
– 1 –

Multigranularity Locking with the
Use of S emantic Knowledge
in a Layered Object S erver

1

G. Amato‡, S. Biscari±, G. Mainetto±, F. Rabitti±

±CNUCE-CNR
Via S. Maria, 36, Pisa, Italy

‡IEI-CNR
Via S. Maria, 46, Pisa, Italy

Abstract:

Object-oriented database programming languages use a data model that, by its nature, leads
to a hierarchical organisation of persistent data. The Multigranularity Locking (MGL)
protocol is the concurrency control framework that allows to better analyse concurrent
accesses to such hierarchy of data items.

Furthermore, modern Object–Oriented Database Management Systems are organised
accordingly to the client–server architecture, where the server component is often an object
server. The application of software engineering criteria to the design of an object server
usually leads to a system structured in interpretation layers. In a layered object server, the
semantic knowledge necessary to decide which is the “best” granule to lock in the MGL data
item hierarchy is distributed among all the system layers, therefore a suitable technique to
co-ordinate such decisions is necessary.

This paper presents some guidelines on the design of the hierarchical organisation of
data items that should be used from an Object–Oriented Database Management System
supporting the MGL protocol, and an original concurrency control technique called
Expandable MGL that provides all the system layers with the ability of locking those
granules that each layer considers more appropriate on the basis of its partial knowledge of
a transaction’s behaviour.

Keywords:
Concurrency Control, Multigranularity Locking Protocol, Object–Server, Persistent Object Store,
Object–Oriented Databases

1 . Introduction

Research is currently trying to overcome the limits of the first generation Object–
Oriented Database Management Systems (ODMSs). One research challenge is the
exploitation of new techniques for a better engineering of ODMS specific
mechanisms such as, for example, those used in concurrency control. For the sake
of efficiency, these new concurrency control techniques can take advantage of
several sources of semantic knowledge and, particularly, those coming from a
richer object–oriented database programming language and from structuring an
object server as a layered system.

Object-oriented database programming languages use a data model that, by its
nature, leads to a hierarchical organisation of persistent data. Every object belongs

1 This work has been partly supported by grants from the EU under ESPRIT BRA Project No 6309 FIDE2
(Fully Integrated Data Environment) and from the CNR under bilateral Italy–USA SIENOSP Project.

– 2 –

to a set of objects, i.e. to a class, every class can be a subset of several
superclasses, and so on. Such hierarchy of data items can be exploited in the
framework provided by Multigranularity Locking protocol (MGL). In ODMSs,
ORION and O2 have investigated the use of this protocol.

The architecture of several modern ODMSs is the client–server architecture,
where the server component can be an object server [Joseph 91]. An object–server
is a complex software that should be structured according to software engineering
criteria, among which an important role is played from the information hiding
principle. This usually leads to systems structured in interpretation layers. Thus,
besides the hierarchical organisation of persistent data, an object server exhibits a
hierarchical organisation of interpretation layers.

Since in a layered object server the semantic knowledge necessary to decide
which is the “best” granule to lock in the data item hierarchy is distributed among all
the system layers, the adoption of the MGL protocol involves the use of a suitable
technique to co-ordinate such decisions. Furthermore, the layer corresponding to
the database programming language should own highest level semantic knowledge,
such as for example that about set–oriented accesses.

This paper presents some guidelines to better model the hierarchical organisation
of data items for the MGL protocol and a technique, called Expandable MGL
(EMGL), that allows to distribute among all object server layers the capability of
requesting locks on granules belonging to different portions of a shared global data
item hierarchy. In this approach, every system level can choose the granule to lock
on the basis of its partial knowledge of the overall transaction’s behaviour. We
show the application of these techniques to the Physically Independent Object
Server (PIOS), which is a research prototype that aims to explore new development
directions in ODMSs. However, the techniques herein described should be
applicable to other DMSs 2 that support a rich data model and that are structured as
layered systems.

The paper is organised as follows. Section 2 outlines the layered architecture of
PIOS and the type of semantic knowledge owned from each layer that could be
exploited in the MGL protocol. Section 3 describes in details the new techniques
that we propose and their motivations. Section 4 provides the results of some
simple performance tests that we have performed in PIOS. Section 5 briefly
concludes.

