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Abstract Wireless Sensor Networks (WSN) are an im-
portant technological support for smart environments
and ambient assisted applications. Up to now most ap-
plications are based on ad hoc solutions for WSN, and
attempts to provide uniform and reusable application
are still in their youth. Among these attempts, those
integrating database technologies and WSN appear the
most promising. Under this trend of research we propose
a general framework to be used in context aware archi-
tectures aimed at integrating wireless sensor networks
by exploiting a distributed query processor approach. In
the proposed approach the WSN can be programmed us-
ing a query language (MW-SQL) which offers constructs
specialized for sensor networks. The query language is
offered by a JDBC driver which is encapsulated within
the OSGi framework.

1 Introduction

Smart environments unobtrusively assist people by pre-
dicting their needs. This prediction is often based on in-
formation implicitly acquired from the users, from their
behavior and from the environment. To this purpose they
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exploit wireless networks of sensors [1] placed in the en-
vironment or on the users themselves. The interpretation
and management of sensor data is offered to the applica-
tions through middlewares encapsulating context-aware
engines [2], which mask the sensors to offer higher level
services.

The first efforts to introduce context-awareness have
been related to the localization of users [3],[4],[5],[6]. Lo-
calization is still one of the main building blocks of context-
aware systems, although recently the concept of context-
awareness has been enriched to take into account more
general environmental parameters, where the meaning
of the term ”environmental” is as broad as possible.
Environmental parameters may refer to user physiologi-
cal/emotional data, user actions/movements, user iden-
tity, status of the surrounding environment, location,
time, profiles, agendas and data referable to the user and
even presence and context of other users [2],[7],[8],[9].
Context aware systems are particularly useful to sup-
port mobile applications since the context may change
rapidly with mobility (of the user and/or of the envi-
ronment), and the system should react rapidly to such
context changes.

In this paper we present a framework to be used in
context aware architectures aimed at integrating wireless
sensor networks by exploiting a distributed query pro-
cessor approach. In the proposed framework the Wireless
Sensor Network (WSN) can be programmed dynamically
by means of an SQL-like language (MW-SQL) which of-
fers constructs specialized for WSNs. The query language
individually manipulates data sources consisting of spe-
cific transducers located on individual sensors. Queries
can relate and compare data acquired by multiple (re-
mote) nodes. Queries can also aggregate data in the spa-
tial and temporal dimension. The interface to the query
language is offered by means of a JDBC driver [26] de-
signed for the MaD-WiSe system.

In order to enable a smooth integration of the JDBC
driver within a context server, we foresee the use of the
OSGi [21] platform which has already been successfully



used to build infrastructures for smart environments.
The general context architecture is shown in Figure 1.

The architecture proposed in this paper is under the
final stage of development in the MaD-WiSe system [17]
using a WSN platform based on MICAz motes [18].

2 Related Work

Related works on context awareness - Context-
aware systems can be implemented in many ways, lead-
ing to different architectures of the context-aware sys-
tems. The following classification (proposed in [13]) is
based on the way the contextual information is collected:

- Direct sensor access: the access to the sensor is not
structured, the driver of the sensors is directly encapsu-
lated into the client application which access each indi-
vidual sensors when it needs fresh data.

- Middleware infrastructure: the access to the sensors
is mediated by a middleware which abstracts the sensors
and provide a unified interface to access them

- Context server: the sensors are encapsulated within
a context server and different client applications query
the server to access contextual information.

Alternatively, [14] propose a classification based on
the coordination of processes and components:

- Widget: is a software component that encapsulates
a sensor and which provide a public interface for the
sensor [15].

- Networked services: resembles the context server
architecture: the context services are offered as a set of
networked services [16].

- Blackboard model: represents a data-centric view.
In this approach clients can subscribe events by posting
a specific request to a shared media (the blackboard),
and they are notified when such event occurs.

In general the architecture of a context-aware system
includes the following layers: sensors, raw data retrieval,
preprocessing, storage/management, and application.

The sensor layer include not only the hardware sen-
sors (physical sensors) but also any data source providing
context information, for instance virtual sensors which
include data available from applications or services (e.g.
data deducted by a specific use of a browser by the user)
and logical sensors which combine information obtained
from physical and logical sensors (e.g. the location of
the user associated to an action on a browser). The raw
data retrieval layer is responsible of the low level man-
agement of the sensors, for instance providing drivers for
physical sensor access. This layer provides an abstraction
of the sensor layer by providing more general primitives
to access context information. The preprocessing layer
can combine and preprocess data coming from several
sensors to give aggregated context information to the
upper layer programmers and to solve conflicts among
data provided by different sensors. Storage and manage-
ment layer organizes and stores the gathered data in a

repository accessible to the client applications. At this
level the clients can request for context data using both
synchronous and asynchronous services. The application
layer implements the client application.

