
Computing Proximity of Metric Regions

Giuseppe Amato1, Fausto Rabitti2, Pasquale Savino1, and Pavel Zezula3

1 IEI-CNR, Pisa, Italy,
fG.Amato,P.Savinog@iei.pi.cnr.it

WWW home page: http://www.iei.pi.cnr.it
2 CNUCE-CNR, Pisa, Italy,
F.Rabitti@cnuce.cnr.it

WWW home page: http://www.cnuce.cnr.it
3 Masaryk University, Brno, Czech Republic,

zezula@fi.muni.cz

WWW home page: http://www.fi.muni.cz

Abstract. The problem of de�ning and computing proximity of regions constraining objects from
generic metric spaces is investigated. Besides other possibilities, the proximity measure can be ap-
plied to improve the performance of metric data indexes through optimized splitting and merging
of regions, pruning regions during similarity retrieval, ranking regions for best case matching, and
declustering regions to achieve parallelism. Approximate, computationally fast, approach is devel-
oped for pairs of metric ball regions, which covers the needs of current systems for processing of
distance data. The validity and precision of proposed solution is veri�ed by extensive simulation on
three substantially di�erent data �les. The results of experiments are very positive.

1 Introduction

In order to speedup retrieval in large collections of data objects, storage (index) structures are
developed and used. Contrary to traditional databases organizing simple sets of formatted items,
current multimedia data occupy much more space and have very complex internal structures.
The search is not performed at the level of actual (raw) multimedia objects, but on characteristic
features that are extracted from these objects. Features are typically high-dimensional vectors
or some other objects for which nothing more than pair-wise distances in speci�c metric space

can be measured. The latter type of data is sometimes designated as the metric data or the
distance data. In such environments, exact match has little meaning and concepts of similarity,
(dissimilarity) are typically used for searching.

Though numerous designs of storage structures exist, the common underlying principle is
the partitioning of object �les into subgroups, called partitions, and bounding them in speci�c
regions. The motivation is to achieve a structure where, once a query is issued, only some of its
regions have to be examined in order to �nd qualifying objects. However, contrary to partitions,
which contain disjoint sets of objects, regions can overlap.

In traditional databases of simple sortable domains, regions do not overlap. But with multi-
dimensional keys, non-overlapping regions are diÆcult to maintain, and structures such as the
R-tree [Gu84] or X-tree [BKK96] allow for overlapping regions. Consequently, the number of
searched regions for a query increases, and index search eÆciency goes down. In order to devise
strategies aiming at creation of non (or little) overlapping regions, the phenomenon of region
proximity has been de�ned to provide an objective support for answering questions such as: how
close two regions are, how much they overlap? In multi-dimensional vector spaces, the proximity
can be expressed in terms of volumes and intersections of hyper-rectangles. As an example,
[KF92] shows how proximity can be used to decluster nodes of R-trees to achieve parallelism.

In order to better capture objects' content, thus trying to enlarge the set of data types for
which eÆcient search is possible, more recent approaches to index multimedia, genomic, and
many non-traditional databases have considered the case where keys are not restricted to stay
in a vector space, and only pair-wise object distances can be computed. This approach, which
subsumes the case of multi-dimensional keys, has generalized the notion of similarity queries

and resulted in the design of so-called metric trees. Although several metric storage structures
have been proposed, see for example [Ch94,Br95,BO97,CPZ97,BO99], their algorithms for par-
titioning and organizing objects in regions are based on heuristics that have no clearly de�ned
guiding principles to rely upon. Naturally, the performance of such structures is not optimum,
and practical experience con�rms that there is still a lot of space for improvement. We believe
that the basic reason for this state of a�airs is the absence of the notion of region proximity in
generic metric spaces { due to the absence of coordinates, the techniques used in vector spaces
cannot be applied here.

Since our rather theoretical problem is strictly motivated by pragmatic needs, we have sought
for practical solutions. As a result, we propose techniques of computing proximity that satisfy the
following criteria: (1) the measures are reliable indications of the reality and provide proximity
with suÆcient precision; (2) the cost of calculating the measures is low; (3) the measures are
able to adapt to changed environments, i.e. di�erent metrics and di�erent data �les; (4) the
necessary storage overhead is moderate.

In the following, Section 2 introduces some application scenarios where region proximity
can be useful, Section 3 formalizes the problem and proposes a solution, Section 5 presents
experimental results that validate the proposed approach, and �nally Section 6 concludes with
suggestions for future research.

2 Application Considerations

In order to illustrate the dominant role of metric regions' proximity in the development of search
mechanisms, consider the issues of partitioning, allocation, and ranking.

Partitioning Partitions constrained by regions are typically stored in storage buckets (tree
nodes, pages, or blocks of data) that require some costs to access. Static regions are not very
typical and the evolution process in storage structures is regulated by speci�c splitting and
merging procedures. When a region R splits, two new regions, say R1 and R2, are created.
By analogy, two regions, R1 and R2, can merge to form a single region R. Notice that regions
R1 and R2 can have arbitrary positions, so they are not necessarily disjoint. Considering a
speci�c objective function, one way of splitting a region can be more advantageous than another
split - content of a region can typically be split in several ways. In particular, when after split
regions overlap a lot, the probability of accessing both of the regions for some queries is high.
Similarly, when speci�c region is to be merged with other region from a candidate set, not all
these possibilities are of equal signi�cance. That means, a quantitative measure of the quality of

partitioning (splitting or merging) is important.

Allocation When a new region appears, it must be placed in storage system. In such situation,
metric region measures can be useful for �nding a suitable storage bucket in which the partition
is to be allocated. Obviously, the strategy is di�erent for single and multiple (independent) disks

{ multiple disks can support parallel processing. If parallel disks are available, regions with high
proximity should not be put on the same disk, i.e. the regions should be declustered. On a single
disk, regions with high probability to be accessed together should be placed as close as possible,
i.e. clustered. Naturally, the problems of clustering and declustering of data on secondary storage
are quite complex, but main problem again is to quantify the regions' proximity.

Ranking Queries in traditional databases divide objects into two parts. One part contains
objects that do not satisfy the query while the other part contains objects satisfying the query
and forms the query response set. Objects in both the groups are of equal relative importance.
In metric databases, queries are based on similarity and a degree of membership is important.
Response to a similarity query is a ranked set, ordered on relative distances, which is actu-
ally the only possible linear arrangement of objects in such case. However, there are also very
good reasons for ranking regions. Examples of such situations include ranking of object clusters
[GRG+99], organizing priority queues for searching [HS99], and approximate retrieval [ZSA+98].
In all these cases, the proximity of regions determines eÆciency of proper algorithms.

3 The Problem of Metric Region Measures

Suppose a metric space M = (D; d), de�ned by a domain of objects, D, (i.e. the keys or
indexed features) and by a total (distance) function, d, which satis�es for each triple of objects
Ox; Oy; Oz 2 D the following properties:

(i) d(Ox; Oy) = d(Oy ; Ox) (symmetry)
(ii) 0 < d(Ox; Oy) <1; Ox 6= Oy and d(Ox; Ox) = 0 (non negativity)
(iii) d(Ox; Oy) � d(Ox; Oz) + d(Oz ; Oy) (triangle inequality)

Provided the objects are vectors, the traditional way to measure distances in vector spaces
is to use a Minkowski-form distance. This set of distance measures is often designated as the Lp

distance and is de�ned for vectors vx and vy as Lp(vx; vy) = (
Pn

j=1 j vx[j] � vy[j] jp)1=p; p � 1,
with L1 known as the city-block or Manhattan distance and L2 the Euclidean distance. Since all
coordinates of the vectors are assumed independent, Lp distances are proportional to closeness
of vectors in multi-dimensional space.