2 . Architectural Overview of PIOS,
a Layered Object Server

The Physically Independent Object Server (PIOS) is a research prototype aimed to
explore new development directions in ODMSs. The main research direction
pursued in the development of PIOS is the verification of the effectiveness of
physical independence in ODMSs. To support physical independence PIOS makes
use of a multi–level architecture founded on three levels of abstraction that is on
three different software layers [Aloia 93] [Amato 95].

2 We use the acronym DMS instead of the more traditional DBMS.

– 3 –

The two upmost levels correspond to two object data models, the logical data
model and the physical one. PIOS logical data model is a classical object–oriented
data model in which a single logical object can simultaneously belong to several
logical classes that are in an inheritance relationship [Atkinson 89]. Vice versa,
every physical object of PIOS physical data model belongs to exactly one physical
class because the logical inheritance relationship has been flattened out.

PIOS database designer can choose among several different physical
organisations of a given logical schema and he/she can define value and navigation
indices on physical classes [Zezula 93] for the sake of enhancing overall system
performance.

The third level of the architecture is the storage level. It corresponds to the
functionalities for storing and retrieving persistent objects supplied from a
concurrent Persistent Object Store [Munro 94]. The storage level abstracts from the
operating system details, it provides the upper layers with a heap of persistent
objects and with primitives for accessing them expressed in a transactional context.

2.1 PIOS process structure

The previously summarised features of PIOS lead to the architecture sketched in
Figure 1. The right part of the figure shows the static information that is the initial
input to PIOS processes (ovals).

At run–time PIOS as a whole represents the server component of a client-server
ODMS . Internally, PIOS is in turn structured according to a client-server
architecture in which several Logical/Physical Translators are the clients of a single
PHysical Object Server (PHOS). Every Translator is a process that acts on behalf
of an external Client process. Peer Client–Translator processes can run on different
machines connected through an interconnection structure that usually is a local area
network. Every Translator interacts with PHOS by means of the interprocess
communication facilities provided from the operating system.

2.2 External Clients

The External Clients of PIOS are processes such as the compiler of an external
language and its run–time support, the front–end of PIOS query language
processor, a browser, etc.

These clients access the persistent objects and classes stored in the PIOS
database only by means of the logical data model operators, both those that allow
navigational accesses and those that ensure set–oriented accesses. The navigational
operators of PIOS logical data model can be integrated with the run–time support of
object-oriented database programming languages, as the extension of the Common
LISP used in ORION [Kim 89], the extension of Smalltalk used in GemStone
[Butterwoth 91] or Galileo [Albano 85]. Logical set–oriented operators are
combined to form sentences of PIOS query language [Rabitti 94].

An External Client could be viewed as an additional layer of the system that
provides PIOS with a logical–level semantic knowledge about a transaction
behaviour that can be useful for reducing locking overhead. For example, if it is
necessary to perform a simple query that just projects some attributes of all the
objects belonging to a logical class, then the current PIOS query language processor

– 4 –

requires just one lock for the logical class instead of a set of locks, one for every
logical object. Another example is the use of static semantic knowledge aimed to
support a Conservative Two Phase Locking protocol for a strongly and statically
typed object–oriented database programming language [Amato 93]. Such paper
illustrates a technique of static analysis of a transaction that automatically infers a
safe approximation of the readset and writeset of the transaction. This permits to
realise the conservative policy, that is to lock in advance all data the transaction is
going to access.

Logical Schema
+

Logical/Physical
Schema Mapping

+
Object Base

Statistics

Client1

Interconnection Structure

PIOS

Logical/

Physical
Translator1

Object Base
& Indices

ClientN

PHysical
Object
Server

Physical Schema
with Indices

Logical/

Physical
TranslatorN

Figure 1. PIOS process structure

2.3 Logical/Physical Translators

The purpose of each Translator is the dynamic mapping of logical access operations
(to logical “virtual” objects) into physical access operations (to physical “database”
objects). The translation concerns both navigational and set–oriented accesses, but
the translation and optimisation of logical queries are of paramount importance for
the overall PIOS performance.

