
Optimizing Network-Side Queries With
Timestamp-Join In Wireless Sensor Networks

Giuseppe Amato ∗, Stefano Chessa ∗†, Claudio Vairo ∗†
∗ISTI-CNR, Pisa Research Area, Via G.Moruzzi 1, 56124 Pisa, Italy

†Computer Science Department, University of Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy

Abstract—This paper proposes a new method for optimizing in-
network distributed queries that perform join of data produced
simultaneously by different sensors in a wireless sensor network.
We adopt a modified version of the standard join operator that
relates tuples having the same timestamp, and an optimized ver-
sion of it, which provides on-demand, pull-mode, data acquisition
from sensors. The optimizer uses an algebraic approach based
on transformation rules and ordering of operators to generate
and chose a query plan that reduces the query execution cost in
terms of consumed energy. We implemented these join operations
in a query processor for mica-class sensors and we performed
extensive tests to prove that our approach may reduce energy
required to process a long running query, by order of magnitudes,
with respect to non optimized query plans.

I. INTRODUCTION

Recent proposals [4], [11], [15] suggest the use of database
paradigms and query languages (generally SQL-like), to in-
teract with Wireless Sensor Networks (WSN) [5]. In a tra-
ditional database system, queries are used to search for data
contained in a persistent storage repository. In a WSN, the
data base consists of the environmental data that can be
measured/acquired by the transducers available on the sensor
nodes. Queries instruct sensor nodes on the management,
filtering, and processing of the data acquired from the envi-
ronment. Environmental data is acquired by the transducers of
the sensor nodes when needed, in accordance with the query
that the network is processing. A new data is thus available
every time a transducer is activated.

Differently than in conventional databases, data acquired
by WSN are meaningful as long as they can be associated
to their time and place of acquisition, and the aggregation
and processing of data produced (almost) simultaneously or in
specific places is of great practical interest [9]. In WSN this
can be achieved by expressing queries that join data having the
same timestamp or specific geographical coordinates. However
conventional join operator is not optimized to this purpose.
For this reason we reconsider the conventional join operator
and analyse two variants that relate tuples having the same
timestamp (called timestamp-join), and an optimized version
of timestamp-join (called sync-join). More specifically we
focus on the optimization of such join operators by defining
rules aimed at producing query plans optimized from the point
of view of energy efficiency of the query. We show that our
optimization approach may reduce the energy consumed by
the WSN by order of magnitude with respect to not optimized

query plans. Following these results we have also implemented
the join operators and the optimization rules in the MaD-WiSe
system [2], that allows the interaction with a TinyOS-based [3]
WSN by mean of SQL-like queries. The MaD-WiSe query
parser and optimizer are implemented in Java and run on a
standard PC.

II. A MODEL FOR QUERY PROCESSING IN WSN

Periodic monitoring of the environment is of great practical
interest and it has been widely studied [10], [12]. With
periodic monitoring the data are acquired by the sensor nodes
with a given (constant) rate, thus also the data processing
and aggregation operations (that depends on the availability
of fresh data) are executed periodically. In WSN organized
according to the database paradigm, periodic monitoring can
be easily expressed in form of an SQL-Like query.

Normally a query execution strategy is expressed in form
of a query plan, represented as a tree where the nodes
are the operators of the query algebra and edges between
nodes represent the stream of data tuples from one operator
to another one. A single query is executed exploiting the
cooperation of several sensor nodes. Thus the operators of
a query plan are distributed across several sensor nodes.
We call local streams those that connect operators assigned
and executed on the same sensor node. Otherwise, if two
operators are executed on different sensor nodes, we call
remote stream the steam connecting the two operators. Finally
we call sensor streams those that transfer tuples of data
acquired by the transducers to the associated operators. Sensor
streams are used to sample environmental data and they can be
activated periodically or on-demand. In periodic update mode
the associated transducer is activated to acquire a tuple at a
fixed rate. The interval between two consecutive transducers
activations is called sampling period. In on-demand update
mode the associated transducer is activated as a consequence
of a read request on the stream that causes a tuple to be
acquired. This mode can be used to obtain transducers readings
only under specific conditions (see sync-join operator below).