However, vector coordinates can be dependent or correlated. Good examples of such data
are color histograms with each dimension representing a color. Obviously, orange and pink
are certainly more similar than red and blue colors. In order to measure a distance between
histograms, this natural (though also subjective) cross-talk of dimensions should properly be
taken into account [Fa96]. A way to handle this problem is to use the quadratic-form distance.

d2qf (vx; vy) = (vx � vy)
TA(vx � vy); (1)

where A = [ai;j] is a similarity matrix between dimensions of vectors vx and vy, and the su-
perscript T idicates matrix transposition. Naturally, there is no linear correspondence between
distances and positions of vectors in the space, though the measure is still a distance metric
provided the matrix is symmetric and ai;i = 1.

Other example of a distance only measure is the Levenstein (also called the edit) distance to
quantify similarity over strings. It is de�ned as the minimal number of string symbols that have
to be inserted, deleted, or substituted to transform a string Ox into a string Oy, see e.g. [HD80].

Similarity of sets is another measure that is still a metric and applies for non-vector data.
Given two sets A and B, the similarity is de�ned as the ratio of the number of their common
elements to the number of all di�erent elements.

ST (A;B) =
n(A \B)

n(A [B)
(2)

where n(X) is the nuber of elements in set X. Notice that a generalization of this measure is
the Tanimoto similarity measure [Ko84]

ST (vx; vy) =
(vx; vy)

kvxk2 + kvyk2 � (vx; vy)
(3)

which is de�ned for vectors with (vx; vy) being the scalar product of vx and vy, and kvxk the
Euclidean norm of vx. As a �nal example, consider the Hausdor� distance, which is used to
compare shapes of images [HKR93]. Here the compared objects are sets of relevant, e.g. high
curvature, points.

3.1 Partitions and regions

Given a �le of metric data F � D, it is convenient to pre- process (or partition) F into smaller
non-redundant units so that the retrieval process might perform in sub-linear time.

De�nition 1. Partitioning is a separation of a set into subsets such that every element belongs

to one subset and no two subsets have an element in common. 2

According to [Uh91], there are two elementary strategies how to partition a set of metric
data into two subsets:

ball partitioning choose an object from O 2 F and compute the average distance with respect
to O. Then, one partition contains object with distance smaller than the average and the
other one contains the rest of the �le.

generalized hyperplane choose two objects O1; O2 2 F . Then for all objects, Oi, in the �rst
partition d(O1; Oi) < d(O2; Oi) is true while for objects in the second partition the predicate
is false.

Naturally, the content of a partition is suÆciently de�ned by explicitly listing all its el-
ements. Notice that the relationships between elements are implicitly given by the distance
function. Naturally, such representation is not very practical. In order to characterize generic
properties of partitions, space e�ective abstractions are used in practice. To this aim, partitions
are constrained by regions satisfying speci�c properties.

De�nition 2. A region R = fO 2 D j CR(O)g is the set of objects of D which satisfy the

constraint CR(�). 2

In order the constraints to be eÆcient (i.e. simple and small), they usually de�ne regions which
are bigger than necessary. Consequently, a region of partition contains all objects of this partition,
but it might contain other objects that also satisfy the constraint. In any case, a region covers
a certain amount of total object space, the fraction of which is designated as the coverage.

Contrary to disjoined partitions of data elements, regions of the same metric space can have
signi�cantly di�erent relative positions. Regions can be quite far from each other, they can
overlap, or one of the regions can even be included in other regions.

3.2 The approach taken

Though the volume of metric regions cannot be decided, it is obvious that regions intersect if
an object belongs to more regions. It could be correctly argued that the proximity of regions
should be proportional to the amount of space shared by the two regions, and the larger their
intersection is the higher the proximity of these regions. However, in order to implement such
idea, the following three arguments should carefully be considered:

{ no space coordinate system for computing a region volume can be used, since only relative
distances, constrained by the triangle inequality property, de�ne the objects' geometry. In
particular, there is no generic formula for computing the volume of a metric space and no
volume of a region can be computed.

{ zero proximity is typically assigned to disjoint regions, regardless of how \far" they actually
are. Intuitively, this is only appropriate for exact-match (point) queries { non-intersecting
data regions cannot share a point. However, a third region might contain points, which are
also shared by the other two, though nonintersecting, regions. A correct proximity measure
must be able to reect such situation.

{ depending on metric, some distances are far more frequent than the others. For example, in
high-dimensional space, distances for sets of uniformly distributed elements are practically
the same. In real �les, data objects are not uniformly distributed, they typically occur in
clusters. In any case, distance distributions are skewed and this fact must carefully be taken
into account.

Inspired by [KF92], where a proximity measure for vector spaces was proposed, we de�ne prox-
imity of metric regions with respect to another subject. It is again a metric region, but this
region is a random variable. For convenience, we call it the query region. Then, we de�ne the
proximity measure as the relative number of cases in which a query region intersects the com-
pared regions to the total number of possible query regions. Notice that a query region has got
the general metric region properties as given by De�nition 2.

De�nition 3. The n-proximity Xn(R1;R2 : : :Rn) of regions R1 to Rn is the probability that

a randomly chosen query region Q over the same metric space M �nds qualifying objects in all

regions R1 to Rn, i.e. 9Oi1 ; : : : ; Oin j Oi1 2 R1; : : : ; Oin 2 Rn and Oi1 ; : : : ; Oin 2 Q. 2

Since our rather theoretical problem is motivated by purely pragmatic needs, we search for
practical solutions to be used in the �eld of storage structures for metric data. In particular, the
required measures should satisfy the following criteria:

Accuracy In order to be useful, the measures must be accurate indications of the reality as
formalized by De�nition 3.

Fast computation The cost of calculating the measures should be "low". Such requirement is
necessary so that the measures could also be used at run- time.

Flexibility Good measures should easily be able to adapt to changed environments. They
should work equally well for di�erent metrics. The measures should also be able to reect
peculiarities of speci�c �les, such as distance distribution.

Low storage cost Though some use of pre-calculated (auxiliary) data is fully acceptable, a
possible storage overhead, needed to support the computation, should certainly not be ex-
cessive.

3.3 Ball Regions

Up to now, we have not considered any speci�c type of regions. In order to come out with a
solution, let us concentrate on the ball regions for measures with levels n � 2. To the best of our
knowledge, ball regions are practically the only type of regions which are used in practice.

De�nition 4. A ball Bx = Bx(Ox; rx) = fOi 2 D j CBx(Oi) = d(Ox; Oi) � rxg, is the region,

determined by a center Ox 2 D and a radius rx � 0, de�ned as the set of objects in D for which

the distance to Ox is less than or equal to rx. 2

Ball regions are more amenable to e�ective analysis, because they are the simplest region types
that can be de�ned in a metric space. Since 1-proximity is not only equal but also quite easy to
solve, we mostly concentrate on case of n = 2. Before we proceed, let's consider some facts that
appear on the qualitative level of analysis.

In order to see if two balls, Bx;By � D, overlap, i.e. there exists Oi 2 D which belongs to
both Bx and By, it is suÆcient to check if the sum of their radii is greater than or equal to the
distance between the balls' centers, speci�cally

Bx \ By 6= ; () rx + ry � d(Ox; Oy)

It is quite intuitive that, for given radii values, the proximity of Bx and By should increase
if d(Ox; Oy) goes down (the two balls' centers get closer). Similarly, X2(Bx;By) will decrease if,
for a given d(Ox; Oy), the sum rx + ry grows.

Query Regions In order to be consistent, we consider the relevant case where query regions
are balls too. In this case, each query region Q is univocally identi�ed by a query key , Q, and a
query radius, r, thus Q = Q(Q; r).

When queries with the radius r are considered, we can explicitly designate the fact that
the measures depend on r by using the notation Xn

r (B1;B2; : : : ;Bn) and referring to it as the
n-proximity for r-query regions. Note that when r = 0, point queries are used. When the query
radius is not constant, the expected value of proximity can still be determined in obvious way.