The Translator is the layer of the system that owns the semantic knowledge
about logical–physical object and class correspondence. Furthermore, as shown in

– 5 –

Figure 1, this is the layer that makes use of the statistical information on physical
object states for query optimisation purposes. Statistical information is also quite
important for deciding the granularity of items to lock during a query evaluation: for
example, if a query performs a navigation from the set of physical objects of
physical class A to the set of physical objects of physical class B, then it is possible
to foresee the percentage of physical objects belonging to B extension that will be
accessed during the query evaluation. The locking overheads of setting one lock for
a whole physical class and that of setting locks for the physical objects of a physical
class have been inserted in the cost model developed for PIOS query language
[Rabitti 94].

The Logical/Physical Translator is the PIOS layer that has the intermediate
knowledge necessary to connect the high level logical knowledge about a
transaction behaviour to the lower level physical one. Thus it plays a central and
important role in PIOS: it is the layer responsible for generating some lock
primitives of the MGL protocol. In particular, it generates those lock primitives that
concern the granules of the LTG in which the physical data items are organised.

Manager Scheduler

Obj DB + Idx

PHOS

Class Mngr Obj Mngr Idx Mngr

Flask

Data

Transaction

Dispatcher

Manager

Figure 2. PHOS architecture

2.4 PHysical Object Server

PHOS provides the upper layers with both the operations of PIOS physical data
model and the operations for interacting with navigation and value indices. PHOS is
a process that integrates the functionalities of a Transaction Manager, a Scheduler

– 6 –

and a Data Manager (Figure 2). PHOS is also responsible for generating statistical
information about the state of the database.

PHOS is the layer of the system that owns the semantic knowledge about
physical–storage object and class correspondence. Such knowledge is concentrated
in the components of the Data Manager that directly deal with the storage level to
map physical level operations (Class, Object and Index Managers in Figure 2).

The Persistent Object Store library called FLASK represents the storage level
[Munro 94]. FLASK offers some basic facilities to manipulate persistent objects, it
provides a great aid concerning recovery and it helps in implementing concurrency
control. The key feature of FLASK is the Concurrent Shadow Paging mechanism
that ensures the database consistency after system and transaction failures. FLASK
programming interface contains operations, indexed by a transaction identifier, to
create, delete, update, and access persistent objects of a generic format. The
interface provides primitives for beginning, committing and aborting transactions.

Clearly, the lowest level components of the PIOS architecture have a specific
semantic knowledge close to implementation details of the storage level. This
knowledge is as important as that owned from higher layers and it should be
integrated with the others in a unique framework. A classical example of PIOS is
the index locking: a Translator has the knowledge to decide if it is convenient to
lock an index in its entirety, but if this is not the case, then it should delegate the
Index Manager of PHOS the management of the locking policy.

3 . MGL protocol and the Expandable MGL technique

3 . 1 Multigranularity Locking in ODMSs

The first proposal of use of the MGL protocol appeared in the context of relational
DMSs [Gray 76]. In this context, the use of MGL aims at minimising the number
of locks that a transaction needs to acquire when it accesses the set of tuples of a
relation. To this purpose, a transaction can lock a granule in five different modes
(S, X, IS, IX, SIX). In this paper we assume the reader’s knowledge of the details
of MGL protocol as described in [Gray 78].

 DATA BASE

AR EAs

INDEXESFILES

 REC ORDS

Figure 3. Relational Lock Type Graph

We recall that a Lock Type Graph (LTG) represents the hierarchy among the types
of the data items. Figure 3 shows the traditional LTG described in [Gray 78] and

– 7 –

reported in [Bernstein 87]. The Lock Instance Graph (LIG) represents the same
hierarchy instantiated on the actual data items stored in the database.

In the ODMS context, MGL protocol has been realised in ORION, an ODMS
that supports multiple inheritance [Garza 88], and proposed in O2 [Cart 90]. The
motivation for using the MGL protocol in an ODMS is that the object–oriented data
model provides a natural hierarchical organisation of data items in granules of
different size: every object is a member of the set representing the extension of a
class; a class can be a subclass of one or several superclasses, which implies that
there is a subset relationship among the extension of a subclass and the extensions
of its superclasses. In this context, when most of the objects belonging to the
extension of a class are to be accessed, it makes sense to set one lock for the whole
class extension, rather than one lock for each individual object of the extension.

