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Abstract  

We propose a technique for automatic recognition of content in images. Our technique uses 
machine learning methods to build classifiers able to decide about the presence of semantic 
concepts in images. Our classifiers exploits a representation of images in terms of vectors of 
visual terms. A visual term represents a set of visually similar regions that can be found in 
images. An image is indexed by first using a segmentation algorithm to extract regions, then 
extracted regions are replaced by the visual terms that represent them. We discuss how the set of 
visual terms is generated and how weights are assigned to visual terms to assess their relevance 
in images. A learning algorithm for Support Vector Machine is used to obtain a classifiers using 
training sets of images represented by using visual terms. The proposes technique offers very 
good performance as demonstrated by the experiments that we performed. 
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1. Introduction 
Access to multimedia documents is typically obtained by searching machine understandable 
descriptions of the multimedia content of the document themselves. A description may consist of a 
free text annotation, or it may be represented by a more structured and articulated description, in 
accordance to some specific metadata schema as for instance Dublin Core [7], or MPEG-7 [15]. 

These descriptions are generally produced manually by cataloguers and describe content of 
multimedia data very effectively and precisely. However, there are some problems with manual 
generation of annotation. First, manual annotation is time consuming and expensive so it can be 
justified only when the searched material has very high worth. Re-annotating archived material, 
according to new strategies or new perspectives, is something that cannot be realistically performed 
at low costs. In addition, manual annotation is subjective: the quality of the annotation, and 
consequently the search performance, depends on the skills of the cataloguers. 

For this reason, several systems offer image retrieval functionalities just relying on content-
based (feature-based) image retrieval techniques [10,7] rather than exploiting semantic 
descriptions. Content-based image retrieval exploits similarity among low level features, such as 
color histograms, textures, or shapes [17], extracted from images and queries. The assumption is 
that visually similar images correspond to similar features, according to some mathematical 
definition of similarity among feature representations. With this search paradigm, users search by 
using other images as queries and retrieve images visually similar to the query image. Typically, 
this process is iterated after choosing one of the images returned by the system as a new query, 
until an image that satisfies the requirements is found. 

However, inexperienced users are not satisfied by such systems given that their first intuition is 



that of semantic similarity, rather than visual similarity. For instance, if color features are used to 
measure similarity, the use of a “red car” image as a query will bring back more red objects than 
cars. The semantic gap [8] refers to bad match between the low-level features, used by visual 
similarity search systems (content-based retrieval), and the high-level queries such as objects and 
concepts that users would like to express when searching in an image database. 

This paper presents a novel techniques for automated recognition of image content based on the 
use of machine learning techniques and on the representation of images in terms of visual terms 
associated with image regions.  

The paper is organized as follows. Section 2 gives an overview of the proposed technique. 
Section 3 describes the techniques for generating the visual lexicon, that is the set of visual terms 
used to represent visual content of images. Section 4 presents the technique used for associating 
visual terms with images. Section 5 deals with the issue of setting up classifiers for recognizing 
image content. Section 6 discusses the experiments that we performed to assess the performance of 
our approach. Section 7 concludes. 

2. Overview of the approach 
In this paper we propose a technique for automatic recognition of content in images. We represent 
the semantic content of images in terms of a finite set of concepts, denoted by labels. For instance 
we might want to recognize concepts like car, person, landscape, flower, city, people, countryside, 
sport, etc. Our techniques is based on the use of automatic classifiers to determine the occurrence 
of determinate concept in an image. We use Support Vector Machine (SVM) [6] to build 
classifiers, applied to a special representation of images. 

SVM requires that objects (images in our case) to be classified have to be represented by points 
in a multi-dimensional Euclidian space. In order to build a classifier, learning algorithms for SVM 
require a training set composed of positive and negative examples of the class to be recognized. An 
SVM classifier is basically able to distinguish the portion of the space containing positive examples 
(occurrence of the concept) from that containing negative examples. In our context, positive points 
represent examples of images containing a certain concept, while negative examples represent 
images where the concept does not occur. 