According to the relational algebra [7], we have basic
operators for performing selection, projection, and union of
tuples that traverse streams. In addition, we provide a spe-
cial definition for the spatial aggregation (used to aggregate
tuples produced by different streams), and for the temporal
aggregation (used to aggregate data that arrive sequentially in



a stream). We also provide two modified versions of the join
operator, defined as follows.

The timestamp-join operator, �� (S1, S2), takes two input
streams, S1 and S2, and returns one output stream where tuples
of S1 and S2 with the same timestamp are joined to create the
output tuple. Here, if several tuples arrive from one stream (say
S1) before a tuple arrives from the other (say S2), at most
one tuple for S1 is used, while all the others are discarded.
This means that the transducer activations that generate the
discarded tuples were useless.

On the other hand, in the sync-join operator, �� sync (S1, S2),
S2 must be an on-demand stream and it is activated only
when a tuple arrives on S1. This avoids useless transducer
activations on the on-demand stream, thus saving energy. The
sync-join operator combines both the push and the pull sensing
techniques and has a master-slave behavior: stream S1 is the
master and the slave stream S2 is read only when a tuple is
received from the master. In this case the sensor node in which
is instantiated the slave stream, has to be the sensor node that
executes the join operator.

A query can be represented by several equivalent query
plans. For example, Figure 1 shows three possible (and equiv-
alent) query plans for the query in Table III. Boxes in figures
represent sensor nodes with the operators they execute. Each
of the proposed query plan correctly processes the query, but
it has a different cost, in term of energy consumption, as
reported in Table IV. The objective of this paper is to define
optimization rules used by the query optimizer to generate
different query plans and choose the one that reduces the query
execution, according to the cost model described in the next
section.

III. THE COST MODEL

The cost of a query plan is the power P needed to process
the query plan in terms of energy E consumed per unit
of time (P = E/t). We estimate the cost in terms of the
energy required to send records across streams because the
cost required by an operator to process a data is negligible
with respect to the cost of sending data in a stream.

Let E(S, s) be the energy required to send a single record
of size s across the stream S and f(S) be the frequency of
records traversing the stream S. The cost of stream S (that
is the energy required to transmit data along the stream), is
P (S) = f(S)E(S, s). The cost of a query plan, say QP ,
is the sum of the cost of its streams. Let S be the set of
streams contained in the query plan QP . The cost of QP is
P (QP ) =

∑
S∈S P (S).

In order to evaluate the previous expressions, we need to
know 1) the energy required to send and receive a record
across each stream and 2) the frequency of records that traverse
each stream. We will discuss these issues in the following.
Energy Required for Sending a Record - The energy
required to send and receive a record s across a stream depends
on the type of stream considered (sensor, local, remote).

Records of sensor streams contain the timestamp and the
read value. The cost of a record that traverses this stream

Transducer Energy per Sample (mJ)
Thermistor 0.0000891

Accelerometer 0.03222
Magnetometer 0.2685

TABLE I
ENERGY REQUIRED FOR A SAMPLE FROM VARIOUS TRANSDUCERS OF

MTS310CA BOARD.

solely depends on the transducer used. Given a sensor stream
SS associated with transducer TR, we have E(SS, s) =
energy per sample(TR). Table I shows the energy con-
sumption for a single sample from various transducers of the
sensor board MTS, all produced by Crossobow [1].

For what concerns local streams the energy required to send
a record in main memory is negligible with respect to the cost
incurred by the other types of stream. Thus we can reliably
consider a zero cost in this case. Given a local stream LS we
have E(LS, s) = 0.