From the application point of view, point queries in �les of objects from complex metric
spaces are not very typical { exact match rarely exists thus similarity range (or nearest neighbor)
queries are prevalent.

Range queries are characterized by an object and radius, which de�nes the surroundings of
the object, in which, everything found forms the response set. The choice of a proper radius
is left on the user. Since the response set should not typically be large, small radii values are
more likely than the large ones.

Nearest neighbor queries are again speci�ed by a query object. Instead of limiting the result
by a radius, the response set is constrained by the number of best cases, i.e. the most similar
objects with respect to the query. However, also in this case, the query object radius plays
an important role while evaluating the query. The radius for a given query object is changing
dynamically, starting with a very large (usually the maximum) radius and narrowing down
its value until the minimum region (containing the required number of neighbors) is reached.

In order to see the e�ects of query radii on our metric space measures consider the following
observation.

Observation 31 Suppose a query object Q with distances to two speci�c ball centers Ox and

Oy as d(Ox; Q) = rx + r and d(Oy ; Q) = ry + r. Provided r > 0, it is obvious that Q is not

included in Bx and By. However, in both the balls, there is at least one object, say Oi 2 Bx and

Oj 2 By, which is sure to belong to the query ball, i.e. Oi; Oj 2 Q(Q; r). It follows that such Q
should be considered as a region able to intersect both Bx and By. More precisely, a query ball

Q(Q; r) intersects both Bx and By if d(Ox; Q) � rx + r and d(Oy ; Q) � ry + r.

Accordingly, the following lemma speci�es the e�ects of range queries on the metric ball
measures.

Lemma 1. Proximity for query balls with r > 0 can be transformed to point queries by using

the following substitution.

Xn
r (B1;B2; : : : ;Bn) = Xn

0 (B1;B2; : : : ;Bn)

where Bi is an enlarged region Bi, such that Oi = Oi and ri = ri + r. 2

According to Lemma 1, positive query radii can be transformed to point queries, so it is correct
to consider only point queries in the following. For such situation, we simplify notation and use
Xn instead of Xn

0 .

To conclude this section, we can say, with a slight abuse of terminology, that the proximity
strongly depends on the \size" of regions` intersection. However, the problem is to determine
which are the actual arguments governing the region proximity.

4 Computing Ball Region Proximity

In this section, we concentrate on developing computational procedures that are able to deter-
mine ball region measures for n = 1 and 2. From now on, we assume that the maximum distance
is dm <1, thus consider a bounded metric space.

4.1 A note on distance distributions

Before we proceed, we �rst de�ne necessary terms for precise discussion. Let fO(x) represent
the distance density function that x determines the probability of distances from object O. The
corresponding distance distribution, that is the probability FO(x) of a distance to O to be at
most x, can be determined as

FO(x) =

Z x

0
fO(t) dt (4)

Remember that x is assumed to be bounded by dm, i.e. x � dm. Notice also that we consider
the distribution and density relative to an object, because in general, distributions with respect
to di�erent objects can vary.

Given two di�erent objects Ox; Oy 2 D, the corresponding distrifutions FOx and FOy are
generally di�erent functions. We can also say that FOi represents the Oi's point of view of the
domain D. However, it is not possible to know distance distributions with respect to all objects.

An alternative solution suggests to consider the overall distribution of distances over D. This
can be de�ned as

F (x) = Prfd(O1;O2) � xg; (5)

where O1 and O2 are two independent random objects of D. However, even if we neglect
the computational complexity of a procedure that would determine F (x), all objects from D
are simply not known. What only seems feasible to compute is an approximation of F (x), or
alternatively f(x), by considering pair-wise distances between a sample of objects of size n.

The problem of distance distribution for metric data has been studied in [CPZ98] to derive a
cost model for similarity queries. In particular, to measure the compatibility of two viewpoints
inM, the concept of discrepancy is de�ned. Then, in order to quantify the possible variation of
di�erent viewpoints, another measure, called the homogeneity of viewpoints is also established.

The problem of distance distribution for metric data has been studied in [CPZ98] to derive a
cost model for similarity queries. In particular, in order to quantify the homogeneity of behaviour
of viewpoints, a measure, called the homogeneity of viewpoints, was de�ned. In order to justify
the possibility of using the approximated overall distribution of distances, instead of distribution
with respect to speci�c objects, numerous synthetic and real-life �les were tested. For all these
data sets, the homogeneity of viewpoints was very high.

Accordingly, we use in our experiments the approximated overall distance distribution instead
of FOx and FOy for all x and y.

4.2 De�nition of the Proximity Measure

Given a ball region B1 = (O1; r1) and the distance distribution with respect to its center FO1
,

the probability that a randomly chosen query region belongs to this region is FO1
(r1). The proof

comes from the de�nition of distance distribution. Naturally, the probability of any query point
in metric space bounded by maximum distance dm is 1, because FO1

(dm) = 1. Respecting our
de�nition of proximity, the 1- proximity is given by the following equation.

X1(B1) = FO1
(r1)

As a consequence of the discussion in Section 4.1, it is approximated by

X1(B1) � F (r1) (6)

Proximity of a pair of regions is de�ned as follows:

De�nition 5. The proximity X(Bx;By) of ball regions Bx;By is the probability that a randomly

chosen object O over the same metric space M appears in both regions:

X2(Bx;By) = Prfd(O; Ox) � rx ^ d(O; Oy) � ryg

2

4.3 Computational DiÆculties

The computation of proximity according to De�nition 5 requires the knowledge of distance
distributions with respect to regions' centers. Since any object from M can become a ball
center, such knowledge is not realistic to obtain. However, as discussed in [CPZ98], we can
assume that the distributions depend on the distance between the centers (dxy), while they are
(practically) independent from the centers themselves. Such assumption is realistic when distance

x=0
x=1190x=2380x=3570x=4760x=5950

y=
0

y=
42

0

y=
84

0

y=
12

60

y=
16

80

y=
21

00

y=
25

20

y=
29

40

y=
33

60

y=
37

80

y=
42

00

y=
46

20

y=
50

40

y=
54

60

y=
58

80

y=
63

00

y=
67

20

0

0.000000025

0.00000005

0.000000075

0.0000001

0.000000125

0.00000015

0.000000175

0.0000002

0.000000225

0.00000025

x=0
x=1120x=2240x=3360x=4480x=5600x=6720

y=
0

y=
42

0

y=
84

0

y=
12

60

y=
16

80

y=
21

00

y=
25

20

y=
29

40

y=
33

60

y=
37

80

y=
42

00

y=
46

20

y=
50

40

y=
54

60

y=
58

80

y=
63

00

y=
67

20

0

0.000000025

0.00000005

0.000000075

0.0000001

0.000000125

0.00000015

0.000000175

0.0000002

0.000000225

0.00000025

Joint conditional density Joint density

Fig. 1. Comparation of fX;Y jDXY (x; yjdxy) and fXY (x; y)

distributions with respect to di�erent objects have small discrepancies, which was found true in
[CPZ98] for many data �les. Thus, we can modify our de�nition as

X2(Bx;By) � Xdxy(rx; ry) = Prfd(O;Ox) � rx ^ d(O;Oy) � ryg; (7)

where Ox, Oy, and O are random objects such that d(Ox;Oy) = dxy.
Now, consider the way how Xdxy(rx; ry) can be computed. Let X;Y and DXY be contin-

uous random variables corresponding, respectively, to the distances d(O;Ox), d(O;Oy), and
d(Ox;Oy). The joint conditional density fX;Y jDXY

(x; yjdxy) is the probability1 that distances
d(O;Ox) and d(O;Oy) are, respectively, x and y, given that d(Ox;Oy) = dxy. Then,Xdxy(rx; ry)
can be computed as

Xdxy(rx; ry) =

Z rx

0

Z ry

0
fX;Y jDXY

(x; yjdxy)dydx (8)

In general, fX;Y jDXY
(x; yjdxy) 6= fXY (x; y), because the joint density fXY (x; y) gives the prob-

ability that the distances d(O;Ox) and d(O;Oy) are x and y, no matter what is the distance
between Ox and Oy. The di�erence between the two densities is immediately obvious when
we consider the metric space postulates. Accordingly, fX;Y jDXY

(x; yjdxy) is 0 if x, y, and dxy
do not satisfy the triangular inequality, because such distances cannot simply exist. However,
fXY (x; y) is not restricted by such constraint, and any pair of distances � dm is possible. For
illustration, Figure 1 shows the joint conditional density fX;Y jDXY

(x; yjdxy) for a �xed dxy and
the joint density fXY (x; y). They are both obtained by sampling from the same data set, but
their characteristics are signi�cantly di�erent.