In order to effectively build SVM classifiers, we need a suitable representation for visual 
content of images, in terms of vectors, able to correctly represent the relationships between 
conceptual content and visual content. Humans decide about the occurrence of a concept in an 
image on the base of the co-occurrence of various combinations of visual regions. Accordingly, we 
represent the visual content of images in terms of visual regions. To make this representation finite 
and able to be encoded with vectors, we do not describe content of images with the regions that 
actually occur in an image. Rather, we represent the original regions with those taken from a 
controlled set of typical regions (prototypes of regions). We call the controlled set of typical 
regions, used to describe the content of images, the visual lexicon and each typical region in the 
visual lexicon a visual term. We use visual similarity between original regions and regions of the 
visual lexicon to determine which regions are used to represent an image. Note that the occurrence 
of a single visual term in an image does not imply any semantic meaning in an image. It just means 
that the image contains a region very similar to it. It is the combination of occurrence of several 
visual terms that indicates the presence of a certain semantic content in the image. Vector 
representation is obtained by associating images with vectors having the same size of the visual 
lexicon. Every element of the vector corresponds to one visual term. The value (weight) of an 
element of the array indicates the importance of the corresponding visual term in the image. Later, 
we will see that this weight is decided according to statistical properties of the data sets, concept to 
be recognized, and to the similarity between the actual regions contained in the image and the 
visual terms. 

The intuition suggests that images containing the same semantic concept share a common group 
of regions and consequently the points that represent their visual content should be placed nearby 



each other, or according to same unknown pattern (group of clusters for instance), in the underlying 
vector space. By using SVM technology and by using for each concept a training set composed of 
positive and negative image examples, it is possible to build for each concept a classifier that is 
able to determine if the points representing images to be classified fall in the positive or negative 
area of the space corresponding to the concept. 

In order to build a framework able to support this process, there is a number of aspects that 
should be considered. We have to decide how the visual lexicon is built so that we are able to 
represent the needed visual aspects to recognize concepts. We have to define how images are 
indexed, that is how images are represented by means of visual terms. Finally we have to set-up a 
learning algorithm in order to build classifiers for concepts. 

These aspects are discussed more in details in the next sections. 

3. Visual lexicon generation 
As discussed previously, in our approach images are indexed by using visual terms, consisting of 
typical visual regions that may occur in images. The occurrence of a particular combination of 
regions is used by a classifier to decide about the presence of a concept in an image. Clearly the 
variety of regions that can be found in all images is potentially infinite, and creating a visual 
vocabulary that contains all possible regions is not a good idea. The size of the visual lexicon can 
be prohibitive, and the probability that two images have the same regions is practically zero. 
However, as also discussed in [1, 12, 13], typically very similar regions play the same role, from a 
visual point of view, in the process of contributing to form a concept in the image. Intuitively, 
regions that play the same role should have the same representation. Assuming that visual 
similarity is an indication of equivalence of role of visual regions, we represent very similar visual 
regions by using the same prototype, which is used as a visual term in the visual lexicon. 

So far, we talked about visual similarity without being very specific on it. However, visual 
similarity can be judged according to several aspects. In fact, in the literature, several visual 
features and correspondingly several similarity measures have been defined to characterize visual 
similarity. For instance, MPEG-7 [15] defines 5 visual descriptors, corresponding to global colours, 
scalable colours, hedge histograms, homogeneous textures, and region shape. Two regions that are 
judged to be very similar according to global colours might be very different according to their 
shape. In this respect, the visual lexicon should contain visual terms that are able to represent 
groups of regions according to various similarity criteria. 

The visual lexicon that we use is a multi-feature visual lexicon, obtained as a composition of 
several mono-feature visual lexicons. Visual terms in a mono-feature visual lexicon are used to 
represent regions visually similar according to one specific feature. A multi-feature visual lexicon 
contains terms, belonging to different mono-feature lexicons, that are able to represent typology of 
regions according to different visual similarity criteria. There will be terms that represent regions 
that are similar according to their shape, others that represent terms that are similar according to 
their colour, etc. 

In order to actually build the visual vocabulary we start with a training sets of images, which are 
representative of the dataset of images we want to deal with. We apply a region segmentation 
algorithm to this set of images and we obtain a set of regions. Provided that the image training set 
has been properly chosen and the region segmentation algorithm identifies good regions, we will 
end-up with a representative set of regions of the dataset. At this point we have to reduce the size of 
the region set in order to have the visual lexicon. In this work we have tested two different 
strategies.  