Transmission of a tuple along a remote stream requires
that the nodes involved in the corresponding multi-hop path
collaborate to forward the tuple toward the destination node.
The transmission cost includes the cost payed by the sender,
the cost payed by the receiver, and the cost payed by the
internal nodes to forward the message. Let Et(s) be the energy
required for transmitting a record of size s over the radio
interface, and Er(s) be the energy required for receiving it.
The energy required to send a record of size s over a remote
stream RS along a n hops path can be approximated by
E(RS, s) = n(Et(s) + Er(s)).

Given that in many real cases the number of hops between
two nodes is proportional to the distance between the two
nodes [8], we can express the energy needed to send a record
of size s across a remote stream S, where source and destina-
tion nodes have distance d as E(S, s) = d ·c ·(Et(s)+Es(s)),
where c is a tuning parameter that depends on the density and
transmission range of the nodes in the network.

The energy required to send and receive a 50 bytes packet
by the MICAz platform [1] is respectively 0.1494225 mJ and
0.161445 mJ.
Frequency of Records in Streams - The frequency of
records across streams depends on the periodicity of the data
acquisition of the sensor streams, and on the specific operators
used to connect streams.

In a periodic sensor stream Sp with period p data are
acquired and sent with frequency f(Sp) = 1/p. An on-
demand sensor stream is used as input to a sync-join operator,
��sync (S, Sod), where Sod, is the on-demand sensor stream.
In this case we have that f(Sod) = f(S) since a record is
requested from Sod every time a record arrives from S.

The frequency of local and remote streams depends on the
operators that write in the streams and on the stream(s) where
that operators read. The frequencies of the streams in output
from the main operators (π, σ, ��) are summarized in Table II.



Operator f(SO)
SO ← π (SI ) f(SI)

SO ← σpred(SI ) f(SI) · Pr(pred = true)
SO ←�� (SI1 , SI2 ) min{f(SI1 ), f(SI2 )}

TABLE II
FREQUENCY FOR LOCAL AND REMOTE STREAMS.

IV. QUERY OPTIMIZATION

Several transformation rules proposed in the literature to
optimize traditional database query execution can be applied
in our context. For instances rules to push-down selections
and projections, and selectivity-based ordering of selections
are very useful since they contribute to reduce the amount of
data to be transferred upward in a query plan. This implicitly
reduce the amount of data traversing remote streams, and, in
turn, it reduces the amount of radio activity and of energy
consumed.

Here we introduce new transformation rules that are partic-
ularly useful in our context since they make optimal use of
the data model and of the operators that we have defined.
Specifically we consider rules according to the following
guidelines (we do not report a formal definition of the rules,
given to the lack of space):
1) Sync-join and on-demand streams should be used whenever
possible. In particular, if a periodic sensor stream is on the
right side of a join, the join can be transformed into a sync-
join and the sensor stream into an on-demand sensor stream
(SJ rule). If there are some unary operators between the sensor
stream and the join, the unary operators can be moved on top
of the join and the transformation can still take place. Note
that even if the unary operators are moved up (contrarily to the
traditional push-down strategies), this is not a problem, given
that the sensor stream is activated only if needed.
2) Given that a sync-join requires a sensor stream on the right
side, trees representing query plans should be unbalanced to
the left (Left Deep Join Trees, LDJT rule). In this way, the
chance that a sensor stream (a leaf node) is found as the right
argument of a join is increased.
3) Unary operators such as selections, projections, and tem-
poral aggregates (which reduce the amount of data being
forwarded) should be moved on the node where data is
acquired (Push-Down, PD rule).

The optimizer, given a query plan, executes three sequential
steps:
1) Tries to heuristically use the transformation rules that apply
to it, until there are no transformation rules that can be applied.
2) Performs an operators re-ordering, according to selectivity
of predicates, cost of acquisition, and topology criteria.
3) Evaluates the query plans obtained, according to the cost
model defined above, and chooses the query plan that con-
sumes less energy.
Query Optimization Example - Let us consider the query
showed in Table III where p1, p2, and p3 are some predi-
cates on magnetism, acceleration and temperature readings,
respectively, with probability Pr(p1) = 0.01, Pr(p2) =

SELECT *
FROM 1.Magnetism, 2.Acceleration, 3.Temperature
WHERE p1(1.Magnetism) and p2(2.Acceleration) and
p3(3.Temperature)
EVERY 1000

TABLE III
QUERY USED FOR THE QUERY OPTIMIZATION EXAMPLE.