DATABASE

CLASS

SET-OF- INSTANCES

OBJECT

Figure 4. ODMS Lock Type Graph

In [Garza 88] the hierarchies representing the inheritance relationship and the
instance_of relationship are inserted into the traditional LTG. The Figure 4 (taken
from [Kim 90]) shows the resulting LTG. Given an ORION database schema, a
LIG will be a rooted direct acyclic graph (RDAG) that directly connects the database
root node to base class nodes (roots in the inheritance hierarchy). Subclasses of
base classes are represented as subnodes of base class nodes, and so on
representing all the inheritance hierarchy. Class nodes are connected to nodes
representing their extensions and extensions to objects thus characterising the
instance_of relationship. The LIG is not a tree: it is a RDAG because in ORION
there is multiple inheritance.

We notice that the LTG in Figure 4 distinguishes common properties of classes,
such as class variables and the class definitions, from class extensions (set of
instances). Unfortunately, these two different aspects of the notion of class are
related in the hierarchy. For example, if a class is locked in X mode because a
transaction is changing the value of a class variable, then also the set of instances of
the class will be implicitly locked. To overcome this difficulty, [Garza 88] proposes
to add to the standard lock modes new ones, having their own new semantics, and
to modify the semantics of standard lock modes when they regard classes. Vice
versa, our approach will be to operate on the organisation of the LTG.

3.2 Designing the Lock Type Graph

A trivial choice of the LTG can lead to modest performance and it can render of no
use the decision of adopting a complex protocol such as the MGL. To understand

– 8 –

the origins of these potential shortcomings, we will firstly suppose to adapt the
LTG proposed in [Gray 78] and used in relational DMSs to PIOS (Figure 5). We
remind that in PIOS physical data model the inheritance relationship among physical
classes does not exist, physical class attributes are not present, and it is impossible
to modify a physical class definition while PIOS system is operational.

DATABASE

VALUE
INDEX

 PHYSICAL
CLASS

PHYSICAL
OBJECT

Figure 5. A trivial PIOS Lock Type Graph

In this hypothesis, a PIOS physical database will be the topmost granule of a
containment relationship that has physical classes and indices in intermediate
positions, and physical objects as the smallest granules. Physical objects' parents
are physical classes and indices, since a physical object is contained in the extension
of a physical class and it can also be accessible through an index, if a value index
for that physical class has been defined3.

This LTG is simple and easy to understand, but a deeper analysis reveals its
inadequacy as illustrated from the following example. Let us suppose that at a
certain moment in PIOS there are two running transactions T1 and T2. T1 counts
the number of objects in a physical class. T2 updates the state of a physical object
that belongs to the same physical class accessed from T1. T1 does not need to
access any object state: it just has to access the data structure that represents the
physical class. On the contrary, T2 does not access any physical class since it
accesses directly the physical object state by means of the its identity.

These considerations lead us to conclude that T1 and T2 should be able to
execute in parallel because there is no logical conflict between them. Vice versa, the
trivial LTG generates a conflicting situation. According to the MGL protocol, T1
should set one single shared lock S on the physical class it wants to count, and T2
should lock the same physical class in intention-exclusive IX mode, since it has to
lock in X mode a physical object that belongs to the same physical class. S and IX
lock modes on the same granule are not compatible and so the two transactions
cannot execute in parallel. Similar examples could be provided for indices.

The origin of this shortcoming comes from the meaning of the physical class
granule. A physical class in the LTG has a double meaning since it is used for
representing a set of individuals (the extension of the physical class intended as a
set of identities of physical objects) and the set of values that the individuals take
(the extension of the physical class intended as a set of states of physical objects). A
LTG with two types of granules for the two concepts should enhance parallelism. If

3 For simplicity reason we will limit our attention to value indices.

– 9 –

a system is able to separate the two concepts, then it could allow to execute in
parallel: two operations that change the values of single different individuals
without modifying the set of individuals, an operation that increments or
decrements the set of individuals with another operation that just accesses the value
of a different individual, an operation that queries about the cardinality of the set of
individuals from an operation that modifies the value associated with an individual,
and so on. In terms of LTG this separation means that both the data structures
representing set of individuals and the data structure representing set of values of
individuals should be leaf granules.