The first very simple strategy consists in defining the size of the visual lexicon and to randomly 
chose the visual terms out of the region set obtained after segmentation. 

For the second strategy we tried to apply the k-medoids [12] clustering algorithm to group 
together visually similar regions. Cluster representatives are the visual terms. An application of the 
clustering algorithm using a specific visual feature and similarity function generates a mono-feature 



visual lexicon. Several applications of the clustering algorithm using different visual features 
generates the multi-feature visual lexicon.  

In the experiments, we have used the ITI Segmentation algorithm [1] to segment the images. 
We used the five MPEG-7 [15] visual descriptors to represent the features extracted from regions. 
Therefore we have a visual lexicon composed of 5 different groups of terms. 

4. Image indexing 
The visual lexicon is used chose visual terms to be associated with images to describe their visual 
content. In principle, a visual term should be associated with an image when the image contains a 
region very similar to the visual term. The indexing process is composed of three different steps. 
Given an image to be indexed, this is first segmented by using a segmentation algorithm. The result 
of the segmentation returns a set of visual regions of the image. The second step chooses for each 
region a visual term to be used to represent the region. In order to do that each region is associated 
with the most similar visual term in each mono-feature lexicon. Therefore, if the visual lexicon is 
composed of n mono-features lexicons, each region extracted from the image will be represented 
by n visual terms. The last step associates a relevance value (a weight) to each selected visual term, 
trying to reflect the importance of the term in the image, in the dataset, and in the concept that has 
to be recognized. The technique for associating a weight to the selected visual terms is discussed 
more extensively in the following. 

The first thing to do to decide the importance of a visual term is to determine the relevance of 
the term with respect to the image itself, without considering the entire dataset and the concept to 
be recognized. This measure is somehow very similar to what in text retrieval is called the Term 
Frequency (TF) of a term in a document. In text retrieval the term frequency TFD

t of a term t in a 
document D is directly proportional to the number of occurrences of t in D. In our context, 
intuitively, the importance of a visual term t in an image I should be directly proportional to the 
similarity between a region r of the image and the visual term and to the size of the region in the 
image. In addition, it should be directly proportional to the number of regions, in the image, 
represented by t. This can be expressed as 
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where Regions(I, t) is the set of regions of I that are represented by t, sim(r, t) gives the 
similarity of region r to the visual term t, according to the low level feature of the lexicon of t, and 
cover(r,I) is the percentage of the area covered by r in I. 

As we said before, TF just takes into considerations the content of a single image. However, the 
relevance of a term in an image should also take into considerations global aspects related to the 
dataset and the concepts to be recognized. In order to obtain the final weight of a term in an image 
we have compared two different techniques. 

The first technique is the TF*IDF [16,17] technique widely used in text retrieval systems. It 
says that the weight of a term is directly proportional to the relevance of a term in the document 
(image in our case) and inversely proportional to the frequency of the term in the entire collection 
(Inverse Document Frequency, or simply IDF). In fact, if all documents have the same term, it 
means that that terms is not very indicative so the weight of that term should be penalized. We 
define the inverse document frequency of term t (IDFt) as in traditional text retrieval systems. It is 
the logarithm of the ratio between the dataset size N and the number nt of images, which contain t: 
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The weight of a term t in an image I is therefore obtained as  
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The second technique that we have considered uses the information gain (IG) [3], which is 



typically used for feature selection, to obtain the final weight of a term for an image. Given a 
concept ci that we want to recognize, the IG says that the term t is relevant when it is able to 
discriminate when a document contains ci. If term t is contained in all images that contains ci and it 
does not occur in images that do not contain ci, it is relevant. If term t is contained (or is not 
contained) in both images that contain ci and do not contain ci, it is not relevant. The IG of a term t 
for a concept ci can be expressed as 
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where ci indicates that a random document x belong to the category ci and c̄i indicates that it 
does not belong to the category ci, tk indicates that the term tk occurs in x and t̄ k indicates that it 
does not occur in x. For example, P(t̄ k, ci) indicates the probability that, for a random document x, 
term tk does not occur in x and x belongs to category ci. 