0.05, Pr(p3) = 0.1, respectively.
Figure 1 shows three possible equivalent query plans that

can be used to process the above query. We assume that the
sink is an external node connected to node 3. QP1, on the
left, is obtained by applying the LDJT rule. It first acquires
all specified data and then joins them before applying the three
selections on the last node. This requires that all magnetism
readings be sent to Node 2 and joined with the acceleration
readings. The result of the join is sent to Node 3 where it
is joined with the temperature reading and then the three
selections are applied. QP2, in the middle, is obtained from
QP1 by using the PD rule. In this query plan all data must
be acquired. However, magnetism is sent to Node 2 only if it
satisfies p1. The join on Node 2 is thus executed only if both p1

and p2 are satisfied and in this case the result is sent to Node
3. The join in Node 3 is executed only if all three predicates
are true, and in this case the result is sent to the sink. QP3, on
the right, is obtained from QP2 by using the SJ rule. In this
case, magnetism is always acquired. It is sent to Node 2 if it
satisfies predicate p1 and in this case the acceleration is also
acquired and joined with the magnetism. If p2 is satisfied, the
result is sent to Node 3 and temperature is acquired. If p3 is
satisfied the result is eventually sent to the sink.

The costs of different query plans are reported in Table
IV. The lower cost of QP2 with respect to QP1 is due to
the reduced number of communications required. The lower
cost of QP3 with respect to QP2 is due to the combined
reduction of communications and acquisitions. In this simple
example, the improvement of QP3 with respect to QP2 is
limited. However, we will show that the use of sync-joins, as
produced for QP3, with appropriate ordering of operators can
provide significant performance improvements in more general
cases.
Ordering of Operators - Several equivalent query plans
that maintain the same overall structure can be obtained by
changing the order of the operators in a tree. Here we consider
three different ordering criteria. Operators can be ordered so
that:

• more selective selections are pushed down in the tree
(criterion S);

• less expensive transducers are pushed down in the tree
(criterion P);

• short range communications are given priority (topolog-
ical ordering, criterion T);

The first criterion give precedence to very selective predicates
to filter immediately useless data, thus reducing communica-
tions and data acquisitions by means of sync-joins. The second



1.M. 2.A.

22 3.T.

33

σ
3
p3(3.T.)

σ
3
p2(2.A.)

σ
3
p1(1.M.)

Node 3

Node 2

Node 1

(a) Query Plan QP1

1.M. 2.A.

22

33

σ
3
p3(3.T.)

σ
2
p2(2.A.)σ

1
p1(1.M.)

3.T.

Node 3

Node 2

Node 1

(b) Query Plan QP2

1.M.

σ
2
p2(2.A.)

σ
1
p1(1.M.)

2.A.

2

sync

2

sync

3.T.

σ
3
p3(3.T.)

3

sync

3

sync

Node 3

Node 2

Node 1

(c) Query Plan QP3

Fig. 1. Three possible execution plans for the same query. Boxes represent sensor nodes, the superscript beside each operator represents the sensor node in
which the operator is executed.

QP1: QP2: QP3:
Action Energy(mJ) Freq. Power Freq. Power Freq. Power
Acquire M. 0.2685 1 0.2685 1 0.2685 1 0.2685
Send M. 0.31087 1 0.31087 0.01 0.00310 0.01 0.0031
Acquire A. 0.03222 1 0.03222 1 0.03222 0.01 0.00032
Send M.A. 0.31087 1 0.31087 0.0005 0.00016 0.0005 0.00016
Acquire T. 0.00009 1 0.00009 1 0.00009 0.0005 4.46E-08
Send M.A.T. 0.31087 5.0E-5 1.55E-05 5.0E-5 1.55E-05 5.0E-5 1.55E-05

Total Cost: 0.92256 0.30408 0.2721

TABLE IV
COSTS OF THE THREE EXECUTIONS PLANS IN FIGURE 1.

criterion gives precedence to low cost acquisitions. High cost
acquisitions are thus executed with low probability since they
are high in the tree, and the data collected at the lower levels
of the tree must pass the selections first. The third criterion
reduces the communication costs by choosing an ordering of
the operators and their allocation to the nodes such that the
multi-hop communication paths are shortened.