Unfortunately, an analytic form of fX;Y jDXY
(x; yjdxy) is unknown. In addition, computing

and maintaining it as a discrete function would result in very high number of values. Indeed, the
1 We are using continuous random variables so, to be rigorous, their probability is by de�nition always 0. However,
in order to simplify the explanation, we slightly abuse the terminology and use the term probability to give an
intuitive idea of the behavior of the density function being de�ned.

function depends on three arguments so that the storage space required is O(n3), where n is the
number of samples for each argument. This makes such approach of obtaining and maintaining
the probabilities totally unacceptable.

On the other hand, the joint density is simpler to obtain. Since X and Y are independent
random variables, fXY (x; y) = fX(x) � fY (y). Given the de�nition of the random variables X
and Y , it is easy to show that fX(d) = fY (d), so we can omit the name of the random variable
and designate the joint density as f(d). Notice that f(d) can be easily obtained by sampling
from the data set.

In this article, we develop an approach able to compute the proximity measure by expressing
fX;Y jDXY

(x; yjdxy) in terms of fXY (x; y), which is available by means of f(d). From the storage
point of view, such approach is feasible, but the problem is to �nd the necessary transform. In
the Appendix A we show how the joint conditional density can be obtained for a two dimensional
Euclidean space. However, even in this special case, a correct evaluation of fX;Y jDXY

(x; yjdxy)
is computationally untractable and, as a consequence, not suitable for a correct evaluation of
proximity. That is why we have decided to investigate some approximations that would satisfy
eÆciency requirements, and at the same time guarantee good quality of results.

Before we proceed, we de�ne as reference an approximation of the proximity that is generally
used in current applications.

Xtrivial
dxy (rx; ry) =

8>><
>>:
0 if rx + ry < dxy
2�minfrx;ryg
2�dm�dxy

if max(rx; ry) > min(rx; ry) + dxy
rx+ry�dxy
2�dm�dxy

otherwise

(9)

For convenience, we call this approximation trivial, because it completely ignores distributions
of distances though, as Figure 1 con�rms, distances in speci�c �les can have very peculiar
distributions, so their omission in proximity measures must result in high errors.

4.4 Approximate Proximity

Given two objects Ox and Oy such that d(Ox; Oy) = dxy, the space of possible distances x =
d(O;Ox) and y = d(O;Oy), measured from the object O, is constrained by the triangular
inequality, i.e. x + y � dxy, x + dxy � y, and y + dxy � x. Figure 2 helps to visually identify
these constraints: in the gray area, called the bounded area, the triangular inequality is satis�ed;
in the white area, called the external area, the triangular inequality is not satis�ed. Notice that
the graph of the joint conditional density in Figure 1 has values greater than zero only in the
bounded area, and that quite high values are located near the edges.

Such observations form the basis for our heuristics to approximate the joint conditional
density by means of the joint density. The intuitive idea can be outlined as follows:

Collect values of fXY (x; y) for x, y, and dxy from the external area and add them inside

the bounded area.

When x, y, and dxy satisfy the triangular inequality, the value of fapprXY jDXY
(x; yjdxy) depends

on speci�c strategy used to implement the previous idea, but fapprXY jDXY
(x; yjdxy) = 0 when x,

y, and dxy do not satisfy the triangular inequality. Notice that our approximations preserve the
properties of density functions, and the integral over the bounded area is 1. This is the basic
assumption of any probabilistic model that would be violated provided the joint densities were
simply trimmed out by the triangle inequality constraints.

dxy

dxy

x

y

 y+dxy ≥ x

x+dxy ≥ y

x+y ≥ dxy

Bounded area

External area

Ox Oy

O

dxy

x y

Fig. 2. Area bounded by the triangular inequality for a given dxy

In order to come out with speci�c solutions, we have tried four di�erent implementations of
this heuristic, varying the strategy applied to move density values. Figure 3 provides a visual
representation of the methods. The circles represent the joint density function, while the arrows
show how points are moved from the external area to the bounded area.

Orthogonal approximation collects points outside the bounded area and moves them on top
of the corresponding constraint following a direction that is orthogonal to the constraint.

Parallel approximation collects points outside the bounded area and moves them on top of the
corresponding constraint following a direction that is parallel to the axis.

Diagonal approximation collects points outside the bounded area and moves them on top of
the corresponding constraint following a direction that always passes through dm.

Normalized approximation eliminates densities outside the constrained space and normalizes
the ones found inside so that the integral over the whole constrained space is equal to one.

In this way, an approximation of the proximity can be computed according to Equation 8, but
using f

appr
X;Y jDXY

(x; yjdxy) instead of fX;Y jDXY
(x; yjdxy). Moreover, the orthogonal, parallel and

diagonal approximations can be computed directly through the joint density fX;Y (x; y), provided
the integration limits are modi�ed as follows:

X
appr
dxy

(rx; ry) =

Z bx(dxy;rx;ry)

0

Z b2y(x;dxy;rx;ry)

b1y(x;dxy;rx;ry)
fX;Y (x; y)dydx (10)

In the following, we simplify the terminology by omitting the dxy; rx; ry parameters and use for
the integration bounds only the symbols bx, b

1
y(x) and b2y(x).

Equation 10, integrates the function fXY (x; y) in an area that is larger than the original one
([0::rx] and [0::ry]), so that all points that should be moved to produce fapprX;Y jDXY

(x; yjdxy) are
in fact correctly considered, obtaining the same result as of integrating fapprX;Y jDXY

(x; yjdxy) itself.
In fact, bx, b

1
y(x), and b2y(x) are functions, speci�c for each approximation method, that bound

the integral as illustrated by the gray marked areas highlighted in Figure 3. In general, bx gives

dxy

dxy

x

y

dm

dm

ry

rx

Orthogonal Parallel

Diagonal Normalized

dxy

dxy

x

y

dm

dm

ry

rx

dxy

dxy

x

y

dm

dm

ry

rxdxy

dxy

x

y

dm

dm

ry

rx

x+y≥dxy

x+dxy≥y

y+dxy≥x

x+y≥dxy

x+dxy≥y

y+dxy≥x

x+y≥dxy

x+dxy≥y

y+dxy≥x

x+y≥dxy

x+dxy≥y

y+dxy≥x

Fig. 3. moving from joint density to joint conditional density

the integration range along the x axis, b1y(x) is the lower bound of the gray area, and b2y(x) is
the upper bound of the gray area.

In fact, a similar technique can also be adopted for the normalized method, if we consider
the approximation as the ratio between the integral on the gray area and the integral on the
whole bounded area. Let's de�ne Idxy(rx; ry), using Equation 10, as the integral on the gray area
highlighted for the normalized method, and Tdxy = Idxy(dm; dm), as the integral on the whole

bounded area. Then the normalized approximate proximity is Xappr
dxy

(rx; ry) =
Idxy (rx;ry)

Tdxy
. In this

way, all our techniques are based on the joint density fXY (x; y).

The de�nition of the bounding functions bx, b
1
y(x) and b2y(x), which depend on the approxi-

mation method used, is discussed in Section 4.5.