The weight of a term t in image I, when we want to recognize the concept ci, is therefore 
obtained as  
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5. Classification 
As we said previously, we represent the content of images by means of a finite set of concepts, 
denoted by labels as, for instance, car, person, landscape, flower, city, people, countryside, sport, 
etc. In order to recognize concepts in an image we build binary classifiers, that is, classifiers able to 
decide if a specific concept is present or not in an image. In this respect, we need to build a 
specialized classifier for each concept we want to recognize. A classifier takes as input an image 
and it says if the associated concept is present or not in the image. In order to obtain a complete 
description of an image, all available classifiers should be applied to the image to be classified. 

5.1. Support Vector Machine 
We build classifiers by applying the Support Vector Machine (SVM) [6] technology to the 
representation of images, in terms of vectors of weighted visual terms, described in previous 
sections. An SVM learns a decision rule for a concept by using a training set containing positive 
and negative examples. We denote the training as T ={(x1, y1),…, (xn, yn)} where xi is the vector of 
weighted visual terms for image i  of the training set. Each yi is 1 or -1 according to the fact that the 
training image i is a positive or negative example of the concept to learn. 

The learning phase of a classifier tries to determine what is the pattern of the portion of the 
vector space that includes vectors corresponding to images contains the concept, on the base of the 
training set. The simplest case is that of the linear SVM, where the learning phase determines an 
hyper-plane that divides the space in two subspaces. One sub-space corresponds to vectors of 
images that contain the concept, the other to vectors that do not contain the concept. In this case, 
omitting several theoretical details (see [6] for more information), the learning phase has to find a 
vector ω such that the decision function 

bf +>=< xωx ,)(  
is able to optimally classify most of the training set examples. 

In real cases it is not possible to linearly separate negative from positive examples, so a linear 
SVM is not effective. However, in most cases a linear separation is still possible by mapping the 
vectors in an higher dimensional space. Suppose you have a mapping function Φ that maps vectors 
in a space of large (even infinite) dimensions where a linear separation can be found between 
positive and negative examples. In this case the decision function can be written as  

bf +>Φ=< )(,)( xωx . 
Actually, SVM methods do not define the mapping function Φ explicitly, but use the properties 



of the kernel functions. A kernel function K, defined as K(xi,xj)= <Φ (xi)T,Φ (xj)>, computes the 
dot-product of vectors obtained from the mapping of xi and xj. There are simple kernel function that 
easily compute the dot-product of vectors mapped in very high or even infinite dimensional spaces 
without even knowing the actual mapping functions. 

It can be proven [3] that the kernel based decision function, defined above, can be also 
represented in the dual form as 
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in terms of the training vectors. In this formulation, the learning phase consists in finding the 
parameters αi (which basically determine the contribution of each example of the training set to the 
solution of the learning problem) rather than the vector ω. To execute the learning phase we have 
used the kernel adatron algorithm. The adatron was first introduced in [1] as a perceptron-like 
procedure to classify data and then a kernel-based was proposed in [6]. The learning strategy of the 
adatron is to perform a gradient ascent to solve the margin-maximization problem between the 
positive and negative examples of the training set.  

In our implementation we used the SVM library in [4]. 

5.2. Tuning considerations 
The performance of the SVM classification is strongly related to the choice of the kernel function, 
the kernel parameters, and some parameters related to the adatron algorithm, such as the penalty 
parameter C, the maximal tolerance on the margin, and maximum number of iterations. 

There is a large number of kernel functions available. We have chosen the Gaussian Radial 
Basis Function (RBF) given its capability to recognize separate areas of the vector space where 
positively classified elements can be found. In fact, the occurrence of a concept in an image cannot, 
in general, be uniquely determined by the presence (or absence) of some visual terms. Rather, 
various different and dissimilar patterns can suggest the presence of the same concept. The RBF 
takes as parameter the variance σ  of the underlying Gaussian. 

In general, it is not not possible to know in advance the parameters that offer the best 
performance for a specific problem. A widely used procedure, to chose optimal parameter, is the v 
cross-validation. This procedure divides the training set into v different subsets (folders) of equal 
size: one folder is used as test set for the classifier and the other v-1 folders are used as training 
sets. The cross-validation process is then repeated v times using every time a new folder of the v 
subsets as test set. Finally the v results obtained can be averaged to produce an overall evaluation of 
the classification system. 