From a pragmatic point of view, we notice that a DMS can arrange for a greater
parallelism if it organises granules according to criteria that strictly depends on the
operations it provides. Here are the general criteria we believe should be followed:

• all the data structures representing persistent values that can
individually be accessed from a single operation should be leaf
granules;

• non-leaf granules should be introduced in the hierarchy when the
system provides at least one operation that manipulate a set of leaf
granules as a whole.

DATABASE

 PHYSICAL
CLASS

VALUE
INDEX

PHYSICAL
OBJECT STATE

SET_OF
PHYSICAL

OBJECT STATE

Figure 6. PIOS Lock Type Graph

Following these two general criteria, PIOS LTG becomes that shown in Figure 6.
The previous granule has been split into two granules. The first one, still called
Physical Class, represents the physical class data structure that realises the extension
of a physical class and it is not a parent of the Physical Object State granule. The
second granule is called Set_of Physical Object State and it is the unique parent node of
all physical object states of the physical class. This last granule allows to reduce
locking overhead since PHOS provides a simple query primitive based on the
values stored in the states of physical objects (belonging to one physical class).
There are also more complex situations in which the Translator of PIOS can decide
if a great percentage of the physical objects of a physical class will be accessed
during the execution of a query, and thus it can order a single shared lock on the
physical class.

The index granule has been positioned in a different place with respect to the
trivial LTG. A PIOS value index plays the same role of a physical class in the LTG.
The reason is that a value index is defined on some descriptive attributes of a
physical class and thus it can be considered as an “associative” physical class that
maps a value to a set of identities. Similarly to physical classes, a value index will

– 10 –

contain all the identities of the physical objects of the physical class on which it has
been defined.

With this solution, the transactions T1 and T2 can run in parallel without any
interference. T1, the transaction that counts, only asks for a shared lock on a
Physical Class granule and an intention–share lock on the Database. T2, the
transaction that updates, asks for an exclusive lock on a Physical Object State granule,
an intention–exclusive lock on Set_of Physical Object State and Database granules. In
this case, there is only one shared entity, the Database, between the two
transactions, and IS and IX lock modes are not conflicting.

3.3 The Expandable MGL technique

A well-designed LTG is the basis on which all the semantic knowledge on a
transaction can be fully exploited. Two kinds of semantic knowledge are useful to
decide how to strike a balance between parallelism and locking overhead.

The first one is related to a semantic analysis of a transaction in its entirety. It
would be useful if PIOS could infer properties of the submitted transactions that
allow to choose the most appropriate granule to lock. An example of this is the
previously mentioned analysis performed from PIOS query processor when it
foresees, using statistical information, the percentage of the physical objects
accessed during the navigation of physical classes. For obtaining this knowledge is
usually necessary a complex analysis performed from components of the system
that are close to the end user. These components of a layered system are placed in
the highest layers of abstraction and they can infer information for reducing locking
overhead in MGL protocol, i.e. they can reason about properties that regard coarse
granules of LTG.

The second kind of semantic knowledge concerns the organisation of the data
structures used in the implementation of a complex layered system. In a complex
system organised in layers of different abstractions, only the system component that
realises an abstract data type knows the details about the data structures used in the
implementation. For example, in PIOS only the index manager holds the semantic
information to decide the strategy that guarantees the greater parallelism when a
transaction uses an index because it knows the organisation of the data structures
used in the implementation of the index. Similar examples in PIOS could be
provided considering the implementations of physical classes or physical objects.
The components of a layered system that hold this knowledge are those placed in
the lowest layers of abstraction. They can provide information for increasing
parallelism of MGL protocol, i.e. they can use properties that regard fine granules
of LTG.