The proposed way of approximation can also signi�cantly reduce the computational com-
plexity by using the fact that fX;Y (x; y) = f(x) � f(y) as follows

Z bx

0

Z b2y(x)

b1y(x)
fXY (x; y)dydx =

Z bx

0
f(x) � (F (b2y(x))� F (b1y(x)))dx (11)

The computational complexity of Equation 11 is O(n), where n is the number of samples (gran-
ularity) used to compute the integral as a discrete function. Naturally, the distance density
function f(d) and the distance distribution function F (d) of high granularity can easily be kept
in the main memory. Concerning the Normalized method, we can see that Tdxy only depends
on dxy thus can also be maintained in main memory. Consequently, it can also be computed in
O(n).

4.5 Bounding functions

In this section we will formally de�ne the bounding functions bx, b
1
y(x) and b2y(x) of the four

approximation methods described above. Even though the graphical representation of the inte-
gration areas seems to be easy and clear, its formalization is not straightforward, because several
special cases should be taken into account to obtain the correct behaviour. Notice that in our
simpli�ed formalisation of the problem, the function fXY (x; y) can assume arguments outside
the range [0; dm]. In those cases we suppose that the returned value is 0.

We decompose the problem in subcases that can be considered separately { see Figure 4 as
a convenient graphical reference. First, we identify two di�erent situations: (i) ry < dxy and (ii)
ry � dxy. Distinguishing these two situations, we identify some intervals along the x axis:

1. I 01 = [0; dxy � ry),

2. I 02 = [dxy � ry;min(dxy + ry; rx)), and
3. I 03 = [min(dxy + ry; rx); dm].

In case (ii), we identify another three intervals:

1. I 001 = [0;min(ry � dxy; rx)),
2. I 002 = [min(ry � dxy; rx);min(dxy + ry; rx)), and

3. I 003 = [min(dxy + ry; rx); dm].

Using the intervals de�ned above, we de�ne the upper bound b2y(x). First suppose that
ry � dxy. When x 2 I 01, and the regions do not intersect (that is dxy � rx > ry), then proximity
is 0 (see Figure 4-a3) so the upper bound is 0 too. Otherwise, the upper bound is the stright
line, which is speci�c for a method used, and passing by point A shown in Figure 4-(a1 and
a2). We call a(x) that stright line. When x 2 I 02, the upper bound is always equal to ry. When
x 2 I 03, the upper bound is the minimum between the two, method speci�c, stright lines passing
respectively, by point B1 and B2. We call b(x) the stright line passing by B1 and c(x) the one
passing by B2. Figures 4-(a1 and a2) show two di�erent situations. In the �rst case, the minimum
is b(x), in the other case, the minimum is c(x).

Now suppose that ry > dxy, that is there is always an intersection between the two regions.
When x 2 I 001 , the upper bound is the minimum between the two, method dependent, stright
lines passing, respectively, by point A1 and A2. We call d(x) the line passing by A1 and e(x)
the one passing by A2. Figures 4-(b2 and b3) show two di�erent situations. In the �rst case the

minimum is e(x), while in the other case the minimum is d(x). When x 2 I 002 , the upper bound
is always equal to ry. Since I

00
3 is de�ned exactly as I 03, the same arguments apply as can be seen

in Figures 4-(b1 and b2).
More formally, b2y(x) can be de�ned as follows:

b2y(x) =

8>>>>>>>>>><
>>>>>>>>>>:

8>>><
>>>:

(
a(x) if dxy � rx � ry
0 elsewhere

if x 2 I 01

ry if x 2 I 02
min(b(x); c(x)) if x 2 I 03

if ry < dx;y

8><
>:
min(d(x); e(x)) if x 2 I 001
ry if x 2 I 002
min(b(x); c(x)) if x 2 I 003

elsewhere

(12)

where a(x), b(x), c(x), d(x), and e(x) are de�ned for the individual approximation methods as
follows.

First, we start with the Orthogonal method. To de�ne b2y(x), that is the upper bound of the
integration area, the required stright lines are the following:

a(x) = 2 � ry � dxy + x

b(x) = 2 � ry + dxy � x

c(x) = 2 � rx � dxy � x

d(x) = 2 � rx + dxy � x

e(x) = 2 � ry � dxy � x

On the other hand, b1y(x), that is the lower bound of the integration area, can be de�ned as

b1y(x) =

8><
>:
(
dxy � 2 � rx + x if dx;y � rx � ry
0 elsewhere

if rx < dx;y

0 elsewhere

That is, when rx is smaller than dxy, and rx is such that dxy � rx � ry, the lower bound is the
stright line y = x+ dxy � 2 � rx passing by point B { see Figure 4-b3. In all other cases the lower
bound is 0.

Last, we need to de�ne bx, that is the range of the integration. If rx is smaller than dxy the
integration is made in the interval [0; rx], otherwise in the interval [0;min(r1; r2)], where r1 and
r2 are such that, respectively, b(r1) = 0 and c(r2) = 0. We can make it explicit as follows:

bx =

(
rx if rx < dx;y
min(2 � ry + dxy; 2 � rx � dxy) if rx � dx;y

To de�ne b2y(x) for the Parallel method, we use again the outline of equation 12 and de�ne a(x),
b(x), c(x), d(x) and e(x) as follows:

a(x) = b(x) = ry

c(x) = rx � dxy

d(x) = e(x) = dm

dxy

dxy

x

y

 y>=x-dxy

 y<=x+dxy

 y>= dxy -x

dm

dm

ry

I’ 1 I’ 2 I’ 3

rx

when dxy+ r y≥ rx

dxy

dxy

x

y

 y>=x-dxy

 y<=x+dxy

 y>= dxy -x

dm

dm

ry

I” 1 I” 2 I” 3

rx

when dxy+ r y< rx and rx≥ rx-dxy

dxy

dxy

x

y

 y>=x-dxy

 y<=x+dxy

 y>= dxy -x

dm

dm

ry

I” 1 I” 2 I” 3

rx

when dxy+ r y≥ rxand rx≥ rx-dxy

dxy

dxy

x

y

 y>=x-dxy

 y<=x+dxy

 y>= dxy -x

dm

dm

ry

I” 1

rx

when rx < ry-dxyand dxy - rx≤ ry

dxy

dxy

x

y

 y>=x-dxy

 y<=x+dxy

 y>= dxy -x

dm

dm

ry

rx

when dxy - rx> ry

dxy

dxy

x

y

 y>=x-dxy

 y<=x+dxy

 y>= dxy -x

dm

dm

ry

I’ 1 I’ 2 I’ 3

rx

when dxy+ r y< rx

Case (i) ry < dxy: Case (ii) ry ≥ dxy:

(a1) (b1)

(a2)
(b2)

(a3) (b3)

A B1

B1

A

B2

A2

B2

A1

B

B2

B1

B1

B2

A1

A2

Fig. 4. Situations to be taken into account when de�ning bounding functions

b1y(x) is always 0 so:

b1y(x) = 0

Last, bx is de�ned as follows:

bx =

(
rx if rx < dx;y
dm if rx � dx;y

That is, if rx is smaller than dxy, then the integral is made in the interval [0; rx], otherwise in
the interval [0; dm].

To de�ne b2y(x) for the Diagonal method, we use again the layout of equation 12 and de�ne a(x),
b(x), c(x), d(x) and e(x) as follows:

a(x) = ry

b(x) = � ry

dm � ry � dxy
� x+ ry

dm � ry � dxy
� dm

c(x) = �rx � dxy

dm � rx
� x+ rx � dxy

dm � rx
� dm

d(x) = �dm � dxy � rx

rx
� x+ dm

e(x) = � dm � ry

ry � dxy
� x+ dm

Bounding functions b1y(x) and bx for the Diagonal method are de�ned exactly the same as
for the Parallel method so we will make no further discussion on them.