In order to automatically find the optimum values for the penalty parameter C and the variance 
σ of the RBF, one parameter is kept fixed and the other parameter grows exponentially and vice 
versa. After identifying the best pairs, using cross validation, we performed a finer search on their 
neighbourhood. Once we have determined the best choice for (C,σ), we have also tested some 
possible values to find the best maximal tolerance on the margin and maximum number of 
iterations. 

6. Experiments 
We validated the technique that we propose by running some performance experiments that 
measure the quality of image content recognition, according to the various options that is possible 
to choose when setting up our classifier. 

We first run experiments to measure the quality of the classifier when using either a visual 
lexicon obtained by clustering or by choosing regions at random (see Section 3 for more details). In 
this first test we also compare the performance by varying the size of the visual lexicon. Then, we 
evaluated the weighting strategy. We ran experiments by using images indexed by using the tf*idf 



technique and the tf*ig technique to decide the weights associated with each term of the visual 
lexicon when building the vectors associated with each image (see Section 4 for more details). 
Finally, we tested the performance of our classification technique by using a multi-feature visual 
lexicon, using 5 MPEG-7 visual descriptors to represent visual features of region (see again Section 
3 for more details) . To perform our tests we used a subset of the COREL collection, containing 
images belonging to 5 different categories (buses, roses, colleges, mountains, and deers).  
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Figure 1: Classification performance using a visual lexicon obtained by randomly choosing the visual 
terms and by determining visual terms using the k-medoid clustering algorithm. Size of the visual 
lexicon is 10 and 1000. We used a mono-feature visual lexicon obtained by using the MPEG-7 
Scalable Color only. We also compare a multi-feature visual lexicon using all 5 MPEG-7 descriptors. 
All tests were obtained using tf*idf to assign weight to elements of vectors associated with images. 

6.1. Settings for the experiments 
We used the ITI segmentation algorithm [7] to obtain the regions used for generating the visual 
lexicon and for indexing images of the experiments. The ITI algorithm was set to extract about 10 
regions from each image. From each region we extracted the five MPEG-7 visual descriptors 
(Scalable Color, Edge Histogram, Dominant Color, Region Shape, Homogenous Texture), by using 
the MPEG-7 reference software. We used a subset of 1000 randomly chosen images as training set 
to generate the visual lexicon. Various mono-feature visual lexicons were generated. We used 
different MPEG-7 visual descriptors, we used the clustering and the random choice techniques 
identify visual terms, and finally we set se size of the lexicon to 100 and 1000 visual terms. The 
proposed approach was tested by using each mono-feature visual lexicon and by combining 5 
mono-feature visual lexicons, corresponding to the 5 MPEG-7 visual descriptors, in a single multi-
feature lexicon. 

To perform the experiments, as anticipated above, we used a subset of the COREL collection, 
containing images belonging to 5 different categories (buses, roses, colleges, mountains, and 
deers). Each category is composed of 100 examples. Images within each category are randomly 
divided in 10 folder each with 10 elements to perform v cross-validation (see also Section 5.2 for 
additional details). To determine the optimum values for C and σ we have considered first 2-5, 2-



3,…,211  as values of C and 2-15, 2-13,...,23 as values for σ (each value of C is combined with each 
value of σ). The best values identified in the first run of cross-validation were then further refined 
using fine-grained intervals. We have tested one category at a time. Positive example are taken 
from the 100 images composing the category itself, while negative examples are randomly chosen 
from the other categories. At each run of the cross-validation, one folder is considered as test set 
and the remaining folders are used as training set. The number of folders used as training set varies 
from 20 examples (10 positive and 10 negative) to 180 examples (90 positive and 90 negative). 
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Figure 2: Classification performance using the tf*ig and tf*idf to assign weight to vectors of visual 
terms associated with images. The visual lexicon was obtained using random selection of visual terms. 
We just compared a mono-feature visual lexicon obtained using the MPEG-7 Scalable Colors 
descriptor 

6.2. Results 
Objective performance measurement was obtained by using the well known F1 measure defined as 
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where a are the positive examples correctly classified, b are the positive examples incorrectly 
classified, c are the negative examples incorrectly classified. We computed the F1 measures for 
each concept according to each tested setting. 

