the on-demand sensor stream. We have that

4 1 Giuseppe Amato, 1,2 Paolo Baronti, and 1,2 Stefano Chessa

Operator f(SO)

SO ← π (SI) f(SI)
SO ← σpred(SI) f(SI) · Pr(pred = true)

SO ←�� (SI1 , SI2) min{f(SI1), f(SI2)}
Table 1. Frequency for local and remote streams connecting various operators

f(Sod) = f(S) given that a record is requested from Sod every time a record arrives
from S.

The frequency of local and remote streams depends on the operators that write in
the streams and on the stream(s) where that operators read. The various possibilities are
summarized in Table 1.

4 Query optimization

In this paper we consider an algebraic optimization approach, that is based on transfor-
mation rules transforming a query plan into a semantically equivalent one with a lower
cost. The final query plan is obtained by applying successive transformations to an ini-
tial query plan built from the MW-SQL query. We will also discuss some issues related
to the ordering of the operators, which can be affected by the transformation rules.

Several transformation rules proposed in the literature to optimize traditional database
query execution can be applied in our context. For instances rules to push-down selec-
tions and projections, and selectivity-based ordering of selections are very useful since
they contribute to reduce the amount of data to be transferred upward in a query plan.
This implicitly reduce the amount of data traversing remote streams, and, in turn, it
reduces the amount of radio activity and of energy consumed.

Here we discuss some peculiar transformation rules that are particularly useful in
our context since they make optimal use of the data model and of the operators that we
have defined. Specifically we consider rules according the following guidelines:

1. Sync-join and on-demand streams should be used whenever possible.
2. Given that a sync-join requires a sensor stream on the right side, trees representing

query plans should be unbalanced to the left (Left Deep Join Trees). In this way,
the chance that a sensor stream (a leaf node) is found as the right argument of a join
is increased.

3. Unary operators such as selections, projections, and temporal aggregates (which
reduce the amount of data being forwarded) should be moved as close as possible
to the node where data is acquired.

Transforming a join into a sync-join: According to our previous observations we
define rules that transform a join into a sync-join. The idea is that if a periodic sensor
stream is on the right side of a join, the join can be transformed into a sync-join and
the sensor stream into an on-demand sensor stream. If there are some unary operators
between the sensor stream and the join, the unary operators can be moved after the join
(to process the output of the join) and the transformation can still take place. Note that

Title Suppressed Due to Excessive Length 5

even if the unary operators are moved up, this is not a problem, given that the sensor
stream is activated only if needed.

Formally the transformation rule is the following:

��k (B, ξ∗(S̆h)) where ξ∗ �= ∅ ∨ k �= h

ξ̃h(��h
sync (B, S̆h))

(1)

where S̆h is a sensor stream on node h, ξ̃h is obtained from the sequence ξ∗, where
each πX is transformed to πX∪Attr(B), and all elements are localized on Node h.

Previous rule can be easily modified to consider the case where the sensor stream is
on the right side of the join.
Obtain Left Deep Join Trees: The following rule rearranges the joins in a query plan
to obtain a left deep join tree, and facilitate transformation of joins into sync-joins by
means of the previous rules.

�� (Ah, ξ∗(�� (Bk, Cj)))

ξ̃j∗(��j (��k (Ah, Bk), Cj))
(2)

where ξ̃j∗ is obtained from ξ∗ by transforming all πX into πX∪Attr(A), and all
elements are located on Node j.

This rule can be profitably used with standard rules to push down selections and
to order joins and selections so that the most selective selections are performed first,
reducing the amount of data traversing the tree.
Moving unary operators close to the source of data: Unary operators are moved close
to the source of the data, as suggested by the third observation, by using the following
rules in addition to traditional push-down transformation rules.