Last, we have to consider the Normalized method. Because of the di�erent nature of this method,
also the de�nitions of the bounding functions have a di�erent layout. In particular, there is not
need of extending the integration area, so just the intersection between the original constraints
(x � rx and y � ry) of the integration area and the triangular inequality constraint are needed.
The result is the following:

bx = rx

b1y(x) = jx� dxyj

b2y(x) = x+ dxy

5 Veri�cation

In this section, we investigate the e�ectiveness of the proposed approaches. Before presenting
our simulation results, we �rst characterize the data sets, describe the evaluation process, and
de�ne comparison metrics.

0.00E+00

5.00E-05

1.00E-04

1.50E-04

2.00E-04

2.50E-04

3.00E-04

0 1000 2000 3000 4000 5000 6000 7000

0.00E+00

5.00E-05

1.00E-04

1.50E-04

2.00E-04

2.50E-04

3.00E-04

3.50E-04

0 2000 4000 6000 8000

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2

 UV Dataset HV1 Dataset HV2 Dataset

(a) (b) (c)

Fig. 5. Overall distance density functions of the used data sets

5.1 Data sets

To be more con�dent on obtained results, we have used three data sets: one synthetic and two
real-life data sets representing color features of images. Each of the data sets contained 10.000
objects.

The synthetic data set, called UV, is a set of vectors uniformly distributed in 2-dimensional
space where vectors are compared through the Euclidean (L2) distance. The second data set, des-
ignated as HV1, contains color features of images. Color features are represented as 9-dimensional
vectors containing the average, standard deviation, and skewness of pixel values for each of the
red, green, and blue channels, see [SO95]. An image is divided into �ve overlapping regions,
each one represented by a 9-dimensional color feature vector. That results in a 45-dimensional
vector as a descriptor of one image. The distance function used to compare two feature vectors
is again the Euclidean (L2) distance. The third data set, called HV2, contains color histograms
represented in 32-dimensions. This data set was obtained from the UCI Knowledge Discovery
in Databases Archive ([Bay99]). The color histograms were extracted from the Corel image col-
lection as follows: the HSV space is divided into 32 subspaces (32 colors: 8 ranges of hue and 4
ranges of saturation). The value in each dimension of the vector is the density of each color in
the entire image. The distance function used to compare two feature vectors is the histogram
intersection implemented as L1.

The range of distances and corresponding distance density functions can be seen in Figure 5.
Notice the di�erences in densities for individual �les: the UV data set presents the most frequent
distances on the left of the distances range, the HV1 on the center, and the HV2 on the right.
In this way we have tried to cover a large spectrum of possible data.

5.2 Experiments and comparison metrics

In order to form the basis for comparison, we have experimentally computed the actual proximity
Xactual
dxy

(rx; ry) for all data sets. We have chosen several values of dxy in the range of possible

distances and 100�100 values of (rx; ry). The value of X
actual
dxy

(rx; ry) was computed for all their
possible combinations. To accomplish this task, we have found, for each dxy, 400 pairs of objects
(Ox; Oy), i.e. the balls' centers, such that jd(Ox; Oy) � dxyj � �, where � was the smallest real
number that allowed to obtain at least 400 pairs. For each pair of objects we have generated

UV dataset: average error

0.00E+00

2.00E-02

4.00E-02

6.00E-02

8.00E-02

1.00E-01

1.20E-01

1.40E-01

700 1200 1700 2200 2700 3200 3700 4200 4700 5200

dxy

er
ro

r

Normalised
Orthogonal
Parallel
Diagonal
Trivial
Analytic

UV dataset: variance of errors

0.00E+00

2.00E-03

4.00E-03

6.00E-03

8.00E-03

1.00E-02

1.20E-02

1.40E-02

700 1200 1700 2200 2700 3200 3700 4200 4700 5200

dxy

va
ria

nc
e

Normalised
Orthogonal
Parallel
Diagonal
Trivial
Analytic

HV1 dataset: average error

0.00E+00

2.00E-02

4.00E-02

6.00E-02

8.00E-02

1.00E-01

1.20E-01

1.40E-01

1.60E-01

1.80E-01

1000 2000 3000 4000 5000 6000

dxy

er
ro

r

Normalised
Orthogonal
Parallel
Diagonal
Trivial

HV1 dataset: variance of errors

0.00E+00

2.00E-03

4.00E-03

6.00E-03

8.00E-03

1.00E-02

1.20E-02

1.40E-02

1.60E-02

1000 2000 3000 4000 5000 6000

dxy

va
ria

nc
e

Normalised
Orthogonal
Parallel
Diagonal
Trivial

HV2 dataset: average error

0.00E+00

5.00E-02

1.00E-01

1.50E-01

2.00E-01

2.50E-01

3.00E-01

0.4 0.6 0.8 1 1.2 1.4 1.6

dxy

er
ro

r

Normalised
Orthogonal
Parallel
Diagonal
Trivial

HV2 dataset: variance of errors

0.00E+00

5.00E-03

1.00E-02

1.50E-02

2.00E-02

2.50E-02

0.4 0.6 0.8 1 1.2 1.4 1.6

dxy

va
ria

nc
e

Normalised
Orthogonal
Parallel
Diagonal
Trivial

Fig. 6. Average and variance of errors

100�100 balls by varying correspondingly rx and ry in the range of possible radii. For each pair
of balls we have counted the number of objects in their intersection. Xactual

dxy
(rx; ry) was �nally

obtained by computing the average number of objects in the intersection for each generated
con�guration of dxy, rx, and ry and normalizing such values to obtain the probability.

Notice that we did not consider distances dxy of very low densities. In such cases, 400 pairs
were only possible to obtain for large values of �, thus the actual proximity was not possible
to establish with suÆcient precision. However, such situations, i.e. relative positions of regions'
centers, are not likely to occur in reality.

Having obtained the actual proximity, we have computed the approximate proximities pro-
posed in this article for the same values of variables dxy, rx, and ry. The comparison between
the actual and the approximate proximity was quanti�ed for each possible con�guration as the
error �(rx; ry; dxy) = jXactual

dxy
(rx; ry) �X

appr
dxy

(rx; ry)j. Given the high amount of resulting data,
we have summarized them by computing the average over the radii rx and ry at a given distance