The first test that we performed was intended to compare the performance obtained using 
various strategies for generating the visual lexicon. We compared visual lexicons of size 100 and 
1000 elements, obtained using both the random and clustering visual term generation. We 
compared individually the 5 mono-feature visual lexicons, corresponding to the 5 MPEG-7 visual 
descriptors, using tf*idf to associate weight with images and visual terms. The best performance 
was obtained by using the Scalable Color visual descriptor with all tested settings and results are 
reported in Figure 1. For brevity, we do not report results obtained with all visual descriptors. F1 
values were in general very high, reaching 0.95 in some cases (buses concept). From the 
histograms we can infer that there is not an evident difference in performance between the random 
and the clustering strategies and between the visual lexicons of size 100 and 1000. Consider that 
the cost of using the clustering strategy is O(k*N*iter), where k is the number of visual terms, N is 
the number of initial regions of the training set, and iter is the number of iterations of the k-medoid 



algorithm. On the other hand the cost of the random strategy is simply O(k), given that we have just 
to chose k random regions. The cost of the clustering strategy is much higher than that of the 
random strategy. However, clustering does not offer a performance that justifies its use. We can 
also observe that there is not a significant difference in performance when the size of the visual 
lexicon changes from 100 to1000. This suggests that the granularity of the information that we 
need to classify images with this technique does not need to be very fine grained. In Figure 1 we 
also report the results obtained by using a multi-feature visual lexicon. It can be seen that the 
results are comparable (sometimes a bit better sometime a bit worse) to those obtained when we 
used the best mono-feature visual lexicon, which is the one obtained using Scalable Color. Note 
that in general, it is not possible to know what is the best mono-feature visual lexicon in advance. 
The performance might depend, on the test sets, the training sets, the concepts. The advantage of 
the use of the multi-feature lexicon is that we do not have to decide in advance what is the best 
visual descriptor. In fact, thanks to the weighting strategy, the method offers good performance 
(comparable to the best visual descriptor) in all circumstances. 
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Figure 3: Classification performance using the tf*ig and tf*idf to assign weight to vectors of visual 
terms associated with images. The visual lexicon was obtained using random selection of visual terms. 
We used a multi-feature visual lexicon containing all 5 MPEG-7 descriptors. 

In the second test we compared the performance obtained using the tf*idf and tf*ig weighting 
strategies. Also in this case we used a mono-feature lexicon of size 1000 obtained using the 
Scalable Color visual descriptor with the random strategy. Surprisingly, our tests showed that there 
is not a significant difference in performance between the two methods. Results are shown in 
Figure 2. 

For completeness we run the same test using the multi-feature visual lexicon. Results are 
reported in Figure 3. In this case the difference in performance of the two weighting strategies 
becomes more evident. The tf*ig method returns the best results on average. We believe that this 
effect is due to the capability of the tf*ig method to better select the relevant terms for a concept, 
which is more important in a multi-feature lexicon, where selecting a term has also the effect of 
deciding the importance of a visual descriptor with respect to the other. The effect was less evident 
in the previous experiment given that we tested the mono-feature visual lexicon obtained using the 
Scalable Color visual descriptor, which, as we said before, is the best descriptor for the dataset and 
concepts that we used. 



7. Conclusions 
We presented a techniques for automatic recognition of image content. In our approach an image’s 
semantic content is represented by the set of concepts that are present in the image. A classifier has 
to be built for each concept that we want to recognize. We use an image visual representation based 
on visual terms representing regions of images. Machine learning techniques are used to train 
classifiers from training sets of images represented by vectors of visual terms. We have tested 
different techniques for creating the set of visual terms and for creating the vectors of visual terms, 
which represent the images. We have performed various tests to measure the quality of the 
technique and to assess the various options that we presented. 

Experiments provided evidence that generating the visual terms by simply choosing a number 
of random regions, from the set of regions extracted from a training set of images, offers a 
performance comparable to that of selecting visual terms by using a clustering techniques. Clearly 
the cost of randomly selecting the images is negligible, compared to that of the clustering 
algorithm. In addition, we have evidence that the weighting techniques based on the information 
gain, in conjunction to the use of several different types of visual descriptors, to describe the visual 
appearance of regions, beats weighting based on tf*idf. 
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