Related works on WSN - An early attempt to
provide a unifying organization of sensor networks is the
Directed Diffusion paradigm [10] in which the sensor
network is controlled by a special sensor node (called
sink) which programs the network, collects the data and
offers an interface to the application. This first effort
has evolved into more advanced paradigms combining
database technology with WSNs such as [11],[12]. In these
paradigms the database to be queried is the physical en-
vironment where the WSN is deployed. These approaches
abstract specific sensor features and offer to the appli-
cation an SQL-like query language through which it can
program the network and access the sensed data.

TinyDB [11] is currently considered the state of the
art of these approaches. It translates a query into an (op-
timized) query execution plan, which is later sent by the
sink to all sensors. The query plan dissemination sets up
a routing tree (the Semantic Routing Tree) which is later
used to collect data at the sink. A single (logical) table
named Sensors contains data produced by the transduc-
ers of each node in the network. Time is divided into
epochs wherein each node autonomously processes the
query producing a new single logical record for the ta-
ble. Table Sensors is distributed across all nodes of the
network: each node can access only its own records and
has no access to records produced by other nodes. During
each epoch a node processes the query on its part of ta-
ble Sensors and it accesses only the data produced in the
current epoch. Records that qualify the query are sent
toward the sink node along the semantic routing tree.
TinyDB can process aggregate queries on data produced
in the same epoch by several sensors (spatial aggregates).

TinyDB presents some limitations. It cannot execute
queries that relate and compare data acquired by dif-
ferent nodes since table Sensors is distributed across all
nodes of the network and each node can only access its
own portion of the table. A node (leaving out of con-
sideration hierarchical aggregation) has no knowledge of
data acquired by other nodes and cannot compare its
data with another node’s data. Another disadvantage
concerns query optimization. Given that the same query
plan is processed autonomously at several nodes, the gen-
eration of an optimized query plan at the base station
can only rely on global assumptions valid for all nodes.
Specifically, it is not possible to exploit statistics of indi-
vidual sensors (or groups of sensors). Although TinyDB
is very efficient when several nodes (almost all nodes)
have to perform the same task (process the same query),
it is less effective when different portions of the network
have to perform different tasks and when it is necessary
to relate data from different zones of the network.

Related works on OSGi - OSGi [22] technol-
ogy is gaining an increasing attention by open source



 
Fig. 1 The context aware architecture

communities [23], and industry market leaders like IBM,
Siemens and others. At the beginning the OSGi specifi-
cation addressed mainly networked device markets but,
since OSGi enables the building of service and com-
ponent oriented architectures and dynamic deployment
of services, new and different markets are now adopt-
ing OSGi-based solutions, ranging from the enterprise
market to the mobile, automotive and smart home mar-
kets [22]. OSGi has been adopted also in the research
field of context-aware applications where different solu-
tions have been proposed to build the infrastructures
of Smart Environments. In [24] the authors show how
OSGi framework can meet the requirements for perva-
sive computing spaces by providing a managed extensible
framework to connect various devices and sensors and by
defining an execution environment allowing the dynamic
discovering of devices and services from different sources.
In [21] the authors propose a middleware (SOCAM) in
which context aware components are built on top of the
OSGi framework to facilitate context acquisition, discov-
ery and interpretation. These components are packaged
as OSGi bundles that publish context aware services. A
similar approach is used in [25], in particular the phys-
ical layer of the proposed middleware (FollowMe) uses
Cricket sensors as location detectors and Mica2 as noise
and light detectors.

3 Overview of the Proposed Approach

The MaD-WiSe [17] architecture comprises a set of mod-
ules running on the nodes of the WSN (network side),
and a set of modules (context information provider) run-
ning on a PC attached to the WSN which is intended to
offer access to the WSN services to the context server
(see Figure 1).

The MaD-WiSe network side - The network-side
consists of a set of modules that implement a distributed

stream management system on a WSN. The network side
of MaD-WiSe has been implemented over the MICAz de-
vices [18]. It is organized into three layers, as depicted
in Figure 2. The layers interact through well defined in-
terfaces and are autonomous with respect to each other.
The Network layer supports connection oriented commu-
nication between arbitrary pairs of nodes. The Stream
System Layer offers abstraction mechanisms for data ac-
cess by means of data streams. It can be thought of as
the equivalent of a file system on a sensor network, the
main difference being that, in the latter, data is contin-
uously produced as a consequence of acquisition from
transducers, communications between nodes, and data
processing. The Stream System defines three types of
streams: sensor, remote, and local streams.

A sensor stream is connected to a transducer and
it carries data originated from the transducer. For this
reason sensor streams are read-only.

A remote stream is a data channel between two dis-
tinct sensors: writing to a remote stream happens on
one sensor while reading from the stream happens on
the other sensor. Thus remote communication between
different sensors is encapsulated within the stream sys-
tem, which, under this respect, offers the transport layer
functionalities [28].