The previous considerations suggest that the following properties should
characterise the layers of a complex system (see Figure 7):

• The higher layers of abstraction know how to choose coarse
granules to reduce overhead

• The lower layers of abstraction know how to choose fine
granules to increase parallelism

– 11 –

It is worth noting that if a system only shows the first property, then there can be a
low overhead in the management of concurrency control and a small parallelism
among transactions since coarse granules can potentially raise several conflicts.
Vice versa, if a system only presents the second property, then it could achieve a
greater parallelism at the price of a greater locking overhead.

Semantic

knowledge

Layer

generality

How to

reduce

overhead

How to

increase

parallelism

Figure 7. Different kinds of semantic knowledge in a layered system

PIOS approach aims at providing a unifying framework that takes advantage of
both types of semantic knowledge. The idea is to allow each PIOS layer to require
locks on granules corresponding to its level of semantic knowledge and to use the
LTG as a mean for exchanging lock information among layers. If a higher layer
infers from its own semantic knowledge that it cannot take a final decision on a
coarse granule, then it can delegate lower layers of the system the task of exploiting
the semantic knowledge on finer granules. Vice versa, if a higher layer holds all the
knowledge necessary to take a definitive decision on a coarse granule, then it can
inhibit lower layer requests on some finer granules.

PIOS obtains this by modifying the standard way in which a system layer
manages the LTG. As far as PIOS LTG is concerned, we introduce the idea of
leaves’ expandability: a granule, that is viewed as a leaf from a higher layer, can be
expanded from a lower layer with a subtree of finer granules (Figure 8). The MGL
protocol allows an intermediate layer to lock what it sees as a leaf granule also in IS
or IX mode. PIOS uses these apparently unnatural lock modes to communicate
among layers. When a higher layer wants to permit a lower layer to expand a
granule, it will set an intention lock on the interested granule. We call this technique
Expandable MGL.

Let us consider a PIOS example that illustrates this technique. There are two
concurrent transactions T3 and T4. T3 is going to insert a new physical object in an
indexed physical class. T4 is willing to update the state of a physical object
belonging to the same indexed physical class.

Let us firstly analyse the case in which EMGL technique was not used. T3
during its execution has to lock in X mode a Physical Class granule representing the
extension of the physical class and a Value Index granule representing the index
defined on the physical class. T4 must lock in X mode a Physical Object State granule
and the Value Index granule. T3 and T4 cannot run in parallel since they ask for an
incompatible lock on the same Value Index granule. This happens because some
higher layer of PIOS had not a detailed semantic knowledge of the index data
structure and it decided to lock the whole index.

– 12 –

DATABASE

PHYSICAL
CLASS

VALUE
INDEX

PHYSICAL
OBJECT STATE

?

? ?

SET_OF
PHYSICAL

OBJECT STATE

Figure 8. Leaves’ expandability

The use of EMGL technique and leaves’ expandability can ensure parallel
executions. Both T3 and T4 ask for a IX lock on the same Value Index granule, and
the index manager adopts its own ad-hoc policy for expanding this granule. If for
instance T3 and T4 work on different pages of the B-Tree data structure, then they
can run in parallel without interference.

4. Performance Samples

This section presents some performance figures regarding a PIOS version that fully
exploits the EMGL technique. To appreciate the performance improvements
achieved, there is a comparison between results obtained running the same tests on
two versions of PIOS. The former version, called Old PIOS, is a version in which
the lock requests are generated from a unique centralised component, i.e. the
Logical/Physical Translator, which is just aware of the indices’ and physical
classes’ existence and consequently it orders the lock of the entire data structures
when they have to be accessed. The latter version, called New PIOS, is the version
in which the lock management policy is distributed among the various layers of the
architecture. In particular, the Index and Physical Class Managers have the tasks of
deciding the lock request generation for the data structures that they manage.

The tests always run on the same fixed database populated with 2M objects. The
logical object–oriented database schema is depicted in Figure 9. The two inheritance
relationships in the figure have been resolved with the fragmentation of logical
objects belonging to Library–UnivLibrary and Book–TechBook pairs of classes into two
physical objects, one for every logical class of each pair. In the physical database
schema, there are four value indices defined on the physical classes corresponding
to Topic, Book, Library and TechBook logical classes.

Indices are loaded with 64K keys. Each node of the index contains at most 200
keys and the B-Trees have three levels. In the B-Trees there are around 600 leaf
nodes and 7 non leaf nodes.