Figure 2 shows the different query plans obtained by ap-
plying these criteria. Differently from the previous section,
multi-hop paths are taken into account here. In QP3 operators
are ordered according to criterion S, criterion P is used in
QP4, and criterion T is used in QP5. The optimizer must
generate different orderings according to the various criteria
and choose the one providing the best performance, according
to the cost model described before. In our example QP3 has
cost 0.2723mJ, QP4 0.06841mJ and QP5 0.05838mJ.

V. EXPERIMENTS

In this section we discuss the results of some empirical tests
that we have performed to validate our approach.

We consider a parking lot monitoring scenario. For simplic-
ity, we assume that the parking lot consists of a linear sequence
of parking slots (see Figure 3). The entrance to the parking
lot is at the beginning of the sequence of parking slots. We

S
lo

t 1

S
lo

t 2

S
lo

t 3

S
lo

t 4

S
lo

t 5

S
lo

t 6

S
lo

t 7

S
lo

t 8

S
lo

t 9

S
lo

t 1
0

Entrance

SinkSink
SinkSink

(a) Scenario 1

S
lo

t 1

S
lo

t 2

S
lo

t 3

S
lo

t 4

S
lo

t 5

S
lo

t 6

S
lo

t 7

S
lo

t 8

S
lo

t 9

S
lo

t 1
0

SinkSink

Entrance

(b) Scenario 2

Fig. 3. The two scenarios considered for the experiments, in the case of 10
park lots with the Sink (the circle) placed at the entrance (Scenario 1), and
at the opposite side of the entrance (Scenario 2) of the parking.

assume that under each parking slot we place a sensor with a
magnetic and a light transducer. We assume that we can decide
that a parking slot is occupied when both the light is below
a certain threshold and the magnetic field is above a certain
threshold. We want to receive an alarm from the network when
the parking lot is full. This can be obtained by executing the
query reported in Table V which controls every 10 seconds
that all parking slots are occupied.

We assume that car drivers park in the first empty slot
that they find. Therefore, the probability to find an empty



1.M.

σ
2
p2(2.A.)

σ
1
p1(1.M.)

2.A.

2

sync

2

sync

3.T.

σ
3
p3(3.T.)

3

sync

3

sync

Node 3

Node 2

Node 1

(a) Query Plan QP3

3.T.

σ
2
p2(2.A.)

σ
3
p3(3.T.) 2.A.

2

sync

2

sync

1.M.

σ
1
p1(1.M.)

1

sync

1

sync

Node 1

Node 2

Node 3

(b) Query Plan QP4

3.T.

σ
1
p1(1.M.)

σ
3
p3(3.T.) 1.M.

1

sync

1

sync

2.A.

σ
2
p2(2.A.)

2

sync

2

sync

Node 2

Node 1

Node 3

(c) Query Plan QP5

Fig. 2. Three possible execution plans for the same query using joins.

SELECT *
FROM all.Light, all.Magnetism
WHERE
all.Magnetism > thresholdm and
all.Light < thresholdl

every 10000

TABLE V
A QUERY THAT CHECKS IF THE PARKING LOT IS FULL.

slot increases as we move away from the entrance. That is,
selectivity of predicates on nodes placed in slots far from the
entrance is higher than that of slots close to the entrance. For
simplicity, we model the selectivity of a predicate on the i-th
slot as 1 − ((numSlots − i + 1)/(numSlots + 1)), where
1 ≤ i ≤ numSlots. We also consider two different scenarios
for the placement of the sink node: the sink is placed at the
entrance, and the sink is placed at the opposite side from the
entrance.