A local stream is local to a sensor in the sense that
writing to and reading from the stream can only be re-
quested by code running on the same sensor. The Stream
System offers functionalities to create/remove streams as
well as read and write records from/to existing streams.
Data rates can be associated with sensor streams as well
as remote streams. In the first case data rates determine
the activation frequency of transducers associated with
sensor streams. In the second case, data rates are used by
the network layer to optimize radio scheduling: the radio
is switched on only when a piece of data must be sent
through a remote stream [19]. Sensor streams can also be
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Fig. 2 The software of a network-side node.

on-demand. In this case transducers are activated only
in response to an explicit read request on the stream.

The Query Processor Layer implements the query
processor of a distributed data stream management sys-
tem over the Stream System layer. It can be programmed
by the client-side subsystem in order to take part in
the execution of a distributed query. Queries are de-
fined in terms of operations connected by streams. Oper-
ations are basically primitives of the query algebra which
are applied to streamed relations implemented by the
streams of the Stream System Layer. Note that in our
model there are significant differences with respect to
traditional relational algebra operations and relations.
Relations (tables) are mainly static collections of records
while streams are flowing records. Correspondingly, op-
erators do not act on static relations but on continu-
ously flowing data. In addition, given the limited re-
sources available to sensor nodes (in terms of memory,
processing power, and energy), data are processed on-
the-fly when they arrive, using pipelined execution and
avoiding as much as possible the storage of temporary
data. This requires the use of non-blocking operations
and exploits the inherent time ordering of data records.
Although nodes could temporarily store data for later
use, we avoid this to meet memory constraints.

The MaD-WiSe context information provider
- The MaD-WiSe context information provider fits within
the raw data retrieval layer of a context aware architec-
ture. It comprises a low level module (composed of a
query parser, an execution plan optimizer, and a query

manager) and a higher level module, the JDBC driver
which interacts with the low level module by means of the
MW-SQL language. At the current stage of the project
the JDBC driver is being encapsulated within an OSGi
bundle.

In the low-level module, the query parser takes an
SQL-like query and translates it into an initial distributed
query execution plan. Operators of the query execution
plan are allocated on the nodes involved in executing
the query. The query optimizer then generates a seman-
tically equivalent query execution plan which rearranges
the nodes involved in the query execution, the operations
to be executed, the transducer activations, and the ra-
dio communications in order reduce energy consumption
and increase network lifetime. The query manager dis-
seminates the optimized query execution plan in the net-
work and receives the results obtained from in-network
query execution.

4 Query Language

The query language used in MaD-WiSe is named MW-
SQL and shares its basic constructs with SQL. However
sensor network peculiarities and the distributive nature
of the database implementation introduce some differ-
ences. MW-SQL allows users to express queries to ma-
nipulate, filter, and organize sequences of tuples gener-
ated by the sensors. MW-SQL relies on the concept of
source to present the user with an abstraction of a se-
quence of tuples arriving from a precise origin.

MW-SQL queries are expressed through query state-
ments having the form:

SELECT select-list
FROM source
[ WHERE condition ]
[ EPOCH samples [ SAMPLES ] ]
[ EVERY rate ]

A MW-SQL query selects the attributes (including
temporal aggregates) specified by select-list from all tu-
ples that satisfy a certain condition from the indicated
source. Optionally, a query can request a sampling rate
(rate) and epoch duration (samples). A sampling rate
specifies at which rate transducers should acquire data.
The epoch duration specifies how many samples are con-
sidered when processing temporal aggregation in queries.
A detailed specification of MW-SQL can be found in [20].

The FROM clause in the MW-SQL query statement
defines a source of data tuples to be considered when
generating query results. The SELECT clause expresses
which of the attributes of the source are relevant for the
query as a comma-separated list of attribute names. As
a special case SELECT * means that all attributes are
significant and none must be discarded.



The ultimate data sources for any query computation
are transducers. We call such elementary sources basic
sources. Conceptually, for each transducer TR available
on sensor A there exists a basic source named A.TR with
two attributes named Timestamp and A.TR, where A is a
numeric sensor id and TR identifies a transducer. Possi-
ble transducers include Light, Temperature, Magnetism,
Humidity, etc..., subject to the actual availability on the
sensor hardware. For instance, if a light transducer is
available on sensor 1 the user may refer source 1.Light
with attributes Timestamp, 1.Light (note that 1.Light
is used both to denote the name of the basic source and
the name of one of the attributes). Attribute Timestamp
is a timestamp value for the reading contained in the
other attribute. A complex source is a source constructed
by combining together several other sources (basic or
complex) by means of join, spatial aggregation, and union
operations.