rx
=0

rx
=7

70

rx
=1

47
0

rx
=2

17
0

rx
=2

87
0

rx
=3

57
0

rx
=4

27
0

rx
=4

97
0

rx
=5

67
0

rx
=6

37
0

ry=70

ry=1470

ry=2870

ry=4270

ry=5670

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
er

ro
r

UV: Trivial method

0.4-0.45
0.35-0.4
0.3-0.35

0.25-0.3
0.2-0.25
0.15-0.2

0.1-0.15
0.05-0.1
0-0.05

rx
=7

0

rx
=7

70

rx
=1

47
0

rx
=2

17
0

rx
=2

87
0

rx
=3

57
0

rx
=4

27
0

rx
=4

97
0

rx
=5

67
0

rx
=6

37
0

ry=70

ry=1470

ry=2870

ry=4270

ry=5670

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

er
ro

r

UV: Parallel method

0.4-0.45
0.35-0.4
0.3-0.35

0.25-0.3
0.2-0.25
0.15-0.2

0.1-0.15
0.05-0.1
0-0.05

rx
=1

00

rx
=1

10
0

rx
=2

10
0

rx
=3

10
0

rx
=4

10
0

rx
=5

10
0

rx
=6

10
0

rx
=7

10
0

rx
=8

10
0

rx
=9

10
0

ry=100

ry=2100

ry=4100

ry=6100

ry=8100

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

er
ro

r

HV1: Trivial method

0.4-0.45
0.35-0.4
0.3-0.35

0.25-0.3
0.2-0.25
0.15-0.2

0.1-0.15
0.05-0.1
0-0.05

rx
=1

00

rx
=1

10
0

rx
=2

10
0

rx
=3

10
0

rx
=4

10
0

rx
=5

10
0

rx
=6

10
0

rx
=7

10
0

rx
=8

10
0

rx
=9

10
0

ry=100

ry=2100

ry=4100

ry=6100

ry=8100

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

er
ro

r

HV1: Parallel method

0.4-0.45

0.35-0.4
0.3-0.35
0.25-0.3

0.2-0.25
0.15-0.2
0.1-0.15

0.05-0.1
0-0.05

rx
=

0.
02

1

rx
=

0.
23

1

rx
=

0.
44

1

rx
=

0.
65

1

rx
=

0.
86

1

rx
=

1.
07

1

rx
=

1.
28

1

rx
=

1.
49

1

rx
=

1.
70

1

rx
=

1.
91

1

ry=0.021

ry=0.441

ry=0.861

ry=1.281

ry=1.701

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

er
ro

r

HV2: Trivial method

0.4-0.45

0.35-0.4
0.3-0.35
0.25-0.3

0.2-0.25
0.15-0.2
0.1-0.15

0.05-0.1
0-0.05

rx
=

0.
02

1

rx
=

0.
23

1

rx
=

0.
44

1

rx
=

0.
65

1

rx
=

0.
86

1

rx
=

1.
07

1

rx
=

1.
28

1

rx
=

1.
49

1

rx
=

1.
70

1

rx
=

1.
91

1

ry=0.021

ry=0.441

ry=0.861

ry=1.281

ry=1.701

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

er
ro

r

HV2: Parallel method

0.4-0.45

0.35-0.4
0.3-0.35
0.25-0.3

0.2-0.25
0.15-0.2

0.1-0.15
0.05-0.1
0-0.05

Fig. 7. Comparison between the errors of the trivial method and the parallel method

between the centers, �0�(dxy), and the average over the distance between the balls' centers dxy
at a given pair of radii, �00�(rx; ry), speci�cally:

�0�(dxy) = Avgrxry(�(rx; ry; dxy))

and

�00�(rx; ry) = Avgdxy (�(rx; ry;dxy)):

In similar way, we have computed the variance of the error for a given distance dxy:

�0�(dxy) = V arrxry(�(rx; ry; dxy))

The value of �0� makes possible to evaluate the average error of approximations for speci�c
distance between the balls' centers. However, �0� alone is not suÆcient to correctly judge upon

the quality of approximation. In fact, it is obtained as the average error for all possible values
of rx and ry so that some peculiar behavior can remain hidden. In this respect, the stability
of the error must also be considered. Such measure can be obtained by using the variance �0�.
Notice that high average errors and small variances may still provide good approximations.
To illustrate, suppose that we want to use the proximity to order (rank) a set of regions with
respect to a reference region. It can happen that the ranking results obtained through the
actual and approximate proximity are identical even though �0� is quite high. In fact, when the
variance of error is very small, it means that the error is almost constant, and the approximation
somehow follows the behavior of the actual proximity. In this case, it is highly probable that the
approximated proximity increases (or decreases) according to the behavior of the actual one,
guaranteeing the correct ordering.

On the other hand, the value of �00� represents the average error from a di�erent point of view.
It is determined for a given pair of radii (rx; ry) varying dxy, thus it can indicate the quality of
approximation as a function of the sizes (radii) of balls. This measure o�ers a �ner grained view
on the error behavior, since the average is only computed varying the distance dxy.

In fact, the measures �0� and �00� are complementary. The �rst allows one to judge the quality
of approximation as a function of the distance between the centers of the balls, while the second
helps to judge the quality of approximation as a function of balls' sizes.

5.3 Simulation results

For all data sets, the actual proximity was compared with the proposed approximations, the
trivial approximation, and, only for the UV data set, with a proximity measure obtained using
the analytic technique described in the Appendix A that as we have mentioned earlier has
untrectable computational costs. Figure 6 presents the average error �0� and its variance �0�. It
is immediate that all approximation methods outperform the trivial one, since the error of the
trivial method is even one order of magnitude higher compared to all other methods. The same
consideration also holds for the variance of the errors: for all proposed techniques, �0� is one
order of magnitude smaller than the value obtained with the trivial technique. This implies that
in speci�c situations the trivial approximation may provide signi�cantly di�erent results with
respect to the actual proximity. On the other hand, the proposed approximations show a very
good and stable behavior. They have a small variance as well as small errors, so that they can
be reliably used in practice.

If we compare the proposed methods for the UV data set, we can see that the parallel
method is the best for values of dxy up to the middle of the range of distances. However, the
quality of this method decreases, both in terms of �0� and �0�, for high values of dxy. In this
range of distances, the best method is the analytic method (with the disadvantage of very high
computational costs), followed by the normalized method. Notice that the normalized method
presents a very stable behavior.

In the HV1 and HV2 data sets, the di�erences between the various methods are less evident.
However, we can see again that the parallel method demonstrates the best performance. In
HV2, the quality reduction is limited and is noticeable just for very high values of dxy. Here,
again, the best method is the normalized approximation. On the other hand, the decrease in
performance of the parallel method disappears for HV2, and a complete overlap of the graphs
can be observed.

Consider now the average error for a given pair of radii �00�. Since the parallel method has
always been the best, we only consider �00� for this method and the trivial one. The results are
sketched in Figure 7. As an additional con�rmation of the observation that we have made for
�0� and �0�, the error �

00
� for the parallel method is again smaller than the one measured for the

trivial method in all three data sets. In particular, the error of the trivial method is never close
to 0, while for a substantial range of rx and ry values the error of the parallel method is almost
0. This, in particular, is evident for the real-life data sets HV1 and HV2.

In the UV and HV1 data sets, the highest errors measured for the parallel method occur
for values of rx and ry around the middle of the considered distance range. In the HV2 data
set, the error is high for very large balls. The step e�ect, which can be observed in the graph
corresponding to the UV data set, is due to the sampling granularity of dxy and the fact that
high values of the error � are accumulated near to the constraint x+ y � dxy of the triangular
inequality. This e�ect is not noticeable in the other data sets, where the error � observerd near
that constraint is much smaller.

6 Conclusions

In order to support development of metric data indexes, approximation methods to quantify
the proximity of metric ball regions have been proposed and evaluated. In accordance with our
objectives, the proposed methods are exible and do not depend on distance measure, provided
it is a metric. Accuracy of the methods is high and only depends on global distance distribution,
which is easy to obtain and store. The computation of proposed proximity measures is fast. Its
computational complexity is linear, thus it is also applicable at run-time. The storage overhead
of distance distribution histograms is low.

We are currently working on application of the method to improve the performance of metric
trees. The speci�c problems concern the tree node split and merge functions, ranking of metric
regions in priority queue for the best case matching, declustering of regions (partitions) to achieve
parallelism, and pruning for approximate similarity retrieval.

Future research should concentrate on proximity measures of regions other than balls and
on proximity of more than 2 regions. More e�ort should also be spend on developing other
applications and possibly on developing new, more eÆcient, metric indexes.

References

[Bay99] Bay, S. D. The UCI KDD Archive [http://kdd.ics.uci.edu]. Irvine, CA: University of California,
Department of Information and Computer Science.

[BKK96] S. Berchtold, D.A. Keim, and H.P. Kriegel. The X-tree: An Index Structure for High-Dimensional Data.
Proceedings of the VLDB96, Bombay, India, 1996.

[BO97] T. Bozkaya and M. Ozsoyoglu. Distance-based indexing for high-dimensional metric spaces. ACM

SIGMOD, pp.357-368, Tucson, AZ, May1997.
[BO99] T. Bozkaya and Ozsoyoglu. Indexing Large Metric Spaces for Similarity Search Queries. ACM TODS,

24(3):361-404, 1999.
[Br95] S. Brin. Near neighbor search in large metric spaces. In Proceedings of the 21st VLDB International

Conference, pp. 574{584, Zurich, Switzerland, September 1995.
[Ch94] T. Chiueh. Content-based image indexing. In Proceedings of the 20th VLDB International Conference,

pages 582{593, Santiago, Chile, September 1994.
[CPZ97] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An EÆcient Access Method for Similarity Search in

Metric Spaces. Proceedings of the 23rd VLDB Conference, Athens, Greece, 1997, pp. 426-435.