– 13 –

Consultant

Name

Manager

Plan

Addr

Depts

Street

Number

City

Country

Name

Topics

Sections Name

Shelves

ShelfNum

BookItems

ItemId

Book

Description
Referees

Topics

Title

Author

Language
UnivLibrary

Library Address

Topic
TechBook

Department

Book

BookItemShelfSection

Publisher

Year

Name Addr

Person

Figure 9. The sample database schema

The tests run on a Sun Spark 44. It is a single processor machine with 24 MByte of
RAM and 1 GByte of disk. During the experiments, the machine was completely
dedicated to the tests.

The test transactions are generated in a way that allows to have both navigational
and set–oriented accesses to the database. Every PIOS transaction in the tests
executes just one logical PIOS operation. The operations are randomly chosen
among the insertion of a new logical object in a randomly chosen logical class, the
update of an old logical object of a randomly chosen logical class and the query on a
randomly chosen logical class. We notice that the choice of just one PIOS operation
for every PIOS transaction is not a heavy restriction: each logical PIOS operation
can be even translated into hundred of physical operations and several transaction
conflicts are possible.

The tests use the multi-programming level (number of active transactions) as
input parameter to control data and resource contention. The experiments range on
the multi-programming level. The algorithm that drives tests keeps constant the
multi–programming level, i.e. it starts a new transaction as soon as a previously
executing transaction reaches its end.

Two kinds of tests are executed. The first test provides as a result the average of
the quotient between the number of running transactions and the number of active
transactions (see Figure 10). The running transactions are those active transactions
that are not waiting for some lock. The PIOS scheduler obtains the result computing
the quotient at short fixed time intervals. Then it computes the average of all the
quotients.

4 The improvements in software components are put in evidence from ancient hardware!

– 14 –

0

0.5

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Multi-Programming Level

R
u
n
n
in

g
 /

A
c
ti

v
e

T
ra

n
s
a
c
ti

o
n
s

Old PIOS

New PIOS

Figure 10. Running transaction ratio

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Multi-Programming Level

T
ra

n
sa

c
ti

o
n
s

p
e
r

S
e
c
o
n
d

Old PIOS

New PIOS

Figure 11. Throughput

The second test gives the throughput in transactions per second. This result is
computed by measuring the time needed to execute a fixed number of transaction
ranging on different multi-programming levels. Figure 11 shows the outcome of
this test.

It is clear from the previous figures that EMGL performs better than standard
MGL under the same circumstances. The reason is that highly concurrent
algorithms are absolutely necessary to deal with contention in heavily used data
structures. In the tests, the data structures adopted to implement the indices and the
physical classes represent bottleneck for concurrent transactions. Old PIOS uses the
trivial policy of locking the entire index when a physical object belonging to an
indexed physical class is updated and the entire physical class when a new physical
object is inserted into a physical class. The risk of reducing parallelism is clear
because the transaction locks all indexed physical objects and all the objects of a
physical class. EMGL allows to adopt ad-hoc policies in each structure representing
a leaf in the lock type graph, as physical classes or indices, that result in finer
granularity locking and hence in better performance.

– 15 –

5 . Conclusions

In this paper we have presented some guidelines on the design of the hierarchical
organisation of data items that should be used from an ODMS supporting the MGL
protocol, and a technique of concurrency control that provides all the system layers
with the ability of locking those granules that each layer considers more appropriate
on the basis of its partial knowledge of a transaction’s behaviour. We have shown
the application of these techniques to PIOS, an object server that use the Concurrent
Shadow Paging mechanism provided from FLASK persistent object store, and
some simple experimental results.

The techniques we propose to adopt seem to be well–suited for the high levels of
a complex system, and they appear to be less adequate for the low levels. We have
the impression that the complementary situation holds for multi–level transaction
[Weikum 91], and in the next future we will investigate the possibility of combining
in a single framework the two approaches. Another future work will be about a
closer examination of the measurements provided from the proposed techniques.

6 . References

[Albano 85] Albano A., L. Cardelli and R. Orsini, “Galileo: A strongly typed interactive conceptual
language”, ACM Transactions on Database Systems, Vol. 10, N. 2, pp. 230-260.