Join - Joining sources means combining their tuples
on the basis of a common timestamp value. The resulting
source has all the attributes of the component sources
with the exception that attribute Timestamp is replicated
only once. A complex source obtained by joining several
sources can be expressed as a comma-separated list of
the source names as in:

SELECT 2.Temp, 3.Temp
FROM 2.Light, 2.Temp, 3.Temp
WHERE 2.Light > 20

Note that the meaning of the above query is substan-
tially different from standard SQL. In SQL the above
query would have computed a simple Cartesian product,
rather than a join on the Timestamp attribute, given
that an explicit join condition is not defined.

Spatial aggregation - Aggregation of data produced
by a group of sensors is a very significant capability in
WSN since it reduces the amount of data sent to the
sink.

In MW-SQL spatial aggregates are expressed by a
functional notation in the FROM clause as the aggregation
name (max, min or avg) such in FROM avg(1.Light,
2.Light, 3.Light), which requests an average spatial
aggregation of the light values from sensors 1, 2 and
3. The basic sources involved in the spatial aggregation
must be of the same type i.e., they must all sample the
same quantity (light in this case).

Aggregation is actually performed by computing the
desired function (max, min or average) on the sampling
attributes of the input sources, subject to the common
timestamp constraint. The attributes of a spatial aggre-
gation include the Timestamp and the name of the sam-
pled attribute, deprived of any numeric prefix.

Union - Sometimes it is useful to sequentially merge
into a single source data read by different sensors. This
can be achieved by using unions of sources and can be

specified in the FROM clause, as in FROM union(1.Light,
2.Light, 3.Light) which merges together light values
from sensors 1, 2 and 3.

MW-SQL offers the functional area().TR (to be used
in a FROM clause) to select sensors based on their position
in the sensing field. Functional area().TR takes 4 argu-
ments indicating the top-left and bottom-right corners
of a rectangular region, while TR is a transducer type. It
denotes all basic sources of the given type of all sensors
located within the region.

MW-SQL supports four different temporal aggregates:
max, min, average and count, indicated by the func-
tionals max(), min(), avg() and count() respectively.
The argument to the functionals must be one of the
attributes from the source defined by the FROM clause.
When temporal aggregates are requested the SELECT clause
must contain a comma-separated list of aggregate func-
tionals and optionally the Timestamp attribute. Differ-
ent temporal aggregates can be requested on the same
attribute. For instance the following query requests the
minimum and maximum temporal aggregates over the
light values from sensor 1 and the average temporal ag-
gregate over the temperature from sensor 2:

SELECT min(1.Light), max(1.Light),avg(2.Temp)
FROM 1.Light, 2.Temp
EPOCH 10 SAMPLES
EVERY 2000

while the following query requests the minimum and
maximum temporal aggregates over the light values from
sensor 1 and the average temporal aggregate over the
temperature from sensor 2:

SELECT min(1.Light), max(1.Light),avg(2.Temp)
FROM 1.Light, 2.Temp
EPOCH 10 SAMPLES
EVERY 2000

5 Applications

The MaD-WiSe system had been used to implement a
prototype application providing remote monitoring of
firefighters equipped with Totally Encapsulated Chem-
ical Suits [27]. This application enable monitoring of pa-
rameters such as temperature, humidity and light within
the coverall, physiological parameters such as heartbeat
or breadth, and movements to detect if the firefighter is
still active or if he is fallen. Using these information it is
possible to raise alarms to be sent to the team leader in
order to undertake the necessary actions, but they are
also recorded to provide a history of the intervention for
off-line analyses.

The system had been implemented on the MICAz
devices [18]. The application exploits 5 sensors deployed
on the arms, on the legs and on the chest of the operator.



We report a few samples of the queries used to implement
the application.

1. Monitoring of the status of the operator using the
sensor placed on the chest every one second:

SELECT *
FROM Chest.Light, Chest.Humidity, Chest.Temp,
Chest.AccelerationX
EVERY 1000

2. Monitoring of the operator movements using the
sensors placed on the legs:

SELECT *
FROM LeftLeg.AccellerationX,
RightLeg.AccelerationX
EVERY 100

3. Monitoring of the temperature inside the suit and
alarm for the temperature exceeding 35 degrees:

SELECT *
FROM Chest.Temp
WHERE Chest.Temp>35
EVERY 1000

6 Conclusions

We have presented a general framework to be used in
context aware architectures to enable the use of wire-
less sensor networks in a sensor layer of a context server.
The interaction between the context server and the wire-
less sensor network happens by means of an OSGi bun-
dle encapsulating a JDBC driver. The JDBC driver in-
teracts in turn with the sensor network by means of a
general query language (MW-SQL) with constructs spe-
cialized for sensor networks. The query language indi-
vidually manipulates data sources consisting of specific
transducers located on individual sensors. Queries can
relate and compare data acquired by multiple (remote)
sensors.
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