 < ;

2\
2[Α %

2

';<

Fig. 8. Analytical approach

[CPZ98] P. Ciaccia, M. Patella, and P. Zezula. A Cost Model for Similarity Queries in Metric Spaces. In
Proceedings of 7th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,

PODS 1998, Seattle, Washington, 1998, pp. 59- 68.
[Fa96] C. Faloutsos. Searching Multimedia Databases by Content. Kluwer Academic Publishers, 1996.
[Gu84] A. Guttman. R-trees: A dynamic index structure for spatial searching. In Proceedings of the 1984 ACM

SIGMOD International Conference on Management of Data, pages 47{57, Boston, MA, June 1984.
[GRG+99] V. Ganti, R. Ramakrishnan, J. Gehrke, A. Powell, and J. French. Clustering Large Data Sets in

Arbitrary Metric Spaces. In Proceedings of the 15th International Conference on Data Engineering,

ISDE99, Sydney, Australia, IEEE, pp. 502-511, 1999.
[HD80] P.A.V Hall and G.R. Dowling. Approximate String Matching. ACM Computing Surveys, 12(4):381-402,

December 1980.
[HKR93] D.P. Huttenlocker, G.A. Klanderman, and W.J. Rucklidge. Comparing images using the Hausdor�

distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(9):850-863, September
1993.

[HS99] G.R. Hjaltason and H. Samet. Distance Browsing in Spatial Databases. ACM TODS, 24(2): 265-318
1999.

[KF92] I. Kamel and C. Faloutsos. Parallel R-trees. Proc. of the ACM SIGMOD Conf., June 1992, pp. 195-204.
[Ko84] T. Kohonen. Self-Organization and Associative Memory Springer-Verlag, 1984.
[SO95] M. Stricker and M. Orengo. Similarity of Color Images. In: Storage and Retrieval for Image and Video

Databases III, SPIE Proceedings 2420, 1995, pp. 381-392.
[Uh91] J.K. Uhlmann. Satisfying general proximity/similarity queries with metric trees. Information Processing

Letters, 40(4):175{179, November 1991.
[ZSA+98] P. Zezula, P. Savino, G. Amato, and F. Rabitti. Approximate Similarity Retrieval with M-trees. VLDB

Journal, 7(4):275-293, 1998.

A The analytic approach for the two dimension case

Here we discuss how fX;Y jDXY
(x; yjdxy) can be obtained analytically for the two dimensional

case.
Let us suppose to have the continuous random variables X, Y , and DXY as de�ned in

Section 4. In addition let us de�ne the two random variables A and B. A corresponds to the
angle between the straight line passing through O and Oy and the straight line passing trough
Ox and Oy. B corresponds to the angle between the straight line passing through O and Ox

and the straight line passing trough Ox and Oy Figure 8 sketches of these variables.
If we suppose that A has uniform distribution (this is an approximation, since it has been

proven that it is not always true), we can de�ne

fY;A(y; �) =
f(y)

2�y
(13)

and by symmetry we have that fX;B(x; �) = fY;A(y; �).
Of course Equation 13 is true only in two dimensional vector spaces and in particular it

cannot be applied to pure metric spaces.
Let's suppose that we have �xed y and dxy. Let's suppose that we have an object O such

that the angle A is �. In correspondence of these values we can compute the values of X and
B. We denote them x(�) and �(�) respectively. Let's now consider FAjY;DXY

(�jy; dxy) that is
the probability that a random object O has and angle smaller than �, given that the distance
between Ox and Oy is dxy and the distance between Oy and Q is y. It can be computed as the
ration between good cases and all possible cases. Good cases correspond to the probability that
O is on the arc of circumference of radius y, centered in Oy, corresponding to an angle of �
and can be computed as the curvilinear integral of fX;B(x(�); �(�)) over the circumference when
0 � � � �. All possible cases correspond to the probability that O is on the whole circumference
of radius y, centered in Oy, and can be computed as the curvilinear integral of fX;B(x(�); �(�))
over the circumference when 0 � � � �.

This results in the following:

FAjY;DXY
(�jy; dxy) =

R �
0 fX;B(x(�); �(�)) � y � d�R �
0 fX;B(x(�); �(�)) � y � d� =

R �
0

f(x(�))
2�x(�) � y � d�R �

0
f(x(�))
2�x(�) � y � d�

An equation for x(�) can easily be obtained as follows:

x(�) =
q
(y � sen(�))2 + (dxy � y � cos(�))2 =

q
y2 + d2xy � 2ydxy � cos(�)

so

FAjY;DXY
(�jy; dxy) =

R �
0

f(
p

y2+d2xy�2ydxy�cos(�))

2��
p

y2+d2xy�2ydxy�cos(�)
� d�

R �
0

f(
p

y2+d2xy�2ydxy�cos(�))

2��
p

y2+d2xy�2ydxy�cos(�)
� d�

and by di�erentiating we obtain the density

fAjY;DXY
(�jy; dxy) =

f(
p

y2+d2xy�2ydxy�cos(�))

2��
p

y2+d2xy�2ydxy�cos(�)
� d�

R �
0

f(
p

y2+d2xy�2ydxy�cos(�))

2��
p

y2+d2xy�2ydxy�cos(�)
� d�

Now using fAjY;DXY
(�jy; dxy) we obtain fXjY;DXY

(xjy; dxy). In fact we have that

FXjY;DXY
(xjy; dxy) = P (X � xjy; dxy) = P (

q
y2 + d2xy � 2ydxy � cos(�)) � xjy; dxy) =

= P (�cos(�) � x2 � y2 � d2xy

2ydxy
jy; dxy) = P (cos(�) � y2 + d2xy � x2

2ydxy
jy; dxy) =

= P (� � arccos(
y2 + d2xy � x2

2ydxy
)jy; dxy) = FAjY;DXY

(arccos(
y2 + d2xy � x2

2ydxy
)jy; dxy)

fXjY;DXY
(xjy; dxy) can be obtained by di�erentiating FXjY;DXY

(xjy; dxy):

fXjY;DXY
(xjy; dxy) = fAjY;DXY

(arccos(
y2 + d2xy � x2

2ydxy
)jy; dxy) � 2x

2ydxy

r
1� (

y2+d2xy�x
2

2ydxy
)

=

=
f(x)
xR �

0

f(
p

y2+d2xy�2ydxy�cos(�))p
y2+d2xy�2ydxy �cos(�)

� d�
� 2xq

4y2d2xy � (y2 + d2xy � x2)2
=

=
f(x)R �

0

f(
p

y2+d2xy�2ydxy �cos(�))p
y2+d2xy�2ydxy�cos(�)

� d�
� 2q

4y2d2xy � (y2 + d2xy � x2)2

Now we can obtain fX;Y jDXY
(x; yjdxy) that was our initial goal:

fX;Y jDXY
(x; yjdxy) = fXjY;DXY

(xjy; dxy)fY jDXY
(yjdxy) = fXjY;DXY

(xjy; dxy)f(y)

so

fX;Y jDXY
(x; yjdxy) = 2f(x)f(y)q

4y2d2xy � (y2 + d2xy � x2)2 � R �0 f(
p

y2+d2xy�2ydxy�cos(�))p
y2+d2xy�2ydxy�cos(�)

� d�
(14)

Notice that the cost of evaluating Equation 14 is O(n), where n is the number of samples
used to compute the integral. Computing proximity using Equation 8, when the joint conditional
density is obtained by Equation 14, has complexity O(n3) that is of course not suitable for the
applications where it should be used.