All possible orderings are labeled with the corresponding
labels. For instance PST means that first operators are ordered
according to power (P), then to selectivity (S), finally accord-
ing to topology considerations (T).

We performed various tests varying the number of slots
available in the parking lot from 1 to 100 according to the two
described scenarios. Obtained results are reported in Figure
4 and 5, where we show separate plots for the query plan
obtained by using only the Left Deep Join Tree rule (LDJT in
sub-figures (a)), by using also the selection Push-Down rule
(LDJT + PD in sub-figures (b)), and by using also the Sync-
Join transformation rule (LDJT + PD + SJ in sub-figures (c)).
Every plot reports the different orderings of the operators for
each query plan. The costs are expressed in milli-watts (mW).

As expected, the only application of the LDJT rule (check
QP1 in Figure 1 to infer the overall structure of the obtained
query plan) returns the worst results. In fact in this case all

transducers are always activated at every sensing period. Also
all data are reported to the sink node that, in turn, executes
the sequence of selections required by the WHERE clause
of the query. Differences in the performance of the various
orderings is due to the number of communications needed in
the corresponding query plans.

The application of the PD rule (check QP2 in Figure 1 to
infer the overall structure of this query plan) in addition to
the LDJT gives on average results one order of magnitude
better. In this case, as before, transducers are all activated at
every sensing period. However, transmissions can be reduced
due to the application of the selection operators immediately
after sensing. Difference between the various ordering is due
basically to the capability of early filtering the packet sent in
the network.

Finally the application of the SJ rule (the obtained query
plan can be inferred from QP3 in Figure 1) offers the best
performance providing a query execution cost more than three
orders of magnitude smaller than the previous case. The SJ
rule, in fact, allows also reducing the cost of acquisition in
addition to the cost of transmission, thus drastically reducing
the cost of executing the query.

In summary, the sync-join strategy is very effective in
reducing the cost of queries that relate data produced by many
sensors, since it reduces both the costs of transmission and
acquisition. In particular the sync-join can offer performance
order of magnitude better than conventional join, provided that
correct priority is given to ordering according to topology,
selectivity and acquisition cost.

VI. RELATED WORK

Several proposals in the literature have addressed the prob-
lem of query optimization in WSN. In particular [13] proposes
a comprehensive approach to query optimization that takes into
account the cost of acquiring metadata, cost of sensing and
communications. In our work we do not take into consideration



��������	
	�	���	����	����	����

��������

��������


�������


�������

��������

��������

� �� �� �� �� 
��

�����

�
�
�
�
�

���

���

���

(a) LDTJ

��������	
	�	��������	����	����

��������


�������

��������

��������

��������

��������

��������

� �� �� �� �� 
��

�����

�
�
�
�
�

��

��

��

(b) LDTJ + PD

��������	
	�	����	���


�������


�������


�������


�������


�������

� �� �� �� �� 
��

�����

�
�
�
�
�

���

���

���

(c) LDTJ + PD + SJ

Fig. 4. Results obtained when the sink is placed at the entrance of the parking lot.

��������	
	�	���	����	����	����

��������

��������

��������

��������


�������


�������

��������

� 
� �� �� �� ���

�����

�
�
�
�
�

���

���

���

���

(a) LDJT

��������	
	�	��������	����	����

��������

��������


�������

��������

��������

��������

��������

� 
� �� �� �� ���

�����

�
�
�
�
�

� 

� 

 �

 �

(b) LDJT + PD

��������	
	�	����	���

��������

��������

��������

��������

��������

� 
� �� �� �� ���

�����

�
�
�
�
�

���

���

���

���

(c) LDJT + PD + SJ

Fig. 5. Results obtained when the sink is placed at the opposite side of the entrance of the parking lot.