πh
X(Ak) where h �= k

πk
X(Ak)

(3)

σh
c (Ak) where h �= k

σk
c (Ak)

(4)

Query optimization example: Let us suppose that we submit the following MW-SQL
query:

SELECT *
FROM 1.Magnetism, 2.Acceleration, 3.Temperature
WHERE p1(1.Magnetism) and p2(2.Acceleration) and p3(3.Temperature)
EVERY 1000

where p1, p2, and p3 are some predicates on magnetism, acceleration and tempera-
ture readings, respectively, with probability Pr(p1) = 0.01, Pr(p2) = 0.05, Pr(p3) =
0.1, respectively. Figure 1 shows three possible equivalent query plans that can be used
to process the above query. QP1 is obtained by applying the left deep join trees rule.
QP2 is obtained from QP1 by using the selections push-down rule and their allocation

6 1 Giuseppe Amato, 1,2 Paolo Baronti, and 1,2 Stefano Chessa

Query plan QP1: Query plan QP2: Query plan QP3:

σ3
p1(1.M.)

σ3
p2(2.A.)

σ3
p3(3.T.)

��3

��2 3.T.

1.M. 2.A.

��3

��2 σ3
p3(3.T.)

σ1
p1(1.M.) σ2

p2(2.A.) 3.T.

1.M. 2.A.

σ3
p3(3.T.)

��3
sync

σ2
p2(2.A.) 3.T.

��2
sync

σ1
p1(1.M.) 2.A.

1.M.

Fig. 1. Three possible execution plans for the same query.

QP1: QP2: QP3:

Action Energy(mJ) Freq. Power Freq. Power Freq. Power
Acquire M. 0.2685 1 0.2685 1 0.2685 1 0.2685
Send M. 0.31087 1 0.31087 0.01 0.00310 0.01 0.0031
Acquire A. 0.03222 1 0.03222 1 0.03222 0.01 0.00032
Send M.A. 0.31087 1 0.31087 0.0005 0.00016 0.0005 0.00016
Acquire T. 0.00009 1 0.00009 1 0.00009 0.0005 4.46E-08
Send M.A.T. 0.31087 5.0E-5 1.55E-05 5.0E-5 1.55E-05 5.0E-5 1.55E-05
Total Cost: 0.92256 0.30408 0.2721

Table 2. Costs of the three executions plans in Figure 1.

on the node where data are generated. QP3 is obtained from QP2 by using rules for
transforming joins into sync-joins.

As reported in Table 2, the cost of QP2 is approximatively 1/3 of QP1. Cost of
QP3 is a slightly better than QP2. This means that the expected lifetime of a network
running QP2 or QP3 is about 3 times longer than the lifetime expected when running
QP1. The lower cost of QP2 with respect to QP1 is due to the reduced number of
communications that it requires. The lower cost of QP3 with respect to QP2 is due to
the combined reduction of communications and acquisitions.

The performance improvement of QP3 with respect to QP2 is very limited. How-
ever, we will show that the use of sync-joins, as produced for QP3, with appropriate
ordering of operators can provide significant performance improvements.
Ordering of operators: Here we discuss three different ordering criteria. Operators
can be ordered so that i) more selective selections are pushed down in the tree; ii) less
expansive transducers are pushed down in the tree; iii) short range communications are
given priority (topological ordering).

Title Suppressed Due to Excessive Length 7

Query plan QP3: Query plan QP4: Query plan QP5:

σ3
p3(3.T.)

��3
sync

σ2
p2(2.A.) 3.T.

��2
sync

σ1
p1(1.M.) 2.A.

1.M.

σ1
p1(1.M.)

��1
sync

σ2
p2(2.A.) 1.M.

��2
sync

σ3
p3(3.T.) 2.A.

3.T.

σ2
p2(2.A.)

��2
sync

σ1
p1(1.M.) 2.A.

��1
sync

σ3
p3(3.T.) 1.M.

3.T.

3

1 2

sink

4

2

1

3

1 2

sink

1

1

1

3

1 2

sink

2

2

1

Fig. 2. Three possible execution plans for the same query using joins.