[Aloia 93] Aloia N., S. Barneva and F. Rabitti, “Supporting physical independence in object databases”,
Database Technology, Vol. 4, No. 4, pp. 265–286.

[Amato 93] Amato G., Giannotti F., Mainetto G.,“Data sharing analysis for a database programming
language via Abstract Interpretation”, 19th International Conference on Very Large Data Base,
Dublin, Ireland, 24-27 August 1993, pp. 405-415.

[Amato 95] Amato G., Biscari S., Mainetto G. and Rabitti F.,“Overview of PIOS : a Physically
Independent Object Server”, in Fully Integrated Data Environments, M.P. Atkinson (ed.), 1995. to
be published by Springer Verlag.

[Atkinson 89] Atkinson M.P., Bancilhon F., DeWitt D., Dittrich K., Maier D. and Zdonik S., “The
Object–Oriented Database System Manifesto”, Proc. Int. Conf. DOOD , Kyoto, Japan, pp. 40–57,
1989.

[Bernstein 87] Bernstein P., V. Hadzilacos and N. Goodman, Concurrency Control and Recovery in
Database System, Addison–Wesley, Reading, MA, 1987.

[Butterwoth 91] Butterworth P., A. Otis, J. Stein, “The Gemstone Object Database Management
System”, Communication of ACM, Vol. 34, N. 10, pp. 64–77.

[Cart 90] Cart M. and Ferriè J., “Integrating Concurrency Control into an Object–Oriented Database
System”, Proc. Int. Conf. EDBT , Venice, Italy, pp. 363–377, 1990.

[Garza 88] Garza J. F. and W. Kim, “Transaction Management in an Object–Oriented Database System”,
Proc. ACM SIGMOD Intl. Conf. on Management of Data, Chicago, Illinois, pp. 37–45, 1988.

[Gray 76] Gray J., R. Lorie and G. Putzolu, “Granularity of locks and degrees of consistency in a shared
database”, IBM Res. Rep. RJ1654, IBM Research Laboratory, San Jose, CA, also in Modeling in
Database Management Systems, Nijssen (ed.), North Holland, 1976.

[Gray 78] Gray J., “Notes on Database Operating Systems”, IBM Res. Rep. RJ2188, IBM Research
Laboratory, San Jose, CA also in Operating Systems – An Advanced Course, R. Boyer, R. M.
Graham and G. Siegmüller (eds.), Springer Verlag, LNCS 60, 1978.

[Joseph 91] Joseph J. V., Thatte S.M, Thompson C.W. and Wells D.L., “Object-Oriented Databases:
Design and Implementation”, Proc. of IEEE, Vol. 79, No.1, pp. 42-63,1991.

[Kim 89] Kim W., Ballou N., Chou H. T., Garza J. F., Woelk and D. "Features of the ORION Object-
Oriented Database." In Object-Oriented Concepts, Databases, and Applications, edited by Won Kim
and Frederick H. Lochovsky, ACM Press Frontier Series, 1989, pp. 251-282.

[Kim 90] Kim W., Introduction to Object-Oriented Databases, The MIT Press, Cambridge, Mass., 1990.

– 16 –

[Munro 94] Munro D.S., Connor R. C. H., Morrison R., Scheuerl S. and Stemple D.W. "Concurrent
Shadow Paging in the Flask Archiecture", Proc. of Sixth Int. Workshop on Persistent Object
Systems, Tarascon, France, September 6-9, 1994, Workshops in Computing, Springer, pp. 16-42.

[Rabitti 94] Rabitti F., Benedetti L. and Demi F., "Query Processing in PIOS", Proc. of Sixth
International Workshop on Persistent Object Systems,Tarascon, France, September 6-9, 1994,
Workshops in Computing, Springer, pp. 415-440.

[Weikum 91] Weikum G., “Principles and Realization Strategies of Multilevel Transaction
Management”, ACM Transactions on Database Systems, Vol. 16, No. 1, pp. 132–180.

[Zezula 93] Zezula P. and Rabitti F., “Object Store with Navigation Accelerator”, Information Systems,
18(7):429-460, 1993.