the cost and strategies for acquiring metadata, however we
consider the cost of sensing and communication. In addition,
given that in our framework a query is executed in a distributed
fashion and that a query plan spans over several nodes, we also
consider the possibility of conveniently allocate the operators
(portions of query plans) on the nodes of the network. The
problem of placement of the query operators in the nodes of
the network was studied in [6] to minimize the transmission
cost. The operations taken into acount are the correlation
and aggregation of the data acquired by different nodes. The
problem of placement of the join operator is also addressed
in [14], where both centralized and distributed computations
of the join are analyzed by using statistical methods. In our
proposal operators are placed using transformation rules based
on heuristics and the operators are linked together using
operator ordering strategies that take into account network
topology, sensing costs, and predicate selectivity.

VII. CONCLUSIONS

In this paper we presented a new method for optimizing in-
network queries in WSN. In particular we adopted a modified
version of the join operator (sync-join) that aggregates data
produced almost simultaneously by different sensors. The
sync-join operator exploits the pull-mode paradigm for data
acquisition form the sensors, thus allowing avoiding useless
data acquisitions. We implemented the proposed approach and
we tested it both in a real sensor network and in a simulator.
Our experiments show that the optimization strategy proposed
allows reducing energy required to process queries by order
of magnitude, with respect to non optimized query plans.

REFERENCES

[1] Crossbow Technology Inc., http://www.xbow.com.

[2] MaD-WiSe: Management of Data in Wireless Sensor networks.
http://mad-wise.isti.cnr.it.

[3] TinyOS. http://www.tinyos.net/.
[4] G. Amato, P. Baronti, and S. Chessa. MaD-WiSe: a distributed query

processor for wireless sensor networks. In ISTI-CNR Technical report
ISTI-39/2006, 2006.

[5] P. Baronti, P. Pillai, V. Chook, S. Chessa, A. Gotta, and Y. F. Hu. Wire-
less Sensor Networks: a survey on the state of the art and the 802.15.4
and ZigBee standards. Computer Communications, 30(7):1655–1695,
2007.

[6] B. J. Bonfils and P. Bonnet. Adaptive and decentralized operator
placement for in-network query processing. Telecommunication Systems,
26(2-4):389–409, 2004.

[7] E. Codd. A Relational Model of Data for Large Shared Data Banks.
ACM, 1970.

[8] S. De, A. Caruso, T. Chaira, and S. Chessa. Bounds on Hop Distance in
Greedy Routing Approach in Wireless Ad Hoc Networks. International
Journal on Wireless and Mobile Computing, 1(2):131–140, 2006.

[9] P. D. Felice, M. Ianni, and L. Pomante. A spatial extension of TinyDB
for wireless sensor networks. In IEEE Symposium on Computers and
Communications (ISCC 2008), pages 1076–1082, Marrakech 2008.

[10] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion:
a scalable and robust communication paradigm for sensor networks.
In Proceedings of the 6th annual ACM/IEEE international conference
on mobile computing and networking, Boston, MA, USA, pages 56–67,
2000.

[11] K. Liu, L. Chen, Y. Liu, and M. Li. Robust and Efficient Aggregate
query processing in wireless sensor networks. Mobile Networks and
Applications, 13(1-2):212–227, 2008.

[12] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TinyDB: an
acquisitional query processing system for sensor networks. ACM Trans.
Database Syst., 30(1):122–173, 2005.

[13] R. Rosemark, W.-C. Lee, and B. Urgaonkar. Optimizing energy-efficient
query processing in wireless sensor networks. In 8th International
Conference on Mobile Data Management (MDM 2007), Mannheim,
Germany, May 7-11, 2007, pages 24–29, 2007.

[14] M. Stern, E. Buchmann, and K. Bhm. Where in the sensor network
should the join be computed, after all? In In Proceedings of the First
Ubiquitous Knowledge Discovery Workshop (UKD’08), September 2008.

[15] Y. Yao and J. Gehrke. The Cougar approach to in-network query
processing in sensor networks. SIGMOD Record, 31(3):9–18, 2002.