Examples of the application of these criteria are given in Figure 2. Differently from
the previous section, multihop paths are taken into account here. In QP3 operators are
ordered according to criterion i), criterion ii) is used in QP4, and criterion iii) is used
in QP5. Their costs are given in Table 3. The cost of QP4 (0.068 mJ) is one order
of magnitude smaller than the cost of QP3 (0.27 mJ). The cost of QP5 (0.058 mJ) is
slightly smaller than the cost of QP4. Therefore, the expected lifetime of a network
running QP4 or QP5 is about 5 times longer than running QP3.

However, this is not a proof that ordering according to the topology of the network is
always the best solution. The results can vary depending on the selections selectivity and
on the acquisitions costs. In general, there is not a best ordering strategy. The optimizer
must generate different orderings according to the various criteria and choose the one
providing the best performance. As shown in our example, this may lead to performance
improvements of orders of magnitude.

5 Conclusions

In this paper we have presented a comprehensive and consistent approach to query
processing in wireless sensor networks. In particular we have defined, analyzed, and
discussed the aspects related to data modeling, query algebra, and query optimization.

8 1 Giuseppe Amato, 1,2 Paolo Baronti, and 1,2 Stefano Chessa

QP3: QP4:
Action Energy(mJ) Freq. Power Action Energy(mJ) Freq. Power
Acquire M. 0.2685 1 0.2685 Acquire T. 0.00009 1 0.00009
Send M. 0.31087 0.01 0.00311 Send T. 0.62174 0.1 0.06217
Acquire A. 0.03222 0.01 0.00032 Acquire A. 0.03222 0.1 0.00322
Send M., A. 0.62174 0.0005 0.00031 Send T., A. 0.31087 0.005 0.00155
Acquire T. 0.00009 0.0005 4.46E-08 Acquire M. 0.2685 0.005 0.00134
Send M., A., T. 1.24347 0.00005 6.21E-05 Send T., A., M. 0.62174 0.00005 3.11E-05
Total Cost: 0.2723 Total Cost: 0.06841

QP5:
Action Energy(mJ) Freq. Power
Acquire T. 0.00009 1 0.00009
Send T. 0.31087 0.1 0.03109
Acquire M. 0.2685 0.1 0.02685
Send T., M. 0.31087 0.001 0.00031
Acquire A. 0.03222 0.001 0.00003
Send T., M., A. 0.31087 0.00005 1.55E-05
Total Cost: 0.05838

Table 3. Cost of the query plans QP3, QP4, and QP5.

Our approach offers many opportunities for query optimization according to the net-
work topology, data statistics, and types of transducers. We show that accurate query
optimization may provide a reduction of the query execution cost of some orders of
magnitude. Our approach separates the aspects of communication, data acquisition,
data representation, and data processing, and it gives the opportunity to experiment new
strategies related to each of these aspects without affecting the entire system design.

References

1. Crossbow Technology Inc., http://www.xbow.com.
2. MaD-WiSe: Management of Data in Wireless Sensor networks. http://mad-wise.isit.cnr.it.
3. TinyOS. http://www.tinyos.net/.
4. I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. A survey on sensor networks.

IEEE Communication Magazine, 40(8):102–114, 2002.
5. C. Antonio, C. Tamalika, and C. Stefano. Bounds on Hop Distance in Greedy Routing Ap-

proach in Wireless Ad Hoc Networks. International Journal on Wireless and Mobile Com-
puting. To appear.

6. P. Baronti, P. Pillai, V. Chook, S. Chessa, A. Gotta, and Y. F. Hu. Wireless sensor networks:
a survey on the state of the art and the 802.15.4 and zigbee standards. Techical Report ISTI-
2006-TR-18, ISTI-CNR, 2006. http://dienst.isti.cnr.it/.

7. E. F. Codd. A relational model of data for large shared data banks. Commun. ACM, 13(6):377–
387, 1970.

8. ISTI-CNR, Via G. Moruzzi, 1, 56124, Pisa, IT. SensorViz/MaD-WiSe, version 1.3 edition,
July 2006. http://mad-wise.isti.cnr.it/manual 13.pdf.

